Lin Padgham
Franco Zambonelli (Eds.)

d—
S
-
(4B
e
S
L
5
(<P)
e
(g
i
v

Survey

Agent-Oriented
Software
Engineering VI

7th International Workshop, AOSE 2006
Hakodate, Japan, May 2006

LNCS 4405

Revised and Invited Papers

m
Move

Flight and |
%Tt‘)it‘ J e

@ ;
. to Orbit nake Amoeba | | Rolling

71 Springer

U Lin Padgham Franco Zambonelli (Eds.)

Agent-Oriented
Software
Engineering VII

7th International Workshop, AOSE 2006
Hakodate, Japan, May 8, 2006
Revised and Invited Papers

n,\

)

\ r e T
\ 1‘ 1 b 11 y !
\ ’ ’/

& springer WM

E2007003169

Volume Editors

Lin Padgham
RMIT University, Melbourne, Australia
E-mail: linpa@cs.rmit.edu.au

Franco Zambonelli

Universita di Modena e Reggio Emilia, DISMI
Via Allegri 13, Reggio Emilia, Italia

E-mail: franco.zambonelli @unimore.it

Library of Congress Control Number: 2007920434

CR Subject Classification (1998): D.2,1.2.11, E3,D.1,C.24,D.3
LNCS Sublibrary: SL 2 — Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-70944-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-70944-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12021468 06/3142 543210

Preface

Since the mid 1980s, software agents and multi-agent systems have grown into
a very active area of research with some very successful examples of commercial
development. At AAMAS 2006 Steve Benfield from Agentis described research
on large scale industry system development, which indicated a savings of four
to five times in development time and in cost when using agent technologies.
However it is still the case that one of the limiting factors in industry take up
of agent technology is the lack of adequate software engineering support, and
knowledge in how to systematically develop agent systems.

The concept of an agent as an autonomous system, capable of interacting
with other agents in order to satisfy its design objectives, is a natural one for
software designers. Just as we can understand many systems as being composed
of essentially passive objects, which have state, and upon which we can perform
operations, so we can understand many others as being made up of interacting,
semi-autonomous agents. This paradigm is especially suited to complex systems.
However software architectures that contain many dynamically interacting com-
ponents, each with their own thread of control, and engaging in complex coordi-
nation protocols, are difficult to correctly and efficiently engineer. Agent oriented
modelling techniques are important for supporting the design and development
of such applications.

The AOSE 2006 workshop was hosted by the 5th International Joint Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS 2006) held
in Hakodate, Japan. A selection of extended versions of papers from that work-
shop, along with some additional papers, are presented in this volume, which
follows the successful predecessors of 2000 to 2005, published as Lecture Notes
in Computer Science, volumes 1957, 2222, 2585, 2935, 3382 and 3950.

This book has been organised into four parts: Modelling and Design of Agent
Systems, dealing with some specific aspects of modelling agent systems, Mod-
elling Open Agent Systems, dealing with design issues that arise when deal-
ing with agents in the Internet environment, Formal Reasoning About Designs,
which looks at the use of reasoning methods to analyse designs, and finally Test-
ing, Debugging and Evolvability.

Part I: Modelling and Design of Agent Systems

The first part focusses on issues of modelling and design in agent systems. This
is an extremely important activity and one which has, over the last few years,
received a great deal of attention within a range of AOSE methodologies. The
three papers in this part address specific aspects of modelling and design for
agent systems.

VI Preface

The first paper “An Agent Environment Interaction Model” by Scott De-
Loach and Jorge Valenzuela looks in detail at how to design and specify the in-
terface of an agent system with its environment, using actions to represent both
sensors and effectors. Agents exist over time, in environments which are dynamic
and changing, and they typically affect their environments. Consequently the
specification of the environment and the agent’s interaction with it is a key part
of modelling agent systems. The approach described is integrated into O-MASE,
the extended version of the well established MASE methodology developed by
the first author.

The second paper on “Allocating Goals to Agent Roles during MAS Require-
ments Engineering” by Jureta et al. explores how to design roles, and ultimately
agents, to ensure that non-functional goals are addressed. They provide a sys-
tematic approach for assigning non-functional goals to roles, and heuristics for
selecting between different options. Focussing on this assignment of goals to roles
at an early stage in the process allows agent organisational structures to emerge
from the role definitions.

The third and final paper in this part by Garcia, Choren and von Flach, en-
titled “An Aspect-Oriented Modeling Framework for Multi-Agent Systems De-
sign” is about modelling concerns that cut across all or many parts of an agent
application such as mobility, error handling or security. They build on Aspect
Oriented Programming, introducing a meta-modelling framework for representing
these crosscutting concerns in an agent oriented design. They integrate aspect-
oriented abstractions into their agent oriented modelling language called ANote.

