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PREFACE

It has been the purpose and hope of the author in writing this book
to help fill a serious need for introductory texts on the graduate level in
the field of partial differential equations. The vastness of the field and—
even more significantly—the absence of a comprehensive basic theory
have been responsible, we believe, for the eomparative scarcity of intro-
ductory books dealing with this subject. However, the importance of
this field is so tremendous that the difficulties and pitfalls awaiting any-
one who seeks to write such a book should be looked upon as & provoca~
tive and stimulating challenge. We hope that we have achieved some
measure of success in meeting this challenge. -

Any book dealing with a subject possessing substance and vitality is
bound to reflect the particular interests and prejudices of the author.
Even if the field is well organized and has been worked out with a
considerable degree of completeness, the author’s inclinations will be
reflected in the manner in which the subject matter is presented. When,
in addition, the subject is as extensive and incompletely developed as
that here under consideration, they will also be reflected in the choice
of material. We are well aware that many important topics are pre-
sented briefly or not at all. However, we are consoled by the thought
that in the writing of a book of moderate size the omission of much sig-
pificant material was inevitable, and by the bope that our presentation
will be such as not only to interest the student in the topics presented
here, but also to stimulate him to pursue some of them, as well as topics .
not touched upon here, in other books and in the research journals. -

Throughout this book the stress has been on existence theory rather
than on the effective determination of solutions of specific classes of
problems. It is hoped that the presentation will complement usefully
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vi : Preface
any text which emphasizes the more “practical” or ‘“‘applied” aspects
of the subject

A word is in order concerning the intimate relationship between physlcs
and the theory of differential equations, both ordinary and partial.
Physics has certainly been the richest source of problems in this field,
and physical reasoning has often been an invaluable guide to the correct
formulation of purely mathematical problems and to the successful devel-
opment of techniques for solving such problems. In this connection we
would strongly urge every prospective student of differential equations
(indeed, every prospective student of mathematics) to read, and deliber-
ate on, the splendid preface to the Courant-Hilbert ma.sterplece, “Meth-
ods of Mathematical Physics.” Although little is said in the following
pages concerning the physical origins of many of the mathematical prob-
lems which are discussed, the student will find that his understanding of
these problems will be heightened by an awareness of their physical
counterparts. ‘

The author has good reason to follow the tradition of acknowledging
gratefully his wife’s unselfish aid in the seemingly endless task of typing
successive drafts of the manuscript. More important than the typing,
however, was her constant encouragement to carry the writing task
through to its completion. It is hoped that her encouragement was
directed to a worthwhile objective.

. Bernard Epstein



TERMINOLOGY AND BASIC THEOREMS

For convenience we list here a few terms, notatlons, and t.heorems

“that will be used frequently.

A domain is an open ronnected set (in the plane or in s higher-dimen-
sional euclidean space); an equivalent definition is that & domain is an
open set which cannot be expressed as the union of two disjoint non-
vacuous open sets,

The “Kronecker delta’’ $;; assumes the values 1 and 0, according.'a.s the -
indices i, j are equal or unequal.

S denotes the closure of the set S.

A disc is the set of all points (in the plane) satisfying an inequality of -
the form (z — 20)* 4 (¥ — yo}* < r?; a circle is the boundary of-a disc.
The unit disc is defined by the inequality =2 + y* < 1, and the unit circle
is its boundary.

When dealing with a curve we denote arc length, measured from some
fixed point of the curve, by the letter s.

‘The symbols &, C, \J, M, are used with their customary set-theoretic
significance: a € A means that a belongs to (is an element of) the set 4,
and A C B means that every element which belongs to 4 also belongs to
B (4 is a subset of B). Note that A C B does not imply that A is a
proper subset of B, A \J B and A N B denote the union -and mter-
seotlon, respectively, of the sets A, B.

The distance between two sets is the minimum distanco between a
pair of points, one from each set. If both sets are closed and at least
one is bounded, then the minimum is actually attained.

ix



Terminology and Basic Theorems

The Heine-Borel theorem: Given a compact (i.e., bounded and closed)
set S in a euclidean space and an open covering of S (i.e., a collection of
open sets whose union contains S), then it is possible to extract from this
covering a finite number of open sets which suffice to cover S.

A real-valued function which is defined and continuous on a compact

set is uniformly continuous, is bounded above and below, and attains its
maximum and minimum values.

A function defined in a domain D is said to be of class O~ if all partial

derivatives of order up to and including the nth exist and are continuous
throughout D.

