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PREFACE

This book is intended to serve as a text. for an introductory course in
numerical methods. Itevolved from a set of notes developed for such a course
taught to science and engineering students at the University of Toronto. .

The purpose of a numerical methods course is to acquaint the student with
up-to-date techniques for carrying out scientific computations on an elec-
tronic computer. A recent and important tool in this.regard is mathematical
software—pre-programmed, reliable computer subroutines for solving
mathematical problems. As the title implies, this book is oriented toward
learning how to use this tool effectively, that is, how to select the most
appropriate routine available for solying a particular problem at hand and how
to interpret the results that are returned by it. This approach involves more
than the usual discussion of numerical methods plus a simple citing of the
various software routines that are currently available. In order to be an
effective user of a subroutine, one must be aware of its capabilities and
limitations and this implies at least an intuitive understanding of how the
underlying algorithm is designed and implemented. Hence, while the list of
topics covered in the book is more or less standard for a numerical methods
text, the treatment is different from most texts in that it emphasizes the
software aspects. The aim is to provide an understanding, at the intuitive
level, of how and why subroutines work in order to help the reader gain the
maximum benefit from them as a computational tool.

The mathematical background assumed is two years of college mathema-
tics including calculus, basic linear algebra, and an introduction to differential
equations. Also, the reader should be familiar with programming in a
high-level language such as Fortran. In addition, it is assumed that, in order to
do the computational exercises, the reader has access to a general-purpose
mathematical software package on the local computing systerﬁ.

In this regard, a package such as TEAPACK (see Appendix), that is
designed to facillitate experimentation with algorithms, would be very useful.
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This particular package was developed, at Toronto, for use in our numericai
methods courses, and it has been made available for general distribution.

I am indebted to a number of people for encouragement and assistance
during preparation of the manuscript. They are: Uri Ascher, Cliff Addison,
Steve Cook, Julio Diaz, Wayne Enright, Graeme Fairweather, lan Gladwell,
Ken Jackson, Steve Ho-Tai, Tom Hull, Pat Keast, Rudi Mathon, Richard
Pancer, David Sayers, Pavol Sermer, Bruce Simpson, and Jim Varah. In
addition, I wish to thank the many students in my courses who suffered
through preliminary versions of the manuscript and, through their criticisms,
helped me to improve it.

Robert L. Johnston
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CHAPTER 1
INTRODUCTION

This book deals with the solution of mathematical problems using an
electronic computer. There are two aspects to the subject. One is the
development and analysis of viable computer methods for solving the
various types of problems that arise. Such methods are called numerical -
methods and their study is a field called numerical analysis. It is 2 highly
specialized field requiring a rather sophisticated mathematical background.
The second aspect is the use of these methods in the course of carrying out
scientific computations. The typical ‘‘user” of numerical methods is a noh- -
expert (in numerical analysis) who simply wants to apply the product of the
numerical analyst as a reliable tool to assist in the pursmt of his or her own
field of study. Usually. such a person has no interest in learning all of the
intricacies of a method as long as it solves the problem at hand. However,
since numerical methods are not infallible, a “black-box’’ approach to using
them can be dangerous. In order to avoid difficulties, a user should acquire
a certain level of expertise. For instance, it is desirable to know whether or
not a particular method will indeed compute a solution to a given problem.
Also, whenever there is-a choice of methods, it ‘is useful to be able to -
choose the most efficient one available. In other words, one should be an
intelligent, rather than-a naive, user of numerical methods. The purpose of
this book is to help the reader become an intelligent user.

In order to select a numerical method for solving a particular problem, a
user should (1) know what methods are available, (2) how they work, and
(3) have an appreciation of their relative advantages and disadvantages.
However, instead of the detailed knowledge that a aumerical analyst must
have, it is sufficient to have am intuitive understanding of the basic
principles involved. This is the level at which the material in this book is
presented. The mathematical background assumed is that normally

. acquired in the first two years of university mathematics—differential and
integral calculus, elementary linear algebra and an introduction to differen-
tial equations—that is, exposure to the various types of mathematical
problems treated here.