Part II: Modelling Open Agent Systems

Part two deals with some of the complexities that arise when dealing with agents
in the Internet environment. Two papers deal with design of governance struc-
tures for providing some control over autonomous agents, while one deals with
modelling agent mobility.

Kusek and Jezic’s paper “Extending UML Sequence Diagrams to Model
Agent Mobility” looks at a number of different ways to potentially model agent
mobility, using extensions of UML sequence diagrams. Their aim is to cap-
ture agent creation, migration paths, and current location. They evaluate the
strengths and the weaknesses of the different approaches based on clarity, space
needed for representing larger systems, and representation of mobility. They
conclude that choice of the most preferred approach depends on the application
characteristics of how many agents and nodes there are in the system to be
modelled.

The papers “Applying the Governance Framework Technique to Promote
Maintainability in Open Multi-Agent Systems” by Carvalho et al., and “Design-
ing Institutional Multi-Agent Systems” by Sierra et al., both deal with specifying
the institutional structures within which agents may interact, and which provide
some guarantees about the behaviours. Both focus on specifying agent interac-
tion patterns or templates, and on the ability to express norms or constraints

Preface VII

regarding agent behaviour. Carvalho et al. use XMLaw and template structures.
Sierra et al. describe the methodology for developing a design in the Islander tool,
which also captures interaction specifications, and norms and constraints. The
methodology used by Sierre et al. is integrated into the Prometheus methodology
as a social or organisational design layer.

Part III: Formal Reasoning About Designs

One of the trends in software engineering, and certainly in agent oriented software
engineering, is to incorporate automated reasoning into design tools to aid the
designer in various ways. This part presents three papers with this general focus.

The first paper, “Modeling Mental States in the Analysis of Multiagent Sys-
tems Requirements” by Lapouchnian and Lespérance looks at formal analysis
by taking an i* specification and mapping it to the Cognitive Agents Speci-
fication Language (CASL). CASL relies heavily on ConGolog for specification
of procedural aspects, and also on modal logics and possible world semantics.
The developer annotates an i* specification and specifies how elements are to
be mapped to the procedural component of CASL. Some transformations are
automated. Once the formal specification exists it becomes possible to do formal
analysis of such things as epistemic feasibility of plans or termination.

The second paper, by Brandao et al., entitled “Observed-MAS: An Ontology-
Based Method for Analyzing Multi-Agent Systems Design Models” focusses on
translating design models to formal ontologies, which describe the Multi Agent
Systems domain. The ontologies are represented in a Description Logic system
and enable analysis of the design using defined queries, which are represented
by ontology instances. Analysis is done in two phases—the first within individual
diagrams while the second looks at relationships between diagrams. The authors
argue that while it is difficult to analyze and establish the well-formedness of
a set of diagrams of a UML-like object-oriented modeling language, it gets far
more complex when the language is extended to add a set of agency related
abstractions. Their approach helps to tame this complexity.

The third paper entitled “Using Risk Analysis to Evaluate Design Alterna-
tives” by Asnar, Bryl and Giorgini, looks at using planning to propose design
alternatives, based on risk-related metrics, which are particularly important in
certain kinds of systems where availability and reliability are crucial. While the
developer must be involved in the reasoning process to agree to any loosening of
constraints, the system they describe provides automated reasoning to suggest
viable alternatives. They illustrate their approach using an Air Traffic Manage-
ment case study.

Part IV: Testing, Debugging and Evolvability

As is well known, implementation is not the final stage of system development.
Systems must always be tested and debugged, and typically they also evolve once

VIII Preface

they are deployed, sometimes becoming whole product lines of related systems.
These last four papers look at these aspects of developing agent systems.

Tiryaki et al. describe “SUNIT: A Unit Testing Framework for Test Driven
Development of Multi-Agent Systems”, which is based on an extension of the
JUnit framework. They propose a test driven multi-agent system development
approach that naturally supports iterative and incremental MAS construction.
This approach is supported by their SUnit system.

The second paper in this part “Monitoring Group Behavior in Goal-Directed
Agents Using Co-efficient Plan Observation” by Sudeikat and Renz describes
an approach to validating the multi-agent cooperative behaviour of a system.
They argue that goal hierarchies developed during requirements engineering,
combined with Belief Desire Intention architectures, are suitable as a basis for
development of a modular approach to checking crosscutting concerns in (BDI)
agent implementations. They provide a case study to illustrate their approach.

The third paper, by Jayatilleke et al., “Evaluating a Model Driven Develop-
ment Toolkit for Domain Experts to Modify Agent Based Systems” describes
evaluation of a toolkit designed to allow domain experts to themselves mod-
ify and evolve an agent application that has been built using this toolkit. The
toolkit builds on design documentation, but provides increased granularity at
the detailed design level, enabling production of fully functional code. Domain
experts then need only change at the design level, in order to obtain an enhanced
implementation. Meteorologists were able to modify an example system that was
based on a real application and actual evolutionary changes to the system.

