S YAVIBOLIGC
JJ/J:; JJ\J ]

o | Jifs
&\ AW
i = | = )
by
o




SYMBOLIC
COMPUTING
WITH Lisp
AND PROLOG

Robert A. Mueller

Colorado State University, Quantitative Technology Corporation

Rex L. Page

Colorado State University, Amoco Research

WILEY
JOHN WILEY & SONS

New York e Chichester e Brisbane e Toronto e Singapore



To the memories of Walter Orvedahl and Barney
Marschner, mentors extraordinaire. Walter, you
always knew the right place to go. and Barney, you
always knew how fo geft there.

Cover photograph by Geoffry Gove

Unix is a trademark of AT&T Bell Laboratories

Copyright (©)1988, by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of

this work beyond that permitted by Sections

107 and 108 of the 1976 United States Copyright
Act without the permission of the copyright
owner is unlawful. Requests for permission

or further information should be addressed to
the Permissions Department, John Wiley & Sons.

Library of Congress Cataloging in Publication Data:

Mueller, Robert A.
Symbolic Computing with Lisp and Prolog / Robert A. Mueller, Rex
L. Page
. cm.
ISBN 0-471-60771-1
1. LISP (Computer program language) 2. Prolog (Computer program
language) 1. Page, Rex L. 11. Title.
QA76.73.L23M84 1988
005.13’3--dc19 88-23414
CIP

Printed in the United States of America

109 87 65 43 21



SYMBOLIC
COMPUTING
WITH Lisp
AND PROLOG



P REFACE

--ooo.noooooooo-nOoo.ooo--ooo.O.c-

Two main themes emerge in this book: symbolic computing and de-
notational programming. The first portions of the text covers program-
ming, and the later portion discusses symbolic computing in such areas
as game playing, language translation, and theorem proving. We present
example problems in each of these areas, propose solutions, and then
specify working programs in terms of the programming techniques and
languages discussed in the first portion of the text.

Two programs accompany each of the applications in symbolic com-
puting—one written in Lisp, the other in Prolog. These stylized programs
conform to a collection of programming techniques that we classify as
denotational in nature. By this we mean that they specify their results
directly in terms of their input data. At each level in the specification, re-
sults are described entirely in terms of the constituents of the input data
at that level. This contrasts with the operational approach, in which a
sequence of operations, individually operating on their own small parts
of the data in a step-by-step fashion, generates the desired output. To
use one of the most overworked phrases of our time, denotational pro-
grams concentrate on what the result is, whereas operatlonal programs
emphasize how the result is computed.

To illustrate the difference between the denotational and operational
forms, consider the following definition of bread (slightly paraphrased
from Webster’s New Collegiate Dictionary'):

A leavened and baked food made of a mixture whose basic
constituent is flour or meal.

1Webster's New Collegiate Dictionary, G. & C. Merriam, Springfield, Mass., 1974.

e o o (D) e s e 000 00 0000 O o0



vi = PREFACE

We would consider this definition to be denotational; the character-
istic properties of bread are explicit, and the method of making it is
implicit. Contrast this with an operational definition, which explicitly
delineates the method of construction but leaves the resulting properties
implicit:

1. Prepare the dough by mixing the flour, yeast in warm water, etc.
2. Knead the dough with a folding and tearing motion.

3. Allow the dough to recover by placing it in a warm, draft-free place
for the required time.

4. Reknead the dough, shape accordingly, and allow it to rise again.
5. Bake in the oven for the required time at a suitable temperature.

6. Remove from the oven and allow to cool on a wire rack.

Denotational programs written in Lisp are functional programs: They
describe the result as a function of the input; given a particular input,
the Lisp system computes the result satisfying the functional specifica-
tion. In Prolog they are relational programs: They describe constraints
among the constituents of the input data and the results; combinations
of input data and results satisfying these constraints are uncovered by
the Prolog system and delivered as output. (There is a close correspon-
dence between functional and relational programs. A function can be
thought of as a constraint between potential input data and potential
results that associates valid results with appropriate input. A relation
does the same thing, although it has a bit more freedom in this regard
than does a function, according to the technical definitions of the terms.)
In either case, a computer system can derive computations from these
specifications. We do not dwell on how such a system is able to do this,
but we explain enough about these mechanisms to estimate the com-
putational resources required by programs and to facilitate coping with
bugs when they creep in.