If the functions f(z,y), g(z,y) are of class C* in a neighborhood of (ze,y0),
and if the Jacobian f.g, — f,g: does not vanish at that point, then the
equations £ = f(z,5), n = g(z,y) can be solved in a sufficiently small
neighborhood of (xe,y0) for z and y in terms of & and », say = = ¢(&,n),
y = ¥(tm), and the functions ¢(&1), ¥(¢,m) are also of class C".



PARTIAL DIFFERENTIAL EQUATIONS

Copyright @ 1962 by the McGraw-Hill Book Company, Inc. Printed
in the United States of America. All rights reserved. This book, or
parts thereof, may not be reproduced in any form without permission
of the publishers. Lfbrary of Congress Catalog Card Number 61-17338
19540

THE MAPLE PRES: COMPANY, YORK, PA.



CONTENTS

PREFACE .
TERMINOLOGY AND BASIC THEORDHB .

CHAPTER 1.

NN -

CHAPTER 2,

1.
2.
3.

CHAPTER 3.

NSO R RN

CHAPTER 4.

O OO N b

Some Preliminary Topics

. Equicontinuous Families of Functlona :
. The Weierstrass Approximation Theorem .
. The Fourier Integral. e

The Laplace Transform . -

. Ordinary Differential Equatlon;;
. Lebesgue Integration

Dini’s Theorem

Partial Differential Equations of Firet Order .
Linear Equations in Two Independent Variables

Quasi-linear Equations .
The General First-order Equanon

The Cauchy Problem

Classification of Equa.tmns with Lmear Pnnclpal Ps.rts
Characteristios .
Canonical Forms.

. The Cauchy Problen; for Hyperbohc Equnuonu

The One-dimensional Wave Equation

The Riemann Function . .

Classification of Second-order Equa.tlons in Three or More
Independent Variables . ..

. The Wave Equation in Twc; a.nd Three Dxmemnons
. The Legendre Transformation . ...

The Fredholm Alternative in Banach Spaces .

. Linear Spaces. . .
. Normed Linear Spaces .
. Banach Spaces

Linear Functmnais and Lmeu Operators

. The Fredholm Alternative .

vil

K«

S8 SRLHERB S BERE JBSGowwm =

BIINE 2



CEAPTER 5. The Fredholm Alternaitve Hilbert Spaces 90
1. Inner-product Spaces 90
2. Hilbert Spaces . 95
3. Projections, Linear Functlonals, Admuxt Operators . 99
4. Hermitian and Completely Continuous Operators 104
5. The Fredbolm Alternative . . 111
6. Integral Kquations - 118
7. Hermitian Kernels 121
8. Ilustrative Example . 127
CHAYTER 6. Elements of Polential Theory .. 180
1. Introduction . . 130
2. Laplace’s Equation and Theory of Analytm Functlons . 131
3. Fundamental Solutions . . .. 133
4. The Mean-value Theorem . 135
5. The Maximum Principle 136
6. Formulation of the Dirichlet Problem . 138
7. Solution of the Dirichlet Problem for the Disc 139 .
8. The Converse of the Mean-value Theorem 146
9. Convergence Theorems . . . 149
10. Strengthened Form. of the Ma.xmmm Punclple . 152
11. Single and Iouble Layers e e 152
12. Poisson’s Equation . . . . . 157
CHAPTXR 7. The Dirichlet Problem . . . . . . . . 167
1. Subharmonic Functions . 167
2. The Method of Balayage . . 170
3. The Perron-Remak Method . 176
4. The Method of Integral Equations . 179
5. The Diricblet Principle . . . e . 183
8. The Method of Finite Diﬂerences . 199
7, Conformal Mapping . 211
CHAPTER 8. The Heat Equaiion 217
‘ 1. The Initial-value Problem for the Infinite Rod . 217
2. The Simplest Problem for the Bemi-infinite Rod. 221
3. The Finite Rod . 226
CBAPTER 9. Green's Functions and Separatwn of Variables. 232
- 1. The Vibrating String 232
2. The Green’s Function of the Operator dz! . . . 235
3. The Green's Function of a Second-order Differential Operator . 237
4. Eigenfunction Expansions . . . . 239
5. A Generalized Wave Equation . . 241
6. Extensgion of the Definition of Green’s Functions 243
SOLUTIONS TO SELECTED EXERCISES 253
SUGGESTIONS FOR FURTHER STUDY gg;

INDEX .