Finally, the paper entitled “Building the Core Architecture of a NASA Mul-
tiagent System Product Line” by Pefia et al. describes techniques adapted from
the field of Software Product Lines (SPL) to enable building of the core ar-
chitecture for a multiagent system where components can be reused to derive
related concrete products with greatly reduced time-to-market and costs. They
illustrate the approach with examples from a NASA mission.

These papers provide a diverse and interesting overview of the work that
is currently being undertaken by a growing number of researchers and research
groups in the area of Agent Oriented Software Engineering. They represent lead-
ing edge research in this field, which is of critical importance in facilitating in-
dustry take-up of powerful agent technologies.

December 2006 Lin Padgham
Franco Zambonelli

Organization

Organizing Committee

Lin Padgham (Co-chair)
RMIT, Australia

Email: 1inpa@cs.rmit.edu.au

Franco Zambonelli (Co-chair)
University of Modena e Reggio Emilia, Italy
Email: franco.zambonelli@unimore.it

Steering Committee

Paolo Ciancarini, University of Bologna, Italy
Jorg Miiller, Clausthal University of Technol-
ogy, Germany

Gerhard Weif3, Software Competence Center,
Hagenberg

Michael Wooldridge, University of Liverpool,

UK

Program Committee

Bernard Bauer (Germany)
Federico Bergenti (Italy)
Carole Bernon (France)
Giacomo Cabri (Italy)
Luca Cernuzzi (Paraguay)
Paolo Ciancarini (Italy)
Massimo Cossentino (Italy)
Keith Decker (USA)

Scott DeLoach (USA)
Klaus Fischer (Germany)
Paolo Giorgini (Italy)
Michael Huhns (USA)

Gaya Jayatilleke (Australia)
Juergen Lind (Germany)
Mike Luck (UK)

Andrea Omicini (Italy)

Van Parunak (USA)

Anna Perini (Italy)

Fariba Sadri (UK)

Onn Shehory (Israel)
Michael Winikoff (Australia)
Mike Wooldridge (UK)
Laura Zavala (USA)

Lecture Notes in Computer Science 4405 -

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

-

Lecture Notes in Computer Science

For information about Vols. 1-4289

please contact your bookseller or Springer

Vol. 4405: L. Padgham, F. Zambonelli (Eds.), Agent-
Oriented Software Engineering VII. XII, 225 pages.
2007.

Vol. 4390: S.0. Kuznetsov, S. Schmidt (Eds.), For-
mal Concept Analysis. X, 329 pages. 2007. (Sublibrary
LNAI).

Vol. 4385: K. Coninx, K. ‘Luyten, K.A. Schneider (Eds.),
Task Models and Diagrams for Users Interface Design.
X1, 355 pages. 2007.

Vol. 4384: T. Washio, K. Satoh, H. Takeda, A. Inokuchi
(Eds.), New Frontiers in Artificial Intelligence. IX, 401
pages. 2007. (Sublibrary LNAI).

Vol. 4381: J. Akiyama, W.Y.C. Chen, M. Kano, X. Li, Q.
Yu (Eds.), Discrete Geometry, Combinatorics and Graph
Theory. XI, 289 pages. 2007.

Vol. 4380: S. Spaccapietra, P. Atzeni, F. Fages, M.-S.
Hacid, M. Kifer, J. Mylopoulos, B. Pernici, P. Shvaiko, J.
Trujillo, I. Zaihrayeu (Eds.), Journal on Data Semantics
VIIL XV, 219 pages. 2007.

Vol. 4378: 1. Virbitskaite, A. Voronkov (Eds.), Perspec-
tives of Systems Informatics. XIV, 496 pages. 2007.

Vol.4377: M. Abe (Ed.), Topics in Cryptology — CT-RSA
2007. XI, 403 pages. 2006.

Vol. 4373: K. Langendoen, T. Voigt (Eds.), Wireless Sen-
sor Networks. XIII, 358 pages. 2007.

Vol. 4372: M. Kaufmann, D. Wagner (Eds.), Graph
Drawing. X1V, 454 pages. 2007.

Vol. 4371: K. Inoue, K. Satoh, F. Toni (Eds.), Compu-
tational Logic in Multi-Agent Systems. X, 315 pages.
2007. (Sublibrary LNAI).

Vol. 4369: M. Umeda, A. Wolf, O. Bartenstein, U. Geske,
D. Seipel, O. Takata (Eds.), Declarative Programming
for Knowledge Management. X, 229 pages. 2000. (Sub-
library LNAI).

Vol. 4368: T. Erlebach, C. Kaklamanis (Eds.), Approxi-
mation and Online Algorithms. X, 345 pages. 2007.