In recent years, numerical analysts have preduced a new product,
namely, mathematical software—packages of computer subroutines for’
carrying out the basic computations of science and engineering. A list of

1
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some well-known and widely available packages is given in the Appendix
at the end of the book. Most computer installations have mathematical
software package(s) available in their libraries so that subroutines can
“easily be called by a user’s program. These routines are based on up-to-
date numerical methods and their implementations are designed to be as
efficient as possible for the particular machine on which they reside.
- Hence, mathematical software is a computational tool that can be of great
benefit to the scientific programmer. Now, it might seem that the availabil-
ity of preprogrammed, state-of-the-art subroutines would allow a pro-
grammer to adopt the black box approach in using them. However, this is
not the case. A perusal of the index of any software package will reveal
that it contains several subroutines for each type of problem. Hence, one is
faced with the question of choosing the most appropriate routine for
solving a given problem. In addition, subroutines are not “fail safe,” that is,
sometimes they may fail to compute a solution. Very often a routine will
recognize such a situation itself and return the information. This essentially
eliminates the problem of detecting failure but one must still be able to
understand what caused the difficulty so that an appropriate remedy can be
taken. In other words, one must have an adequate knowledge of the
algorithms implemented in a mathematical software package in order to use
it intelligently. As its title implies, this book adopts a “software approach”
in that it is intended to help the reader become an intelligent user of
mathematical software.

In each of Chapters 2 to 6, we discuss the numerical solution of a
specific type of mathematical problem. The list of topics is the usual one
. for a course entitled ‘‘Numerical Methods for Scientists’’ or some variation
thereof. By and large; each chapter follows a similar format. We begin with
a discussion of the methods that are normally used by software routines
for solving the type of problem under consideration. Following this, a
discussion of some aspects of .typical subroutines is given. Specifically, we
consider calling sequences, some ideas concerning design and implemen-
tation, and how to interpret the information returned by a routine. The
exercises at the end of each chapter are designed, for the most part, to
encourage the reader to investigate the properties of whatever software
packages are available on the local computer system. This is in keeping
with the stated goal of learning about mathematical software in order to
prepare the reader for applymg it to solve problems in his or her own field
of interest.

This chapter deals with some basic 1deas about scientific computing. In
the next section, we develop the concepts of computer arithmetic and
illustrate some of the pitfalls to be avoided. Then, in Section 1.2, we
discuss the process of producing mathematical software.
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»
1.1. COMPUTER ARITHMETIC AND ERROR CONTROL

In the course of carrying out a mathematical computation, one has to déal
with the problem of errors. There are three ways in which errors can enter
a calculation. First, they may be present at the outset in the original data
(inherent error). Second, they may occur as-the result of replacing an
infinite process by a finite one (truncation error). A typical example is the
representation of a function by the first -few terms of its Taylor series
expansion. The third source of error arises from the finite precision of the
numbers that can be represented in a computer (round-off error). The latter
is a topic which is discussed in Section 1.1.2. Each of these types of error
is unavoidable in a calculation. Hence, the “problem of errors™ is not one
of preventing their occurrence. Instead, it is one of controlling their size in
order to obtain a final result that is as accurate as possible. This process is
called error control. It is concerned ‘with the propagation of errors
throughout a computation. For example, we waat to be sure that the error
that results from performing an arithmetic operation on two numbers;
which are themselves inm error, is within tolerable limits. In addition, the
propagation, or cumulative effects, of this error in subsequent calculations
should also be kept under control. These questions are discussed in this
section. We remark that there is also a fourth source of error—one caused
by doing an arithmetic operation incorrectly (a blunder). However, we view
this type of error as avoidable, that is, it need not occur at all and will not
consider it further.:

A modern computer is capable of performing anthmetlc operations at
very high speeds. As a consequence, large §cale computations, which are
intractable by desk calculation, can be handled routinely. However, while a
computer greatly facilities the job of carrying out mathematical cal-
culations, it also introduces a new form of problem with respect to error
control. This is due to the fact that mtermediate results are not normally
seen by the user. Such results are useful because they provnde indications
of possible large error buildup ‘as the calculation proceeds. In desk com-
putation, all intermediate results are 'in front of the problem solver.
Consequently, error buildupis relatively easy to detect. On th?bther hand,
a computer programmer must be able to detect or anticipate any posalble
large errors without seeing the warning signals. The examples in this
section illustrate some of the ways that this can occur. Before considcring

‘them, however, we discuss the source of round-off errors.