Our approach is practical rather than theoretical. We emphasize use-
ful, common programming techniques and show how they can affect
the performance of a program. We value algorithms that avoid exces-
sive computation. (We do not present O(n?) algorithms when linear or
O(nlogn) algorithms are available.) However, we do not attempt to pin
down details of performance relative to specific configurations of com-
puting hardware. We value programs that elucidate as well as compute,
as this, we suspect, is a way out of the software quagmire, if there is
one. (Paradoxically, it may also foster the reduction of hardware defi-
ciencies, via massive parallelism, but that is not a primary motif in this
presentation.)

This text can be used in several ways: to study some important ap-
plications in the area of symbolic computing, to practice techniques of



PREFACE = vii

denotational programming in Lisp or in Prolog, or to learn about any
combination of these applications and programming techniques. The
Lisp portion and the Prolog portion are independent; neither part as-
sumes a knowledge of the other. We present symbolic-computing algo-
rithms in both notations, so that a familiarity with either Lisp or Prolog
will be sufficient background for a study of that material. Readers who
are already familiar with one of the languages may wish to skip both the
programming sections and read only the symbolic computing portion of
the text.

Whatever your route, we hope you will enjoy it and find the informa-
tion useful.

ROBERT A. MUELLER
Rex L. PAace



ACKNOWLEDGMENTS

-.-ooo.-ooooooaooOoo.oooooooooOooo

e e o (O e e 0000000000 Oese(

Many students persevered through the errors and organizational mis-
takes in earlier versions of this text and managed, in spite of these, to
respond enthusiastically to the subject. We thank them for that, and for
the guidance their reactions provided in revisions. Marian Sexton and
Charles Sharpe provided an extraordinary number of detailed tips, for
which we owe them a great debt. Margaret Sweeney and Joseph Vargh-
ese read the original manuscript with a critical eye when few others had
seen it. We have some inkling of how hard that job was, and we very
much appreciate their efforts.

Several reviewers saw value in the text and offered suggestions that
led to important improvements in both context and presentation. We
offer them our thanks for their distinctive contributions: Alan Perlis of
Yale University for his inspiring endorsement of the concept of the book;
David Touretsky of Carnegie-Mellon University for suggesting ways to
connect the material to traditional presentations; Frederick Blackwell
of California State University, Sacramento; Charles Dyer of the Univer-
sity of Wisconsin; Dennis Kibler of the University of California, Irvine;
and Jordan Pollack of New Mexico State University for improving the
organization of the text; and Richard Gabriel of Lucid Corporation and
Stanford University for helping us reduce the similarity between our
prose and pompous imitations of nineteenth-century novelists. Thank
you every one.

viii



CONTENTS

oooooooo.oououoo-Ooo.--ooo--ooOooo

|
1 Lisp, Prolog, and Denotational Programing
SECTION | Lisp
2 Notations for Data in Lisp
3 Functions
4 Building Lists and Extracting Components
5 More List Manipulation Functions
6 A Lenient Function: if
7 Naming Partial Results: let
8 Recursion
9 Debugging
10 More Lenient Functions: and, or
11 Pumping
12 Divide and Conquer
13 Input and Output
14 Higher Order Functions
15 Numbers

SECTION Il Prolog

16
17
18

19 Unification: How the Interpreter Instantiates Variables

20
21
22

Notation for Data and Variables in Prolog
Propositional Facts, Rules, and Queries
Relations Containing Variables

Recursion
Propagation and Accumulation of Results
Divide and Conquer

e o e O e e o 0 0 0 0 0 0 000 O e (O

11

13
19
29
36
46
55
59
70
79
86
97
105
114
121

127

129
137
148
155
163
171
182



X |}

23
24
25
26
27
28
29

30
31
32
33

CONTENTS

And/Or Control Flow

Saving Computation with Embedded Or Control
Not

Backtracking

Generating All Solutions Using bagof and setof
Inhibiting Backtracking

Built-in Relations for Program File Access and
Transformation of Terms

Program Construction and Debugging

Numbers

Input and Output

Declarative and Procedural Semantics of Logic Programs

SECTION Il Lisp vs. Prolog

34

Lisp vs. Prolog: How Do They Relate?