Vol. 4367: K. De Bosschere, D. Kaeli, P. Stenstrom, D.
Whalley, T. Ungerer (Eds.), High Performance Embed-
ded Architectures and Compilers. XI, 307 pages. 2007.

Vol. 4364: T. Kiihne (Ed.), Models in Software Engineer-
ing. XI, 332 pages. 2007.

Vol. 4362: J. van Leeuwen, G.F. Italiano, W. van der
Hoek, C. Meinel, H. Sack, F. Plasil (Eds.), SOFSEM
2007: Theory and Practice of Computer Science. XXI,
937 pages. 2007.

Vol. 4361: H.J. Hoogeboom, G. Piun, G. Rozenberg, A.
Salomaa (Eds.), Membrane Computing. IX, 555 pages.
2006.

Vol. 4360: W. Dubitzky, A. Schuster, PM.A. Sloot,
M. Schroeder, M. Romberg (Eds.), Distributed, High-
Performance and Grid Computing in Computational Bi-
ology. X, 192 pages. 2007. (Sublibrary LNBI).

Vol. 4358: R. Vidal, A. Heyden, Y. Ma (Eds.), Dynamical
Vision. IX, 329 pages. 2007.

Vol. 4357: L. Buttyén, V. Gligor, D. Westhoff (Eds.),
Security and Privacy in Ad-Hoc and Sensor Networks.
X, 193 pages. 2006.

Vol. 4355: J. Julliand, O. Kouchnarenko (Eds.), B 2007:
Formal Specification and Development in B. XIII, 293
pages. 2006.

Vol. 4354: M. Hanus (Ed.), Practical Aspects of Declar-
ative Languages. X, 335 pages. 2006.

Vol. 4353: T. Schwentick, D. Suciu (Eds.), Database The-
ory —ICDT 2007. XI, 419 pages. 2006.

Vol. 4352: T.-J. Cham, J. Cai, C. Dorai, D. Rajan, T.-S.
Chua, L.-T. Chia (Eds.), Advances in Multimedia Mod-
eling, Part II. X VIII, 743 pages. 2006.

Vol. 4351: T.-J. Cham, J. Cai, C. Dorai, D. Rajan, T.-S.
Chua, L.-T. Chia (Eds.), Advances in Multimedia Mod-
eling, Part I. XIX, 797 pages. 2006.

Vol. 4349: B. Cook, A. Podelski (Eds.), Verification,
Model Checking, and Abstract Interpretation. XI, 395
pages. 2007.

Vol. 4348: S.T. Taft, R.A. Duff, R.L. Brukardt, E. Ploed-
ereder, P. Leroy (Eds.), Ada 2005 Reference Manual.
XXII, 765 pages. 2006.

Vol. 4347: J. Lopez (Ed.), Critical Information Infras-
tructures Security. X, 286 pages. 2006.

Vol. 4345: N. Maglaveras, 1. Chouvarda, V. Koutkias, R.
Brause (Eds.), Biological and Medical Data Analysis.
XIII, 496 pages. 2006. (Sublibrary LNBI).

Vol. 4344: V. Gruhn, F. Oquendo (Eds.), Software Archi-
tecture. X, 245 pages. 2006.

Vol. 4342: H. de Swart, E. Ortowska, G. Schmidt, M.
Roubens (Eds.), Theory and Applications of Relational
Structures as Knowledge Instruments II. X, 373 pages.
2006. (Sublibrary LNAI).

Vol. 4341: P.Q. Nguyen (Ed.), Progress in Cryptology -
VIETCRYPT 2006. XI, 385 pages. 2006.

Vol. 4340: R. Prodan, T. Fahringer, Grid Computing.
XXIII, 317 pages. 2007.

Vol. 4339: E. Ayguadé, G. Baumgartner, J. Ramanujam,
P. Sadayappan (Eds.), Languages and Compilers for Par-
allel Computing. XI, 476 pages. 2006.

Vol. 4338: P. Kalra, S. Peleg (Eds.), Computer Vision,
Graphics and Image Processing. XV, 965 pages. 2006.

.

v

9

Vol. 4337: S. Arun-Kumar, N. Garg (Eds.), FSTTCS
2006: Foundations of Software Technology and Theo-
retical Computer Science. XIII, 430 pages. 2006.

Vol. 4335: S.A. Brueckner, S. Hassas, M. Jelasity, D.
, Yamins (Eds.), Engineering Self-Organising Systems.
XII, 212 pages. 2007. (Sublibrary LNAI).

Vol. 4334: B. Beckert, R. Hihnle, P.H. Schmitt (Eds.),
Verification of Object-Oriented Software. XXIX, 658
pages. 2007. (Sublibrary LNAI).

Vol. 4333: U. Reimer, D. Karagiannis (Eds.), Practical
Aspects of Knowledge Management. XII, 338 pages.
2006. (Sublibrary LNAI).

