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Preface

It is my great honor to put together this book to celebrate the 50"
anniversary of University of Science and Technology of China (USTC).
Nanotechnology has been revolutionalizing daily life in the last two decades.
Tremendous progress in one-dimensional (1-D) nanostructures including
nanowires, nanotubes and nanoribbons has been seen in recent years. It is
considered timely to provide a survey of a number of important developments
in this field. To this end, One-Dimensional Nanostructures: Concepts,
Applications and Perspectives combines contributions from fabrication and
application of 1-D nanostructures in an attempt to give the reader a feel for
the scope of current and potential future developments. Although the book is
not the intention to be comprehensive, specific research topics are selected
that reflects the fascinating possibilities offered by 1-D nanostructures.

Because there are so many researchers in this rapidly growing field. I
have only invited 8 alumni specialists of the USTC in the representative areas
to contribute to this special book. In chapter 1, Zhou reviews the formation
and application of lipid nanotubes and peptide nanotubes. In chapter 2, Lao
and coworkers give a comprehensive introduction of nanodevices based on
ZnO nanowires/nanobelts and the most recent research progress in this area.
Hu illustrates elastic properties of 1-D metal nanoparticles studied by time-
resolved spectroscopy in chapter 3. Zhu reviews the main research work
regarding the microwave-assisted rapid preparation of 1-D nanostructures in
chapter 4. Chapter 5 by Xiong et al surveys recent developments in the
solution-phase synthesis of one-dimensional inorganic nanostruetures. Shen
and coworkers describe in chapter 6 focused on 1-D nanoscale

heterostructures, especially on the synthesis of 1-D nanoscale heterostmctures
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using the vapor related processes. In chapter 7, Deng and coworkers introduce
recent developments in DNA nanotechnology-based strategies for 1-D
nanostructure fabrications. In chapter 8, Xu reports the synthesis of rare
earth compound 1-D nanostructures, template-directed synthesis of 1-D
nanostructures, biomimetic synthesis of 1-D nanostructures, other functional
1-D nanostructures, and the formation mechanism of 1-D nanostructures by
soft chemistry routes.

In the edition of this book I am indebted to Prof. Zuyao Chen
(Department of Chemistry, USTC) for his great support. [ am also extremely
grateful to the authors for their excellent contributions. I hope that this book
will be a source of inspiration for many researchers and stimulate new
developments in this challenging field of science.

Happy Birthday, USTC!

Yong Zhou
Nanjing, China, 2009
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Chapter 1

Lipid Nanotubes and Peptide Nanotubes:
Formation and Applications for
Scaffolding Nanomaterials

Yong Zhou® @

Yong Zhou studied chemistry and physics at the University of Science and Technology of China
(USTC), received his Master degree in 1996, and finished the PhD thesis there in 2000. After
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Japan Science and Technology (JST) fellow to the National
Institute of Materials Science (NIMS) in 2003, and National
Institute of Advanced Industrial Science and Technology
(AIST), Tsukuba, in 2004. Dr. Yong Zhou worked for one
year in National University of Singapore (NUS) before he
settled down in Nanjing University in 2009. Until now Dr.
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including several review papers, book chapters and over 40
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several international journals.
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Abstract

Learning from nature’s amazing ability to form highly ordered
structures, designed lipid and peptide molecules can organize in liquid media
into open ended, hollow cylindrical structures through noncovalent self-
assembly. The generated lipid nanotubes ( LNTs) and peptide nanotubes
(PNTs) represent a potentially powerful architecture, and are considered
among the largest self-organized non-living structures yet observed. LNTs
and PNTs have hydrophilically internal and external membrane surfaces,
and can provide the wide scope for chemical modifications, in sharp contrast
to carbon nanotubes. These unique properties make themselves as ideal
candidates for a variety of applications in chemistry, biochemistry, materials
science and medicine. This chapter provides recent progress in the formation

of the LNTs and PNTs and their application as templates for structured
nanomaterials.

1.1 Introduction

In the “bottom-up” process, simple building blocks interact with each
other in a coordinated way to form large and more complex supremolecular
assemblies. Molecular self-organization and self-assembly are processes by
which nature builds complex, three-dimensional, multicomponent structures
with well-defined functions, starting from simple building blocks such as
oligonucleotides, oligosaccharides, phospholipids, proteins or peptides'.
Learning from Nature, increasing interest has been focused on supramolecular
self assembly of small organic molecules to give organized materials with
macroscopically well-defined shapes and structures via molecular-recognition
functions and noncovalent interactions such as electrostatic interactions,
hydrogen bonds, n-n stacking, hydrophobic and van der Waals interactions
since 1980s?. This supramolecular assembly offers numerous opportunities for
chemical variation and provides an important direction for the controlled

fabrication of a new class of nanoscopic materials and devices®. Thus, the
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realization of self assembly will have far-reaching significance for not only
fundamental understanding but also important applications.

Lipid is the basic building blocks of biological membrane, and peptides
are always found in proteins. In liquid media, designed lipid and peptide
molecules self-assemble into open ended, hollow cylindrical structures, named
lipid nanotubes (LNTs) and peptide nanotubes (PNTs), respectively?!. LNTs
and PNTs possess biocompatibility and chemical diversity with tunable surface
characteristics and internal diameters, and represent a potentially powerful
architecture generated through self-assembly of amphiphilic molecules. They
are also much more stable and robust and can be readily synthesized on a large
scale. In recent years, benefiting from the specific properties of lipid and
peptide molecules like highly order architecture and precise molecular
recognition, such tubular structures may offer a variety of applications in
chemistry, biochemistry, materials science and medicine, biosensors, tissue
engineering.