SECTION IV Applications

35
36
37

Two-Opponent Games
Language Parsing
Automated Theorem Proving

Index

196
200
203
207
223
228

237
251
266
278
291

301
303

311

313
370
413

465



® o o 0o 0 0 0 0 0 0 () ® e e e 0 0 () e e 0o e 0 0 0 0 0 0 0 0 (O e oo

ISP, PROLOG, AND
DENOTATIONAL
PROGRAMMING

Lisp and Prolog are notations for describing relationships between input
data and results. They are general-purpose notations in the sense that
they can be used to describe any such relationship that is “computable.”

What is computable and what is not computable is a philosophical
issue that has been debated for about half a century. Although there
is no firm answer to the question, most of the discussion falls along
these lines: A relationship between input and results is computable if
it has a finite description in terms of a finite set of fundamental rela-
tionships, each of which can be worked out in a finite amount of time.
The set of “fundamental relationships” is a key issue. Philosophers have
considered several different fundamental sets (also known as “models of
computation”) and have found, through careful mathematical analysis,
that they all are equivalent. That is, all the proposed models of compu-
tation lead to the same set of computable relationships. Lisp and Prolog
are complete models in the sense that they are sufficient to describe
any computable relationship that can be described via any of the other
proposed methods of computation.

e o o (O e e 0 e 0 0 0 06 0 06 060 (O e (O



2 = LISP, PROLOG, AND DENOTATIONAL PROGRAMMING

There are many other notations for describing computable relation-
ships. You are probably familiar with one or more of them, such as
Pascal, Fortran, C, PL/I, Cobol, or Basic. All these notations, or “pro-
gramming languages” as they are usually called, start from slightly dif-
ferent sets of fundamental operations and from widely different points of
view about how these operations should be denoted. They are all highly
redundant in the sense that many of their fundamental operations could
be eliminated without affecting the set of describable relationships.

Some of the redundancy leads to more concise programs. (A “pro-
gram” for our purposes is a description in a programming language of a
computable relationship.) Other portions of the redundancy are included
to make it possible to address certain types of computing hardware in a
particularly efficient manner. We will be concerned with both concise-
ness and efficiency, but we will not be overly concerned with questions
of efficient computation that are closely related to underlying hardware.

For this reason, we will not discuss every aspect of Lisp and Prolog.
We will cover subsets that are sufficient to describe any computable re-
lationship in such a way that a computer can carry out the computation
in a reasonably efficient manner, but not necessarily in the manner that
is optimal with respect to a given computer’s unique capabilities. The
advantage of this approach is that you can spend more time learning
general programming techniques and solutions for many computing ap-
plications. The disadvantage is that you will not learn all the bells and
whistles of either Lisp or Prolog. If that is your goal, you should choose
a different book; there are many suitable ones available.

In any programming language, even one that has no built-in redun-
dancy, many different programs describe any given computable relation-
ship. Although it makes us guilty of a vast oversimplification, we classify
programs in two categories: operational and denotational. A program in
the operational category describes a computable relationship in terms
of a sequence of operations on the input data that eventually leads, in a
step-by-step fashion, to the desired results. Thus, an operational program
explains a procedure for computing the result. A denotational program,
on the other hand, attempts to describe the form of the result in terms
of its relationship to the input data. It specifies this relationship directly
in terms of the constituents of the input data rather than concentrating
on how the result can be derived from the input data in a step-by-step
procedure. .

To say the same thing one more way, in an operational program a
procedure determines a relationship between input and output data; in
a denotational program a relationship between input and output data
determines a procedure. !