Vol. 4332: A. Bagchi, V. Atluri (Eds.), Information Sys-
tems Security. XV, 382 pages. 2006.
Ll

-
Vol. 4331: G. Min, B. Di Martino, L.T. Yang, M. Guo, G.
Ruenger (Eds.), Frontiers of High Performance Comput-
ing and Networking — ISPA 2006 Workshops. XXXVII,
1141 pages. 2006.

Vol. 4330: M. Guo, L.T. Yang, B. Di Martino, H.P. Zima,
J. Dongarra, F. Tang (Eds.), Parallel and Distributed Pro-
cessing and Applications. XVIII, 953 pages. 2006.

Vol. 4329: R. Barua, T. Lange (Eds.), Progress in Cryp-
tology - INDOCRYPT 2006. X, 454 pages. 2006.

Vol. 4328: D. Penkler, M. Reitenspiess, F. Tam (Eds.),
Service Availability. X, 289 pages. 2006.

Vol. 4327: M. Baldoni, U. Endriss (Eds.), Declarative
Agent Languages and Technologies IV. VIII, 257 pages.
2006. (Sublibrary LNAI).

" Vol. 4326: S. Gobel, R. Malkewitz, 1. lurgel (Eds.), Tech-
nologies for Interactive Digital Storytelling and Enter-
tainment. X, 384 pages. 2006.

Vol. 4325:J. Cao, 1. Stojmenovic, X. Jia, S.K. Das (Eds.),
Mobile Ad-hoc and Sensor Networks. XIX, 887 pages.
2006.

Vol. 4323: G. Doherty, A. Blandford (Eds.), Interactive
Systems. XI, 269 pages. 2007.

Vol. 4320: R. Gotzhein, R. Reed (Eds.), System Analysis
<and Modeling: Language Profiles. X, 229 pages. 2006.

Vol. 4319: L.-W. Chang, W.-N. Lie (Eds.), Advances in
Image and Video Technology. XX VI, 1347 pages. 2006.

" Vol. 4318: H. Lipmaa, M. Yung, D. Lin (Eds.), Informa-
tion Security and Cryptology. XI, 305 pages. 2006.

Vol. 4317: S.K. Madria, K.T. Claypool, R. Kannan, P.
Uppuluri, M.M. Gore (Eds.), Distributed Computing and
Internet Technology. XIX, 466 pages. 2006.

Vol. 4316: M.M. Dalkilic, S. Kim, J. Yang (Eds.), Data
Mining and Bioinformatics. VIIL, 197 pages. 2006. (Sub-
library LNBI).

Vol. 4314: C. Freksa, M. Kohlhase, K. Schill (Eds.), KI
2006: Advances in Artificial Intelligence. XII, 458 pages.
2007. (Sublibrary LNAI).

Vol. 4313: T. Margaria, B. Steffen (Eds.), Leveraging
Applications of Formal Methods. IX, 197 pages. 2006.

Vol. 4312: S. Sugimoto, J. Hunter, A. Rauber, A. Mor-
ishima (Eds.), Digital Libraries: Achievements, Chal-
lenges and Opportunities. XVIII, 571 pages. 2006.

Vol. 4311: K. Cho, P. Jacquet (Eds.), Technologies for

Advanced Heterogeneous Networks II. XI, 253 pages.
2006.

Vol. 4309: P. Inverardi, M. Jazayeri (Eds.), Software En-
gineering Education in the Modern Age. VIII, 207 pages.
2006.

Vol. 4308: S. Chaudhuri, S.R. Das, H.S. Paul, S. Tirtha-
pura (Eds.), Distributed Computing and Networking.
XIX, 608 pages. 2006.

Vol. 4307: P. Ning, S. Qing, N. Li (Eds.), Information
and Communications Security. XIV, 558 pages. 2006.

Vol. 4306: Y. Avrithis, Y. Kompatsiaris, S. Staab, N.E.
O’Connor (Eds.), Semantic Multimedia. XII, 241 pages.
2006.

Vol. 4305: A.A. Shvartsman (Ed.), Principles of Dis-
tributed Systems. XIII, 441 pages. 2006.

Vol. 4304: A. Sattar, B.-H. Kang (Eds.), Al 2006: Ad-
vances in Artificial Intelligence. XXVII, 1303 pages.
2006. (Sublibrary LNAI).

Vol. 4303: A. Hoffmann, B.-H. Kang, D. Richards, S.
Tsumoto (Eds.), Advances in Knowledge Acquisition
and Management. XI, 259 pages. 2006. (Sublibrary
LNAI).

Vol. 4302: J. Domingo-Ferrer, L. Franconi (Eds.), Pri-
vacy in Statistical Databases. XI, 383 pages. 2006.