The mathematician, in devising a method for solvmg a problem, assumes
that all calculations will be done within the system R of real numbers. This
assumption greatly simplifies the mathematical analysis of problems.
However, when it comes to actually computing a solution, we must do
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p
without the Teal number system. This is because it is infinite and any set of
numbers that is rebresentable on a computer is necessarily finite. Actually,
R is infinite in two senses. Furst, it is infinite in range, that is, it contains
arbitrarily large numbers (of both signs). On the other hand, a computer
number system can, at best, represent only those real numbers within a
given finite interval. Second, it is infinitely dense, that is, the interval
between any two real numbers contains infinitely many real numbers. The
absence of this property in a computer’s number system is the source of
round-off error. In order to be more precise, we need to discuss the type of
(finite) number systems used in computers.

1.1.1. Computer Number Systems

In a computer memory, each number is stored in a location that consists of
a sign (=) plus a fixed number of digits. One question that confronts the
designer of the machine is how to use these digits to represent numbers.
One approach is to assign a fixed number of them for the fractional part.
This is called a ﬁxed—pomt number system. It can be characterized by three
parameters:

B—the number base.
t—the number of digits.
f—the number of digits in the fractional pa:t

We denote such a system by P(B,t f). As an example, we consider
P(10,4,1). It contains the 19,999 evenly spaced numbers —999.9,
~999.8,...,999.8,999.9. This set is uniformly dense in [-1000, 1000].
As a consequence, any real number x in this interval can be repre-
sented by an element fix(x) € P(10,4,1) ‘with an dbsolute error x —
fix(x) of, at most, 0.05 in magnitude. For example, if x = 865.54, then
fix(x) = 865.5 and the absolute error is 0.04. However, assuming x# 0, it is
preferable, instead, to look at the relative error (x — fix(x))/x. In this
respect, the set P(10,4,1) gives an uneven representation of R. For
example, the relative error in the representation of 865.54 is 0.04/865.54 =
0.00005, or 0.005%. On the other hand, if x =0.86554, then fix(x) = 000.9
and the relative error is 4%! Hence, the relative density of P (10,4, 1) is not
uniform in [— 1000, 1000] This weakness is shared by all fixed-point num-
ber systems.

Most computers use a floating-point number system, denoted by
F(B,t, L, U). The four parameters are:



COMPUTER ARITHMETIC AND ERROR CONTROL /§

B  —the number base.
t - —the precision.
L, U—the exponent range.

Any nonzero number x € F has the form

xX=% (%1+%’,+ B',)xp"

written as

X = :t.d|d2 e
where the digits d,, .

1=sd,<B
0=d,<B

d, x B¢
.., d, in the fractional part satisfy

2=<s=<t

and the exponent ¢ is such that

L=e<U

Also, the number 0 belongs.to F. Its representation is

0=+.00.

..0x gt

s

As implied, the advantage of a floating point number system is that, within
its range of values, the relative density in R is uniform. As an example,

consider the system

F(10,4, —2, 3). Its range of values is. the two intervals

*+[.001, 999.9] plus 0. Referring to the previous.example, the representation
of 865.54 is .8655 x 10’ and, for 0.86554, it is .8655 x 10°. In each case, the
relative error is the same, namely, 0.005%. _

To illustrate the comparison between fixed and floating point systems,
we display the 33-number sets P(2,4,2) and F(2,3,-1,2)! in Figure 1.1.