'The terms iterative and procedural often refer to the operational approach to program-
ming. Names used for the denotational approach include functional, applicative, declarative,
and nonprocedural. People often associate the terms functional and applicative with Lisp
and declarative and nonprocedural with Prolog. We chose the term denotational because



LISP, PROLOG, AND DENOTATIONAL PROGRAMMING = 3

For example, suppose we want to write a program that has as its result
the word yes if its input data is a palindrome, and no if it is not. A
denotational description might say that the result is yes whenever the
letters in the input match, exactly, those same letters in reverse order; in
all other situations, the result would be no. An operational description
might go as follows: (1) Compare the first letter in the input data to
the last letter; (2) if they are different, then the result is no; (3) if they
are the same, then compare the second letter to the next-to-last; (4) if
they are different, then the result is no; (5) continue in this manner until
you have examined all the letters and found no differences, in which
case the result is yes, or until you have determined that the result is no.
The subsets of Lisp and Prolog that we will discuss favor denotational
programs over operational programs.

Lisp was inspired by one of the models of computation that is deno-
tational in nature, specifically, the lambda-calculus model proposed by
Alonzo Church in the 1930s and further developed, in various forms,
by Schoenfinkel, Curry, and others. In the 1950s, John McCarthy took
the lead in developing the original Lisp notation and its supporting com-
puting system, which was a practical implementation of many of the
theoretical concepts developed by Church. (We write our programs in
Common Lisp, a modern Lisp dialect. If you use a different dialect, you
may have to adjust our notation slightly to get your programs to work.
We stay within a very small subset of the language; few of the features
we discuss will differ in any Lisp dialect.)

Prolog derives from the work of Frege on predicate calculus around the
turn of the century, with subsequent refinements by Skolem, Herbrand,
Horn, Davis and Putnam, Gilmore, and Robinson (spanning from the
1920s into the 1960s). The computational ramifications of this model
were developed by Kowalski, Colmerauer, and others in the 1970s. (We
write our Prolog programs in C-Prolog. If your Prolog system plays in a
different key, you will have to transpose; we do not think you will find
it difficult.)

Because Lisp and Prolog arose from descriptive models of computable
relationships, they support the design of denotational programs more di-
rectly than do conventional programming languages such as Pascal or C,
which are patterned after an operational model of computation devel-
oped by Alan Turing, Emil Post, and others. (The Turing model arose at
about the same time as the Church model.)

Lisp and Prolog are not the only choices. There are many existing no-
tations that would serve as a basis for illustrating the programming tech-

its dictionary meaning matches the idea of programs denoting results rather than opera-
tion sequences better than functional (connotes something that is not broken), applicative
(useful for a given purpose), or declarative (“well, I declare”). Nonprocedural works, but
seems too negative. Semantic specification techniques split naturally into denotational
and operational categories, for many of the same reasons as programming, and both terms
have gained some popularity in that field.



4 = [ISP, PROLOG, AND DENOTATIONAL PROGRAMMING

niques and applications covered in this text. For example, we could have
chosen to use the mathematical notation of recursive function theory,
or our own variant thereof, or we could have chosen Church’s original
notation, or Curry’s, or Schoenfinkel’s, or Skolem'’s, or Horn’s.

The primary disadvantage of choosing one of these notations would
be that our programs would stand only as descriptions of computations.
They would not support, in a realistic sense, actual computations be-
cause we would not have access to a computer system that would auto-
matically carry out the computations described by our programs.

That eliminates notations with no supporting computing system, but
there are also many programming languages with excellent support for
our chosen computational model that do have computer systems to
support them. FP, the variableless programming language introduced
by John Backus in the late 1970s would have been a good choice, as
would SASL, KRC, or Miranda, the elegant notations developed by David
Turner. ML, developed by Robin Milner’s group, and Hope, developed
by Burstall and associates, ALFL (Paul Hudak), and a host of new arrivals
provide still other pleasing alternatives. We did not choose any of these
because they are not so widely available as Lisp and Prolog. If you write
a program in Lisp or Prolog, there will be many more places that you
can use it to perform computations than there will be if you write it in
Miranda or Hope.