Vol. 4301: D. Pointcheval, Y. Mu, K. Chen (Eds.), Cryp-
tology and Network Security. XIII, 381 pages. 2006.

Vol. 4300: Y.Q. Shi (Ed.), Transactions on Data Hiding
and Multimedia Security 1. IX, 139 pages. 2006.

Vol. 4299: S. Renals, S. Bengio, J.G. Fiscus (Eds.), Ma-
chine Learning for Multimodal Interaction. XII, 470
pages. 2006.

Vol. 4297: Y. Robert, M. Parashar, R. Badrinath, V.K.
Prasanna (Eds.), High Performance Computing - HiPC
2006. XXIV, 642 pages. 2006.

Vol. 4296: M.S. Rhee, B. Lee (Eds.), Information Se-
curity and Cryptology — ICISC 2006. XIII, 358 pages.
2006.

Vol. 4295: J.D. Carswell, T. Tezuka (Eds.), Web and
Wireless Geographical Information Systems. XI, 269
pages. 2006.

Vol. 4294: A. Dan, W. Lamersdorf (Eds.), Service-
Oriented Computing — ICSOC 2006. XIX, 653 pages.
2006.

Vol. 4293: A. Gelbukh, C.A. Reyes-Garcia (Eds.), MI-
CAI 2006: Advances in Artificial Intelligence. XX VIII,
1232 pages. 2006. (Sublibrary LNAI).

Vol. 4292: G. Bebis, R. Boyle, B. Parvin, D. Koracin, P.
Remagnino, A. Nefian, G. Meenakshisundaram, V. Pas-
cucci, J. Zara, J. Molineros, H. Theisel, T. Malzbender
(Eds.), Advances in Visual Computing, Part II. XXXII,
906 pages. 2006.

Vol. 4291: G. Bebis, R. Boyle, B. Parvin, D. Koracin, P.
Remagnino, A. Nefian, G. Meenakshisundaram, V. Pas-
cucci, J. Zara, J. Molineros, H. Theisel, T. Malzbender
(Eds.), Advances in Visual Computing, Part I. XXXI,
916 pages. 2006.

Vol. 4290: M. van Steen, M. Henning (Eds.), Middleware
2006. XIII, 425 pages. 2006.

F48).22

Table of Contents

Modelling and Design of Agent Systems

An Agent-Environment Interaction Model 1
Scott A. DeLoach and Jorge L. Valenzuela

Allocating Goals to Agent Roles During MAS Requirements
EAGINEETINE & ;uimmomsnsisms a5 @ s smens w8 w5 ams e momss o s ams s b v soms 19
Ivan J. Jureta, Stéphane Faulkner, and Pierre-Yves Schobbens

An Aspect-Oriented Modeling Framework for Multi-Agent Systems
DS . .o 35
Alessandro Garcia, Christina Chavez, and Ricardo Choren

Modelling Open Agent Systems

Extending UML Sequence Diagrams to Model Agent Mobility 51
Mario Kusek and Gordan Jezic

Applying the Governance Framework Technique to Promote

Maintainability in Open Multi-Agent Systems 64
Gustavo Carvalho, Carlos J.P. de Lucena, Rodrigo Paes,
Ricardo Choren, and Jean-Pierre Briot

Designing Institutional Multi-Agent Systems 84
Carles Sierra, John Thangarajah, Lin Padgham, and
Michael Winikoff

Formal Reasoning About Designs

Modeling Mental States in the Analysis of Multiagent Systems
REGUITOITIEIIES & i s 15 5516 55 5555 555 5.5 55 615 5mamn arnioon s o s o o oo mton o oo 104
Alexei Lapouchnian and Yves Lespérance

Observed-MAS: An Ontology-Based Method for Analyzing Multi-Agent
Systems Design Models 122
Anarosa A.F. Brandao, Viviane Torres da Silva, and
Carlos J.P. de Lucena

Using Risk Analysis to Evaluate Design Alternatives 140
Yudistira Asnar, Volha Bryl, and Paolo Giorgini

XII Table of Contents

Testing, Debugging and Evolvability

SUNIT: A Unit Testing Framework for Test Driven Development

of Multi=Agent SySteMS : s es:nvsnasnsonims soims msmsias@mims 15806 15
Ali Murat Tiryaki, Sibel Oztuna, Oguz Dikenelli, and
Riza Cenk Erdur

Monitoring Group Behavior in Goal-Directed Agents Using Co-efficient
Plan OBSETVATION wuismy amimeepms cormac s s sits cmi@s 05 e iasamins oo
Jan Sudeikat and Wolfgang Renz

Evaluating a Model Driven Development Toolkit for Domain Experts
to Modify Agent Based Systems
Gaya Buddhinath Jayatilleke, Lin Padgham, and Michael Winikoff