Contents



1. SOME PRELIMINARY TOPICS

Before entering on the subject of partial differential equations, it
seems appropriate to devote a chapter to some concepts and theorems
with which the reader is perhaps not yet acquainted. The reader
may choose to study the topics covered in this chapter as the need for
them arises later, rather than beginning by going through this chapter (or
those parts of it which he has not previously encountered) systematically. -

1. Equicontinuous Families of Functions

A basic difficulty that besets many mathematical investigations is the
fact that there exists no simple extension to families of functions of the
Bolzano-Welerstrass theorem, which asserts (in one of its several possible
formulations) that from every bounded sequence of real numbers it is
possible to extract a convergent subsequence. If, instead of a sequence
of numbers, we consider a sequence of functions {f.(x)} defined on a
fixed interval, say 0 < z < 1, then, from the hypotheses that each func-
tion fu(z) is continuous on this interval and that these functions are
uniformly bounded [i.e., there exists a positive number M independent
of z and n such that |f,(z)| < M], it does not follow that it is possible to
extract a subsequence convergent throughout the interval. (Cf. Exercise
1.) However, there is a certain more stringent condition of continuity,
which is frequently found to be satisfied by sequences (or families) of
funetions encountered in problems of analysis, and which suffices, when
taken together with the condition of uniform boundedness, to assure
the existence of a unsformly convergent subsequence this more stringent
conditien will now be explained.

A basic theorem of analysis asserts that a function f(z) continuous on
2 compact (bounded and closed) set 8 is uniformly continuous on S;

1 .
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2 Partial Differential Equstions

that is, given any positive number ¢, there exists a positive number & such
that whenever the conditions 2: € S, 2 € 8, |21 — 23| < & are satisfied,
the inequality |f(zy) — f(zs)] < ¢ holds Given any finite number of
continuous functions defined on 8 and any positive number g, it is
possible to find a single number 8 which will suffice for each of these
functions, for one cun determine a suitable & for each of these functions
and then choose the smallest of these numbers. However, this method
fails for an infinite family of functions, for there may not exist a positive
Jower bound to the corresponding set of numbers 5. (This eccurs in the
family of functions considered in Exercise 1.) We may describe this
situation as a lack of “over-all” uniformity, desplte the uniform con-
tinuity of each individual function of the family. We are thus led to
formulate the following more restrictive concept of uniform continuity,
which refers to a family of functions, not to a single funetion. .

Derinrrion 1. A family of functions defined on & set S of real num-
bers! is said to be “equicontinuous” if for every positive fitmber e
there exists a positive number § such that, for every function f(z) of the
family and every pair of numbers z;, w3 contained in 8 and satisfying

. the inequality |1 — zs| < 8, the inequality |{f(z\) —~ f(zs)| < ¢ holds.

(It should be emphasized, for clarity, that each function of an equi-
continuous family is uniformly continuous. Also it may be noted that
no restriction of boundedness or closure is imposed on 8.)

A simple example of an equicontinuous family is furnished by any set
of functions defined and continuous on a fixed interval (open or closed)
and having, at all points of this interval, a first derivative whose absolute
value never exceeds some fixed number C; for then, by the theorem of
mean value, we have, for any function f(x) of the family and any two
numbers 2, ri.of the interval, the inequality

[z — f@)] = |F/(e)@1 — za)] < Cler — 2] (m1 <f<z) (1
so that, for any given ¢, the choice § = ¢/C' will suffice. (Note that in

Exercise 1 the derivatives of the functions under consideration are not

uniformly bounded.)
We now state the following striking theorem, which accounts for the
important role played. in analysis by the concept of equicontinuity.

Theorem 1. Ascoli Selection Theorem. Let ' be an infinite,
uniformly boundéd, equicontinuous family of functions defined on a

t For simplicity, we formulate the definition only for functions of one real variable;
the extension to more general classes of functions is quite straightforward. ' Similarly,
the theorem of this section s stated only in the one-dimensional case, the exteunsion
to funections of any (finite) number of variables being clear.



1. Some Preliminary Topics .3

finite closed interval S: a £ z € b. Then from every sequence {f.(z)}
chosen from F it is possible to select a uniformly convergent subsequence.