Similar to other tubular biomolecular structure such as protein
microtubules® and tobacco mosaic virus®, LNTs and PNTs have been
becoming promising scaffolds for nanostructures’ . On one hand, the hollow
cylinder of LNTs and PNTs can provide the nanospace to confine synthesis
and arrangement of nanomaterials. On the other hand, the lipid and peptide
headgroups can direct the nucleation, growth and deposition of inorganic
substances on the external and internal surfaces of preformed LNTs and
PNTs. This chapter represents an overview of the formation of LNTs and
PNTs, and their recent promising applications as templates for structured
nanomaterials.

1.2 Formation of LNTs

Yagar and Schoen of the US Naval Research Laboratory first reported
hollow cylindrical structures of lipid derived from 1,2 - bis (tricosa-10,12 -
diynoyl) -sn-glycero — 3 — phospho-choline 1(8,9) in 1984 when they studied
the properties of the diacetylenic monomeric lipid®. They dispersed 1(8,9)
in distilled water above its chain melting transition temperature ( 7,, ) and
subsequent cooling. When aqueous dispersions were cooled below the gel-to-
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liquid crystalline phase transition temperature, the 1 (8, 9) lipid bilayer
transited from the chain disordered L, phase into an ordered Ly gel phase,
and the tubular structure was spontaneously formed from fusion of lipid
vesicles. These formed tubules were morphologically analogous to soda
straws with diameters of approximately 400-1 000 nm, wall thickness of
2-10 bilayers (10-50 nm) and lengths varying from a few to several hundred
micrometers. The tubule structures produced can be polymerized to render
them mechanical, thermal, and chemical stability by exposure to a UV lamp
or Y irradiation, or a suitable polymerization reaction. Lately, it was found
that the tubules can be formed by different processes. In addition to
formation in aqueous solutions, a more easy and convenient process for large
amounts of the LNT was developed with ethanol/lipid/water solution®. The
process involves dissolving the lipids in alcohol and then mixing with water
above their T,, and slowly cooling the mixture. By this route longer and
more robust LNTs can be produced. Aging under suitable conditions may
obtain tubules in excess of 1.2 mm in length. Nevertheless, bulk water is
not a prerequisite for tubule formation. The tubules may also precipitate
from acetonitrile in absence of water!®. This finding may have important
technological implications in the development of these unique
microstructures for promising use in organic solvents and under controlled
environmental conditions. Until now 17 different diacetylenic lipids have
been prepared to form the LNT!!'. Moreover, besides the family of
diacetylenic lipids, several other classes of amphiphiles have also been
explored to create LNTs, including peptidic-lipid'?, bolaamphiphiles!3,
and glycolipid conjugates!?® .

HzC /O (CHZ)m - - (CHZ)nCHJ
0] -
Heekono O (CHy),, —=——==— (CHy),CH;
\bll 1|>| !HO\H/
gl I
1(m,n)

o

Since the discovery of the LNTs, much efforts have been contributed to
understanding their tubular formation mechanism. A variety of theoretical
models have been proposed to explain the growth of these high-curvature
structures. Among the models, the most reasonable one is based on the
molecular chiral packing, which is consistent with the experiments well!®: 16

In the most simplistic illustration in Figure 1.1, chiral self-assembly involves a
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helically coiled ribbon structure as an intermediate through morphological
fusion of vesicles in cooling process, which has been evidenced with
experimental observation'”. Chiral interactions cause constituent molecules to
pack at a nonzero angle with respect to their nearest neighbors in the solid
bilayer membrane. This situation leads to the solid bilayer ribbon to twist into
an open helix, which eventually closes to yield nanotubes in the way of either
widening of the tape width and

maintenance of a constant helical pitch '{ -
(Figure 1.1(a)) or shortening of the helical
pitch of the ribbon and maintenance of a
constant tape width (Figure 1.1(b)). In
addition to the twisting-induced LNT,
there is another route based on packing
directed  self-assembly’4® 4¢.  Wedge-

shaped bolaamphiphilic molecules have a T

WG

A
AR

tendency to directly assemble into hollow

cylindrical structures without forming Figure 1. 1 Possible formation mechanism
helically twisted or coiled ribbons during  of LNTs based on chiral molecular self-
the course of self-assembly. assemble.

Although the optimum mechanism behind the formation of the tubules has
been identified to explain current experimental results, several fundamental
questions on tubules have still risen such as: (1) what kind of materials will
form these structures? (2) what is the molecular basis for the formation of the
tubule structures? As a result, it is necessary to develop a rational
understanding of the relation between the individual component molecule and
the tubular microstructure derived from it. It has been revealed that the lipid
molecular conformation, a variety of functionalities necessary for
aggregation, and the location and orientation of those functionalities play
crucial roles in determining the tubular self-assembling behavior!® . In
general, tubular formation depends on some typical parameters such as the
degree of hydration of the lipid head group, the crystallinity of the membrane
and the chirality as well as presence of amide bond and hydrogen bonding?®2*.
Singh et al has synthesized a number of molecules 1(m, n) with m varying
form 4 to 15 and n varying from 6 to 17 to assess the effect of variation of
these features on the self-assembly of cylindrical microstructures?®®. The most
prominent results of these studies were: (1) The nondiacetylenic version of