Building the Core Architecture of a NASA Multiagent System Product

D€« swsms smpamsme u i dm st ms mmsms oo ms S 65 @5 855 a5 6 F wsameioma s oo
Joaquin Pena, Michael G. Hinchey, Antonio Ruiz-Cortés, and
Pablo Trinidad

Author Index

An Agent-Environment Interaction Model

Scott A. DeLoach and Jorge L. Valenzuela

Department of Computing and Information Sciences, Kansas State University
234 Nichols Hall, Manhattan, KS 66506
{sdeloach, jvalenzu}@cis.ksu.edu

Abstract. This paper develops a model for precisely defining how an
agent interacts with objects in its environment through the use of its
capabilities. Capabilities are recursively defined in terms of lower-level
capabilities and actions, which represent atomic interactions with the
environment. Actions are used to represent both sensors and effectors.
The paper shows how the model can be used to represent both software
and physical agents and their capabilities. The paper also shows how the
model can be integrated into the Organization-based Multiagent Systems
Engineering methodology.

1 Introduction

There is widespread agreement that the environment in which a multiagent
system is situated is of fundamental importance in the analysis, design, and
operation of the system. However, even with this agreement, few multiagent
methodologies include the modeling of the environment or the agent’s interac-
tions with it as first class entities [10]. In situated multiagent systems, the envi-
ronment is the entity in which agents exist and communicate [6]. Communication
is a critical factor that enables agents to interact and coordinate. Typically, this
interaction and coordination is modeled using direct communication through
the social environment; however, it can also be modeling indirectly through the
physical environment. A social environment is the entity that provides the prin-
ciples, processes and structures that enable the agents to communicate while
the physical environment provides principles and processes that affect objects
within an environment [6]. In [4], Ferber defines a multiagent system as having
six basic entities:

|

An environment, E

A set of objects, O, that exist in E

A set of agents, A, which are active objects (i.e., a subset of O)

— A set of relations, R, that define relationships between objects in O

A set of operations, O, that agents can use to sense and affect objects in O
— A set of universal laws that define the reaction of the environment to agent
operations

|

Based on Ferber’s definition, we have identified five requirements for specifying
agent-environment interaction model. Essentially, an AEI should define:

L. Padgham and F. Zambonelli (Eds.): AOSE 2006, LNCS 4405, pp. 1-18, 2007.
© Springer-Verlag Berlin Heidelberg 2007

2 S.A. DeLoach and J.L. Valenzuela

1. A unique entity called the environment

2. The set of objects in the environment (which includes agents)

3. Specific types of relations that may exist between objects in the environment

4. The set of operations that agents may perform upon objects in the
environment

5. The laws that govern the effect of those operations on objects in the
environment

While capturing these elements is essential, we believe it is also critical that
these concepts be captured using a model that shows direct relations between the
objects, agents, and actions as well as specifies the intended effect of each action
unambiguously. We believe it is also important to provide a model that allows
these concepts to be specified and viewed at the appropriate level of abstraction.

While most current multiagent methodologies provide some notion of the en-
vironment or the agent’s interactions with it, no major methodologies possess
a detailed agent-environment interaction model that explicitly defines how the
environment is affected by agents or how the agent perceives the environment.
Including such an agent-environment interaction model is important because it
allows us to explicitly identify (1) how agents directly interact/coordinate with
each other, (2) how agents indirectly interact/coordinate with each other, and
(3) the effect of agents on objects in the environment, which in situated multi-
agent systems often determines whether the system has accomplished its goals.
In addition, agents in situated multiagent systems also generally require some
representation of the environment in order to effectively communicate with other
agents and to achieve their goals. By including a well-defined model of the en-
vironment in the agent-environment interaction model, the analysis, and design
of these agents should be clearer and thus improved over implicit approaches.

The goal of this paper is to present an Agent-Environment Interaction model
(AEI) that can be integrated into appropriate multiagent systems methodolo-
gies. Specifically, we will integrate the AEI Model into the Organization-based
Multiagent Systems Engineering methodology (O-MaSE) [1]. To make the nota-
tion as clear and unambiguous as possible, we use standard UML notation with
liberal use of keywords to denote specific concepts in the model. Obviously, if
our AEI Model is integrated into other methodologies and modeling approaches,
the notation can be adapted as needed.

The paper is organized as follow. In Section 2, we discuss how some current
multiagent methodologies address environmental issues and provide an overview
of O-MaSE [1]. In Section 3, we present our AEI Model and integrate our AEI
Model into O-MaSE. In Section 4, we present a detailed example of the AEI
Model using a robotics Weapons of Mass Destruction (WMD) simulation system.
Finally, in Section 5, we present our conclusions and areas for future work.

2 Related Work

In this section we review four prominent multiagent systems methodologies and
how they model interactions with the environment: Gaia, Message, Prometheus,

An Agent-Environment Interaction Model 3

and O-MaSE. We also analyze how well each of these methodologies meets the
agent environment interaction requirements stated above.