Proof. Select any countable &ense subset S, of S, such as the set of
all rational numbers in S, and enumerate them: 7y, rs, 75, . . . . Let a
sequence {fu.(z)} be selected from F. Then the sequence {fa(r.)}
satisfies the hypothesis of the Bolzaio-Weierstrass theorem, and so we
may select a subsequence {f.1(z)} of the original sequence which con-
verges at the point r.. By applying the preceding argument to {f.:1(z)}
we obtain a sequence {f.a(x)} which converges at rs and also at r1 (for
any subsequence of & convergent sequence is also convergent, and has the
same limit). Repeating this argument, we obtain further sequences
{Fra@)}, {Ffre@)}, . . . , each of which is a subsequence of the preceding
one, and such that the kth sequence converges at r1, rq, . . . , 1. In
order to obtain a single sequence which will converge at all the points of
S, we employ the ‘‘diagonalization procedure,” originally employed by
Cantor to demonstrate the uncountability of the set of real numbers.
Consider the sequence {f..(z)} formed by taking the first function of
the first subsequence, the second function of the second subsequence,
ete. This last sequence is convergent at each point of S;, for it is
evidently a subsequence of the first sequence {f..(z)} and, aside verhaps
from the first & ~ 1 terms, a subsequence of the sequence {fus(2)!,
k=223 ....

It now remains to show that the sequence {f..(x)} converges through-
out S, and that the convergence is uniform. Given any ¢ > 0, choose
8 > 0 such that, for every function f in #, and a fortiori for every fune-
tion of the sequence {f.a(2)}, the inequality |z, — zs| < & implies that
[f(x:) — f(z2)] < & Now we select a finite subset Sy of S such that
each point of S differs by less than & from at least one point of S2.  (This
can be accomplished, for example, by dividing S into adjoining segments,
each of length not exceeding 8, and selecting one point of S: in each of
these segments.) We next determine a positive integer N so large that,
for n,m > N, the inequality |fas(y) — fum(¥)] < ¢ holds at each point
y of Ss. Then for any point z of S we choose y € S» such that jz — y} <
5, and we obtain, for n,m > N, the chain of inequalities

,fun('t) --'fmm(x),v < Ifnn(x) fnn(y>’ + Unn(y) fmm(y)!
' B , + |fan(t) — fmn(zﬂ <3¢ (2)

Since the index N bés been chosen independently of z, (2) implies the
uniform convergence of the sequence | fas(2)}, and the proof is complete.

Two. brief remarks may be helpful in clarifying the significance of the
two hypotheses (uniform boundedness and equicontinuity). First, the
proof of the existence of a subsequence of the original sequence which



4 Partial Differential Equations
converges at all points.of a preassigned countable dense set requires only
the existence of a pointwise bound (not a uniform bound) on the family
F, and does not involve equicontinuity. Secondly, the proof given
above may be easily modified to establish the:following corollary, which
may be left as a simple exercise.

CoroLLarY. Let F be an infinite family of functions defined on an open
interval 8: @ < z < b, equicontinuous on every closed subinterval, and
bounded at some point § 6 < § < b (cf. Exercise 4); then from every
sequence {f.(z)} chosen from F it is possible to select a subsequence
which converges uniformly on every compact subset of S.

The important Montel selection theorem of the theory of analytic
functions is closely related to (the two-dimensional version of) this
corollary; the essential point of the proof of this theorem consists in show-
ing that a family of analytic funetions uniformly bounded in a domain is
equicontinuous in every compact subset of the domain.

EXERCISES

1." Consider the sequence of functions {sin nxz} on theinterval 0 <2 < 1, n = 1,
2, . . . ; these functions are uniformly bounded on this interval, for |sin naz] < 1.
Prove that there does not exist a subsequence which converges uniformly at each point
of the interval.

2. Consider the sequence of functions {2"} on the interval 0 <z <1, n =1,
2, . . . ; in contrast to the preceding exercise, this sequence (and hence every sub-
sequence) converges throughout the interval, but the limit function is discontinuous
at the end point z = 1, Prove directly from the definition thatthis eequence of fune-
tions is not equicontinuous. (This fact also follows, of course, from the selection
theorem.) Show that in any smaller interval, 0 < z £ ¢ < 1, the asbove functions
are equicontinuous, in agreement with the fact that the limit funetion is continuous in
this smaller interval..

3. Prove that a sequence of continuouns functions which eonverges uniformly on a
compact set forms an equicontinuous family.