So the choice of Lisp and Prolog was a pragmatic one: they are ade-
quate, and they are popular — and likely to remain so for a long time.

Lisp can serve as a durable, generic medium for expressing the ideas
of modern functional and logic-based (relational) languages. Alan Perlis
likes to think of Lisp as the machine language for the programming lan-
guages of the future and of Prolog, FP, Miranda, and such as the initial
prototypes of these languages. We agree.

Lisp has facilities for dealing effectively with computer architectures
as they exist today. In fact, most Lisp programs developed over the past
two decades have an operational bent. (Analysis of significant artificial
intelligence codes written in Lisp reveals that setq’s, rplaca’s, and the like
account for about 90% of all the function references in such programs.
These operations support procedural programming; we do not cover them
in this text.) New architectures aimed at supporting the most important
parts of Lisp directly have had a commercial presence for half a decade.
Prolog machines, SASL machines, and the like build on this experience.

The newer programming languages will facilitate the discovery of the
most appropriate language features for effective programming. Lisp may
then absorb these features and continue its dominance. Or Prolog may
impart such a strong influence on the ideas and products stimulated by
Japan’s fifth-generation computing effort that programmers will migrate
in the Prolog direction. Or later arrivals such as FP or Miranda or Hope
may somehow gain a foothold. (Probably none of the above, predictions
being what they are.) Regardless of the chosen notation, we believe that



LISP, PROLOG, AND DENOTATIONAL PROGRAMMING = 5

the denotational approach will play an increasingly significant role in
program design and development.

We cover only a very small part of Lisp in this text. We cover a
larger percentage of Prolog (it is smaller than Lisp). The portions of the
two languages that we present, and the ways in which we use them,
may leave the impression that differences between them are primarily
superficial. This is not the case. We simply choose to write all our
programs in a denotational form (or nonprocedural, or declarative, or
whichever term you prefer), and this minimizes the gulf between Lisp
and Prolog.

To illustrate the similarity between Lisp and Prolog, as we use them,
consider a pair of specifications of the palindrome relationship. The
specification that follows on the left is in the manner of Lisp, and the
one on the right is in the manner of Prolog (expressed in a form more
akin to informal mathematical notation than to the formal syntax of
either Lisp or Prolog).

Lisp-like Prolog-like
p(x) is x=rev(x) p(x) if rev(x,x)
rev([]) is (] rev([],[])
rev(w'x) is append(rev(x),[w]) rev(w’x,y) if rev(x,z) and
append(z,[w],y)

In the Lisp-like program, p, rev, and append are functions (they deliver
transformed versions of their input values). In the Prolog-like programs,
p, rev, and append are relations (expressing true or false conditions, de-
pending on their input values). In both programs x, y, and z are phrases,
w is a letter from the alphabet, square brackets enclose sequences, and
the circumflex represents a sequence formed from an initial component
(on the left of the circumflex) and another sequence (on the right).

The Lisp-like program says that the palindrome function is true if
its argument is the same as a reversed copy of its argument. It further
specifies that the reverse function, when applied to the empty sequence,
delivers the empty sequence; when applied to a sequence beginning with
the component w and consisting of the components in x following w,
the reverse function delivers a sequence constructed by concatenating a
reversed copy of x and the sequence with w as its only component.

The Prolog-like program says that a sequence satisfies the palindrome
property if it is in a reversed relationship with itself. It further specifies
that the empty sequence satisfies the reverse property with itself and that
a sequence whose first component is w and whose following components
are those of the sequence x satisfies the reverse property with a sequence
y if there is a sequence z that satisfies the reverse property with x and if
that sequence z together with the sequence with w as its only component
satisfies the append property with y.



6 = LISP, PROLOG, AND DENOTATIONAL PROGRAMMING

In case you are curious, the programs that follow describe these same
computations in Lisp, Prolog, and C syntax.