LIIHIIllllllllrl'l‘l.Jll LI
FRaz RERREERERERERERERRRARRERRRRRREN
—4 -3 -2 -1 0 1 2 3 4
B Ll
deals —HH—HHH A
-4 -3 -2 —1-3- -0%121 2 3 4

'The representation of the set F(2,3,~1,2) is reproduced from [16] with permissio.m
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The difference between absolute and relative density is readily apparent. In
effect, the choice between the two types of number systems is one of
choosing between absolute and relative error for.the.purpose of assessing
accuracy. Relative error is a measure of the number of correct digits in a
number and, as our examples indicate, it is clearly preferable. We remark
that this comparison holds in many other contexts as well. As we will see,
subroutines usually use relative error as a basis for checking accuracy.

1.1.2. Round-off Errors

Now we consider the-differences between performing calculations in F as
‘opposed to R. The source of th¢ differences lies in the fact that F is not
closed under the arithmetic-operations of addition and multiplication (and
' the complementary operations of subtraction and division as well). That is,
.the sum or product of two numbers in F is not necessarily an element of F
also. Hence, to stay within the set, we must replace the “‘true” result of an
operation by an element of F and, in the process, incur some error. '
There are two ways in which an arithmetic result can lie outside F. First
of all, the exponent e in the result may lie outside the range L <e < U. For
example, consider the system F(2, 3, —1,2) illustrated in Figure 1.1. The
product £

J00% 2% x . 110x 22 =, 110><23 ‘ (2K3 6)

is.not in F because the exponent 3 is too large. This situation is called
averflow. Similarly, we can-have underflow when the exponent is too small,
as is the case with the product

100x 20 % 11027 =.110x22  (xi=D)

The actual result of trying to represent a number that-lies outside the
admissible range is highly software and hardware dependent, with little
consistency between different computer systems. We will not attempt to
define an acceptable criterion here. However, we remark that the occur-
rence of either overflow or underflow must be considered as an abnormal
event in a calculation and the programmer should determine what caused
it. Very often, it is an indication of some trouble with the overall algorithm
being used, in which case it should be redesigned. Sometimes, however, the
difficulty arises from the fact that the range of numbers that has occurred
in the computation overiaps one boundary of the admissible range. In this -
case, a rescaling of the problem will :remedy the situation. We will not
pursue this topic further. In what follows, we assume that the exponent of
a number is within the admissible range. - _

- The second way of obtaining a result outside 'F is when the fractional
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part has more than t digits. Consider again the system F(2,3,—1,2). The
result of the addition

A10X2° +.111 X 2= 1101 x2"  ¢+}=9:

is not in our set b&ause four (binary) digits are requlred to represent the
fractional part. Similarly, the product .

< TIIIX 2 X 110X 2° = .10101 X 2° ixi=%

is not in F. We remark that while this situation does not abways arise with
addition, it almost invariably does with multiplication. To define a result
that can be represented in the machine, we select a nearby element of F.
There arz two methods for doing this. Suppose that the actual result of an
operation is .dy...ddi+...d, X B° (Recall our assumption that\L <e <
U.) Then the two methods are:

1. Choppmg, whereby the. dlglts beyond- d, are- slmply dropped
2. Rounding, whereby the fractional part.is taken to be the first t
. digits of did, . ..dd,. + iﬁ

For example, the number in F(2,3,-1,2) corresponding to .1101 x2' is
.110x2' by chopping, and .111x2' by rounding. For .10101x2°, it is
.101 x 2° by either method. Briefly, the relative merits of the two methods
are that chopping is less expensive whereas rounding produces better
accuracy. Both methods are in common usage on present day computers.

No matter which method-——chopping or rounding—is used to obtain a
result in F, there is some error created in the process. We call this
round-off error (éven wlith chopping is done). More precisely, let fi(x)
denote the ‘machine representation of a real number x (whose exponent is
within range). Then round-off error is the difference x — fi(x). For x# 0, we
" define the relative round-off error 5(x) in fi(x) by

8(x) = x=fl(x)
‘ . X
It can be shown [16, p. 88-9] that
. _[B"" for chopping
(n 16(I)|$E_PS {iﬁ"' for rounding -

Consider, for example, the system F(10, 4, -50,50) with chopping and
suppose x = 12.467. Then fl(x) = .1246 X 10? and

0.007
12.467 467 - .
For the same system thh rounding, we have fl(x) =.1247 x 10? and

8(x) = =0. 00056 < EPS 107 =0.001
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0.003 I PP
8(x)= 1467 £,0.00024 <EPS = 3 10~ = 0.0005
The parameter EPS in (1.1) plays an important role in computation in a
floating-point number system. It is commonly refer{ed to as machine
epsilon and is defined to be the smallest positive machine number such that

AQ+EPS)>1

that is, the machine representation oj- the sum 1+ EPS is different from 1.