4. Show that a family of funetions equicontinuous on any bounded set S an
bounded at one point of 8 is uniformly bounded on 8. :

2. The Weierstrass Approximation Theorem

In many branches of analysis there are theorems whose proofs have
to be given in two parts: First the theorem is proved subject to certain
additional hypotheses, and then it is shown, by the use of suitable approxi-
__mation techniques, that the additional hypotheses may be dropped. To
cite only one example, we may mention the Riemann-Lebesgue lemma,
of fundamental importance in the theory of Fourier series and integrals,
which asserts that, for any function f(x) which is (absolutely) integrable
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ever an interval 7, finite or infinite, the quantity /1 f(z)e™* dz approaches

zero as the real parameter A becomes infinite. It is a simple matter to
prove this theorem under the additional assumptions that the interval T
is finite and the function f(z) is continuously differentiable, for in this
case an integration by parts yields the desired result immediately. One
can then extend the proof to continuous functions by using the fact that
a continuous function can be suitably approximated by continuously
differentiable functions; then, similarly, one uses the faect that any
integrable function can be suitably approximated by continuous func-
tions; finally, the restriction to a finite interval is easily dropped.

One of the most important and striking approximation theorems is the
following, which will be used subsequently a number of times.

Theorem 2. Weierstrass Approximation Theorem. Let f(2,,7,,
. ,%x) be defined and continuous on any compact set R. Given

any positive ¢, there exists a polynomial P(z1,%s, . . . ,x.) such that the
inequality

f@yzs o o 2a) — Plan@s, . . . an)] <e (3)

holds at all points of R.

Proof. For simplicity, we consider the case n = 2; the modifica-
tions required for any other value of n will be clear from the proof to
be presented. (Cf. Exercise 6.) First we make the additional assump-
tion that the set R is a rectangle and that f vanishes at all boundary
points of B. We extend the function f over the entire plane by assigning
it the value zero at all points outside R. Clearly the extended function
is uniformly continuous, not only in R, but also over the entire plane.
Consider the one-parameter family of functions:

Iavad = [[fee)Pl — o, 6 — o, D dedls @>0) @
where

P(§& — z1, £2 — x3, 1) (or, for brevity, P,)
= (wt)~' exp {—t" (& — 21)? + (&2 — 22)%]}

On account of the uniform continuity of f we can choose & > 0, inde-
pendent of z: and z,, such that |f(%,%2) — f(z1,22)] < ¢/3 whenever
(&1 — 21)? 4 (& — 24)2 < §2. Taking account of the fact that the
right side of (4) has the value one when the function f is replaced by the
constant function f(x1,2;) = 1, we obtain the chain of inequalities
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|fe(zr,28) — f(xx,xs)l = ' f] (f(£1,80) — f(zr,20)) P, dts di ’

< _f] 56 = SCara) Pudts dts < § [ Puae ata

+2A’I/:/;'P¢d$1d&<:‘5/‘ Ptdfldfs

+ — / / eirdr de = 3 %+ 20 (5)

{Here M = max |f], while A and A’ denote the dise
| (%1 —z)? 4 (f2 — 22)? < &

and its complement, respectively.] We now choose ¢ (independent of
x: and z2) such that 2M exp (—8%/f) <.¢/3. With this choice of ¢
(5) yields the inequality

i) = fand < ¥ ®)

{This inequality holds evei'ywhere, not only in R.) We now write the
Taylor expansion of the function ¢—* in the form

© 2 u '

=l qyhg (W——,-)—-ijN(u) @

choosing N so large that iR"vI < ext/3M A whenever |u] < p*/l, A and

p denoting the area and diameter, respectively, of B. (That N can be so

chosen follows either from the elements of the theory of analytic funec-
tions or from Taylor's theorem with remainder.) Letting

cu= N - o)+ (Ez — £2)?

jand P(z1,z:) = (=)} [ / F(£1,89) z (= d tidts

we obtam :

lf;(mx,xz) — P(z1,22)| < (x)™? / [f(&,8)] - |[Ru(w)| dEx dEz
. M €
G 3M.4 A=3 8

This is valid at all points of R. Combining (6) and (8), we obtain

Henz) ~ Paad] <g+5=e ®
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- By inspection, it is clear that P(z,,z,) is a polynomial, so that the proof
of the theorem is complete, subject to the restrictions concerning R and
J that were made at the beginning. '

To eliminate these restrictions we require the following lemma.

LEMMA, LeBescue Exrension Turorem. If a function f(zy, 22,
. « . ,%a) is.defined and continuous on a compact set R, it is possible to
extend f continuously to any larger set.