2.1 Gaia

The extended version of Gaia [12] adds some basic concepts and organizational
abstractions to the original version of GAIA [11]. Among these additions is an
Environment Model, which is introduced during the analysis phase. Because the
authors believe that “it is difficult to provide a general modeling abstraction and
general modeling techniques because the environment for different applications
can be very different in nature” [12], they model environmental entities in terms
of abstract computational resources. These resources are modeled as tuples that
the agents may read, (sense), effect, (change), or consume, (remove). Thus the
Gaia Environment Model can be viewed as a list of resources that can be accessed
using an associated name and acted upon based on the type of action associated
with them. An example of a Gaia Environment Model is shown below [12].

reads varl // readable resource of the environment.
var2 // another readable resource.
change var3 // a variable that can be also changed by the agent.

Analyzing the Gaia Environment Model using our five AEI model require-
ments shows that, while it does include a limited notion of objects, it does not
include any notion of agents (requirement 2). In addition, the Gaia Environ-
ment Model severely limits the types of relations (requirement 3) and actions
(requirement 4) that can be performed on those objects. Finally, the Environ-
ment Model has no notion of environmental laws that affect the environment
objects independently of the agents (requirement 5). A more general notion of
an AEI could be of benefit in the Gaia methodology.

2.2 MESSAGE

In the MESSAGE methodology [5], the MESSAGE modeling language defines
some knowledge-level-concepts like Concrete-Entity, Activity, and MentalSta-
teEntity. One of the concrete entities defined is Agents, which are autonomous
entities that can perform actions that affect resources. The Actions/Activities
are concrete entities and include Tasks and Interaction Protocols. Agents can also
perceive information entries that describe the state of a resource. Another con-
crete entity is a Resource, which represents a non-autonomous entity that agents
can access/use. MESSAGE builds five views of the Analysis Model: Organization,
Goal/Task, Agent/Role, Interaction and Domain views. The Organization view
shows the concrete entities in the system, the environment and the relationship
among them.

Based on our requirements, we see that MESSAGE defines elements of its
environment as containing objects (both agents and resources) that can interact
using actions and messages. However, MESSAGE does not include the notion of
environmental laws that affect the objects in the environment (requirement 5).

4 S.A. DeLoach and J.L. Valenzuela

Even though MESSAGE captures most of the required information, it does not
explicitly define an agent-environment interaction model and does not provide a
flexible way to represent or define actions at an appropriate level of abstraction.

2.3 Prometheus

The aim of the Prometheus System Identification Phase is to identify the basic
functionality of the system along with the inputs, outputs, and important data
structures [7]. Prometheus models these inputs as percepts and defines them as
raw data coming from the environment. Outputs are modeled as actions, which
are defined as the agent’s way to modify the environment. Scenarios are used
in Prometheus to describe how the system operates nominally. Each scenario
consists of a set of steps that can include goals, actions, percepts, scenarios, or
“other” for special types of steps.

The architectural design phase focuses on identifying the agents in the system
and their interaction. Once the agents are identified, the next step is to define the
percepts each agent reacts to and the actions it may perform. Agent interaction is
specified by defining messages and the different repositories to be used. All these
items are depicted in the system overview diagram. The Detailed Design Phase
focuses on defining the capabilities, which are defined in terms of internal events,
plans, and detailed data structures of the agents. Each capability is described
by a descriptor, which includes the definition of its percepts, actions, data read
or written, interaction with other capabilities, and sub-capabilities.

Our analysis reveals that Prometheus does not explicitly define the environ-
ment. It does not define the objects in the environment (requirement 1), the
relationships between them (requirement 2), or the laws that govern the effect
of agent’s actions on the environment (requirement 5). However, Prometheus
does capture the operations that it uses to get percepts from the environment
and perform actions on the environment. Thus Prometheus too could benefit
from an explicit AEI Model.

2.4 Organization-Based Multiagent Systems Engineering

The Organization-Based Multiagent System Engineering (O-MaSE) [1] method-
ology extends the original MaSE [3] methodology to allow the design of orga-
nizational multiagent systems. Some of the weaknesses of MaSE addressed by
O-MaSE include the tendency to generate static organizations, the inability to
model sub-organizations/systems, and the lack of explicit concepts for modeling
interactions with the environment. To model interactions with the environment,
O-MaSE represents both the sensing and manipulation of the environment as a
type of Capability, which is defined as an “atomic entity that defines the agents’
abilities; these abilities include soft abilities such as access to resources or com-
putational algorithms, as well as hard capabilities such as sensors and effectors
[1]. We use this notion of capabilities as the foundation for our AEI Model,
extending it to allow capability composition as well as to model direct inter-
action with the environment. The current version of the O-MaSE metamodel is