For example, machine epsrlon for F(l() 4, —50, 50) with chopping is
107 = 0.001 since

fi(l+.001) = 1001x10'>l

and this is not true for any smaller posmvo number within the system.
Similarly, machine cpsrlon for F(10,4,—50,50) with roundmg is 0.0005.
Machine epsilon is an indicator of the attainable accuracy in a floating-
point number system. For this reason, it is often used in subroutines to

determine if the maximum possible accuracy has been achieved. We
discuss this further in Section 1.2.

1.1.3. Control of Hound-o!f Error

So far, we have only considered the round-off grror incurred by represent-
ing the result of a single arithmetic. operation whergas, in the cours¢ of
carrying out a computer calculation, a very darge number of arithmetic
operations is performed. Therefore, we must.be concerned with the ques-
tion of how these errors propagate.and affect the final result. One of the
tasks eof the numerical analyst is to provide an answer by performing a
“round-off error analysis.” This is a highly technical process that will not
be pursued here. Instead, we adopt the more pragmatic approach of trying
to minimize the error created in each operation with the view that this
provides less error to be propagated, making the final result as accurate as
possible.

There are several ways in which round-off error in each operation or set
of operations can be minimized. They fall into threc categories: hardware
features, software features and careful programming. We discuss one
example of each, usmg the system F(10,4,-50,50), with chopping, to
illustrate them.

1. Hardware feature. Suppose that we want to subtract 05678 from
12.34. Before subtracting, the machine representations of the numbers
must be adjusted in order to align the decimal points. In the process, some



COMPUTER ARITHMETIC AND ERROR CONTROL /9

of the least significant digits of the smaller number will be lost. The
provision of a guard digit—an extra digit in the fractional part of a
number—in the arithmetic unit of a computer can prevent undue loss of
accuracy in such situations. To illustrate, we have

No guard digit With a guard digit
1234 % 10° | 12340% 10*
0056 x 10* 00567 % 10°
1178 x 107 11773 x 102

The result with the guard digit is closer to the exact result 11.7722. The
slash through the 3 indicates that it is chopped when the result is stored. At
first glance, it may seem unimportant to quibble about a difference of only -
one in the last digit of a number. However, in large-scale computations
.involving millions of arithmetic operations, there is-a potential for round-
off error to accumulate significantly. Consequently, it is important to
- ensure that the result of each individual operation is as accurate as
possnble For this reason, the provis:on of a guard digit in the arithmetic
unit is generally regarded as essential in a computer which is designed for
scientific computation.
2. Software feature. An expression that appears frequently in scientific
calculations is of the form

(1.2) a+b-c

This combination of operations is often referred to as a floating-point
operation or, briefly, , a fop. It arises, for instance, in the solution of
problems in linear algebra (see Chapter 2). Due to the precedence of
operations, the multlphcatnon is performed first. This produces a “double-
length” result, that is, either 2¢ — 1 or 2t digits long. Normally, this would
be chopped to ¢t digits before doing the addition. However, better accuracy
can be assured if the addition is done before chopping For example, let
a = 0.1462, b = 12.34, and ¢ = 0.5678. Then, assuming a guard digit, we
have

: , Singlc length. Double length
b-c - ‘ ,7@60* 10 7006652 x 10?
+a .00146 x 10 © 00146 x 10?

770208 % 107 70212 X 10°

Since flops occur so often in scientific éalctilations, many compilers are
designed to recognize them within an arithmetic statement and assemble
the appropriate machine code to carry out the addition using the double