Momentarily accepting this lemma, we now choose a (closed) rectangle
R’ containing the compact set R in its interior, and extend f by defining
it to be zero on the boundary of R’. Clearly f is still continuous under
this extension, and its domain of definition is still compact. We invoke
the lemma to extend f continuously to all of R’. Now the preceding
argument is applicable, so that f can be approximated within e through-
out R’, and a fortiori throughout R, by a polynomial.’ ,

It remains to prove the lemma. Again we may restrict attention to
the case of two independent variables. First, we consider the very
simple particular ease of extending a continuous function defined on the
boundary of a square to the interior. We merely assign to the center of
the square the mean of the values at the four vertices, and then define
the function along each line segment connecting the center to a boundary
point by linear interpolation. It should be noted that this method of
extending the given function assigns to éach interior point a value
between the minimum and maximum values which are assigned on the
boundary. Now let a continuous function f be defined on any compact
set R, and let R be contained in the interior of a square S whose boundary
we denote by I'. We then extend f continuously to the compact set
RUT' by defining f to vanish everywhere on I'. To prove the lemma it
will suffice to show that f can be extended continuously to all of 8, for
if this.can be done, we can accomplish the continuous extension of f
to the entire plane, and hence to any specified set in the plane, by defining
f to vanish everywhere outside I'. Let G denote the set of points inside
I which do not belong to R. Since @ is open (and nonvacuous), it is
possible to construct a network of equally spaced horizontal and vertical
lines sufficiently fine that at least one square of this network les, together
with its boundary, entirely in ¢. Then the original network is. refined
-by adding horizontal and vertical lines midway bhetween those originally
" constructed. Those squares (if any) of the finer network which lie
(together with their boundaries) in G but whose interiors are disjoint
from the square or squares previously selected from the original network
are now determined. By repeatedly refining the network and selecting
squares, we evidently break G down into a countable union of closed
snuares whose interiors are disjoint. Let V be defined as the set of all
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points of G which appear as vertices of this collection of squarés. We
define f at each point Q of V as the minimum value of f at thése points
-of RUT' which are closest to Q. (Since these points constitute a corapact
set, this definition is meaningful.) It is readily seen from the manner in
which the squares were chosen that f has been defined at the vertex of
each square, and perhaps also at & fintle number of additional points on
the boundary of each square. Let f be defined along the boundary of
each square by linear interpolation between successive points of the
set V, and then let f be defined inside each square by the method described
earlier in this paragraph. Then f has evidently been defined throughout
G and is continuous there, but it must still be shown that this function
possesses the proper behavior near the boundary of G. Let any boundary
point of @, say T, be selected, and let a positive number ¢ be given.
Then 6(>0) can be so chosen that, for all points 77 of RUTI' whose dis-
tance from T does not exceed §, the inequality |f(T) — f(7*)| < ¢ holds.
For any point P of V whose distance from 7 is less than 143, it is evident
that those points of RUT closest to P all lie within a distance less than &
from T, so that [f(T) — f(P)| < e If, finally, P lies within a distance
less than 145 from T, it is readily seen that P lies inside or on the boundary
of a square such that all the points of ¥ on the boundary of this square
lie within a distance less than 148 from 7. From the manner in which f
was defined on the boundary and inside each. square, it follows that
(1) = f(P)} < ¢, and the proof iz complete.

. EXERCISES

5. Carry out in detail the proof of the Riemann-Lebesgue lemma sketched at the
beginning of this section, for any function absolutely integrable over the real axis (in
the Riemann sense). ’

6. Modify the proof given in the text to apply equally well to any value of n.

7. Prove the Lebesgue extension theorem in the one-dimensional case. (This case
is decidedly simpler than in higher dimensions.)

8. Carry out in detail the proof of the Weierstrass theorem in one dimension which
is outlined here: By the preceding exercige, we may assume that the function f is
definéd on a closed interval, rather than on an arbitrary compact set. By uniform
continuity, f can be approximated uniformly by a polygonal function (i.e., a function
which is continuous and sectionally linear, with only a finite number of “corners”).
This polygonal function can be expressed as a finite sum of polygonal funetions, each
having only one “corner.” Each such function, in turn, can be expressed as the sum
of a linear function and a function of the form constant - |x — a|. It therefore
suffices to prove that the function |z| can be uniformly approximated by polynomials
on theinterval —1 < z € 1. To do this, consider the identity |z} = {1 — (1 — 23]
and the Taylor series of the function (1 — %)% about the point u = 0. (This proof
is due to Lebesgue.)

9. Prove the following extension of the Weierstrass theorem: If f() is of class C* on
the interval ¢ < z < b li.e., T™(z) exists and is continuous on the interval}, then,