Lisp Prolog
(defun p(x) p(X) :- rev(X,X).
(equal x (rev x))) rev([],[]).
(defun rev (x) rev([W|X],Y) := rev(X,2),
(if (null x) append (Z, [W],Y) .
X

(append (rev (cdr x))
(list (car x)))))

e

#define False 0
#define True 1
p(x,n)
char x[]1;
int n;
{int k;
for (k=0; k<n; k++)
if (x[k] <> x[n-k-11])
return (False) ;
return (True) ;

}

The C version employs the conventional procedural paradigm. It
specifies a sequence of computational steps, leaving the resulting in-
put/output relationship to be deduced from an understanding of the re-
sulting process. The Lisp and Prolog versions, on the other hand, specify
the desired input/output relationship, leaving the computational process
to be deduced by the processor. For us, Lisp and Prolog serve the same
purpose: They provide a practical means of expressing computations in
enlightening ways.

BiBLIOGRAPHY NOTES

In the 1930s and 1940s, logicians explored many of the theoretical foun-
dations of computing. A line of investigation based on lambda-calculus
and the related combinatory calculus, pioneered by Church, Curry, Kleene,
Rosser, Schoenfinkel, and others inspired practical computing systems
for functional programming developed by McCarthy, Landin, and others



LISP, PROLOG, AND DENOTATIONAL PROGRAMMING = 7

in the 1950s and 1960s. (Rosser prepared an enlightening history of this
work in 1982.) Elegant extensions of these computing systems, have
emerged from work by Backus, Burstall, Milner, Turner, and others in
the 1970s and 1980s.

Another line of investigation with its roots in predicate calculus and
with theoretical contributions from Herbrand, Horn, Skolem, and others
in the 1930s, 1940s, and 1950s has led to computing systems that support
relational programming grounded in the work of Kowalski, Colmerauer,
Robinson, and others in the 1970s. In the 1980s, Clocksin and Mellish
provided an implementation of this approach that is practical for com-
puting purposes.

Conventional computing systems, both hardware and software, from
the 1950s to the present, have followed a line of investigation pioneered
by Turing, Post, and others whose theoretical formulations had more
obvious representations in the form of constructable, physical machines
than either lambda-calculus or predicate calculus.

John Backus (1978). Can programming be liberated from the von Neumann style?
Comm. ACM 21,(8) 613-641.

R. M. Burstall, D. B. MacQueen, and D. T. Sannella (1980). HOPE: An experi-
mental applicative language. ACM Lisp Conference (August), 136-143.

Alonzo Church (1932). A set of postulates for the foundation of logic. Annals
Mathematics 33 (2): 346-366.

Alonzo Church (1936). An unsolvable problem of elementary number theory.
American |. Mathematics 58, 345-363.

Alonzo Church and J. Barkley Rosser (1936). Some properties of conversion.
Trans. American Mathematical Society 39, 472-482.

Alonzo Church (1941). The calculi of lambda-conversion. Annals of Mathemat-
ical Studies 6, Princeton University Press, Princeton N.J.

W. F. Clocksin and C. S. Mellish (1981). Programming in Prolog, Springer-Verlag,
New York.

A. Colmerauer (1973). Les systemes-Q our un formalisme pour analyser et
synthetiser des phrases sur ordinateur. Publication Interne No. 43, Dept
d’'Informatique, University of Montreal, 1973.

A. Colmerauer (1978). Metamorphosis grammars. In L. Bolc (ed.), Natural Lan-
guage Communication with Computers, Lecture Notes in Computer Sci-
ence, Vol. 63. Springer-Verlag, New York.

Haskell B. Curry (1930). Grundlagen der Kombinatorischen Logik. American J.
of Mathematics 52 509-536, 789-834.

Haskell B. Curry (1963). Foundations of Mathematical Logic, McGraw-Hill, New
York.

M. Gordon, R. Milner, and C. Wadsworth (1979). Edinburgh LCF - a mechanized
logic of computation. Lecture Notes in Computer Sciences, Vol 78. Springer-
Verlag, New York.



