~ Rémi Bastide
Philippe Palanque
Jorg Roth (Eds.)

Engineering
Human Computer

Interaction and
Interactive Systems

Joint Working Conferences EHCI-DSVIS 2004
Hamburg, Germany, July 2004
Revised Selected Papers

LNCS 3425

Ifip

@ Springer

TS/ f{émi Bastide Philippe Palanque

Jorg Roth (Eds.)

Engineering
Human Computer
Interaction and
Interactive Systems

Joint Working Conferences EHCI-DSVIS 2004
Hamburg, Germany, July 11-13, 2004
Revised Selected Papers

AN

200501312

@ Springer

Volume Editors

Rémi Bastide

LITHS-IRIT, Université Toulouse I

Place Anatole France, 31042 Toulouse Cedex, France
E-mail: bastide @irit.fr

Philippe Palanque

LITHS-IRIT, Université Paul Sabatier

118, route de Narbonne, 31062 Toulouse Cedex, France
E-mail: palanque @irit.fr

Jorg Roth

Universitdt Hagen

Praktische Informatik II

Universititsstr. 1, 58084 Hagen, Germany
E-mail: Joerg.Roth@Fernuni-hagen.de

Library of Congress Control Number: 2005928449

CR Subject Classification (1998): H.5.2-3, H.5,1.3, D.2, H.3, H4,K4,F3

ISSN 0302-9743
ISBN-10 3-540-26097-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-26097-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Boller Mediendesign
Printed on acid-free paper SPIN: 11431879 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA

Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3425

Preface

As its name suggests, the EHCI-DSVIS conference has been a special event, merging
two different, although overlapping, research communities: EHCI (Engineering for
Human-Computer Interaction) is a conference organized by the IFIP 2.7/13.4 working
group, started in 1974 and held every three years. since 1989. The group’s activity is
the scientific investigation of the relationships among the human factors in computing
and software engineering.

DSVIS (Design, Specification and Verification of Interactive Systems) is an annual
conference started in 1994, and dedicated to the use of formal methods for the design
of interactive systems. Of course these two research domains have a lot in common,
and are informed by each other’s results. The year 2004 was a good opportunity to
bring closer these two research communities for an event, the 11th edition of DSVIS
and the 9th edition of EHCI. EHCI-DSVIS was set up as a working conference
bringing together researchers and practitioners interested in strengthening the
scientific foundations of user interface design, specification and verification, and in
examining the relationships between software engineering and human-computer
interaction.

The call for papers attracted a lot of attention, and we received a record number of
submissions: out of the 65 submissions, 23 full papers were accepted, which gives an
acceptance rate of approximately 34%. Three short papers were also included. The
contributions were categorized in 8 chapters:

Chapter 1 (Usability and Software Architecture) contains three contributions which
advance the state of the art in usability approaches for modemn software engineering.
Bonnie John and her colleagues discuss that, in contrast to other software quality
attributes such as performance, reliability and maintainability, usability is not usually
tackled at the software architecture level. Their contribution is to propose usability-
supporting architectural patterns, assorted with sample solutions. The second paper,
by Brinkman et al., proposes three usability measures designed to be applied in a
component-based environment. These measures can be objective, based on event logs,
or subjective, obtained through questionnaires. An experimental study assessing the
value of these measures is also described. The third paper, by Folmer and her
colleagues, also deals with the relationships between usability and software
architecture. They show how explicit evaluation of usability during architectural
design may reduce the risk of building a system that fails to meet its usability
requirements and may prevent high costs incurring adaptive maintenance activities
once the system has been implemented.

Chapter 2 is devoted to issues regarding task modelling, which is a traditional topic
of choice for both the EHCI and DSVIS series of conferences. The paper by Dittmar
et al. investigates the slow adoption of task modelling by software practitioners. A
thorough examination of the leading-edge tools for task modelling reveals how this
situation can be improved by better integration of scenario-based design elements.
The work of Clerckx et al. investigates the improvement that can be brought to usual
task, environment and dialogue models by tackling the new application domain of

VI Preface

context-sensitive user interfaces. The paper by Eicholz et al. explores the relationships
between task modelling and workflow, or business process modelling.

Chapter 3 is concerned with the “browsing and searching” application domain,
which is of high industrial relevance considering the current interest in Web-based
applications. Ormerod et al. present new browser concepts to support the sharing of
digital photographs and also report on the combined use of ethnographic,
experimentation and design methods they used for their project. Gongalves and Jorge
propose a new classification scheme for document retrieval systems, where users “tell
a story” about their document, in order to make the later retrieval of the document
more natural.

Chapter 4 deals with model-based approaches. It is made up of six contributions,
making it the longest chapter of the book, witness to the fact that the definition and
use of models is at the core of the EHCI-DSVIS community. Campos and Nunes, in
this chapter’s first paper, emphasize the need for a better integration of models and
tools. They present a new Ul specification language bridging the gap between
envisioned user behavior and concrete user interfaces. Macias and Castells bring the
field of programming-by-example to the domain of Web-based applications by
detecting iteration patterns in user behavior and generating a programmatic
representation of a user’s actions. Navarre et al. integrate two different notations in
order to offer a tool-supported approach for the prototyping of advanced multimodal
applications. Limbourg and his colleagues apply their USIXML language to show
how a user interface can be specified and produced at and from different, and possibly
multiple, levels of abstraction while maintaining the mappings between these levels.
The chapter is concluded by two short contributions: In the paper by Schaefer et al., a
novel dialogue model for the design of multimodal user interfaces is proposed.
Ziegler and Specker conclude by proposing the use of “Navigation Patterns,” pattern
systems based on structural mappings.

Chapter 5 is devoted to a rapidly developing application domain, ubiquitous
computing. Borkowski et al. propose several software tools with the assorted
interaction techniques to develop multisurface computer-augmented environments.
Evreinov and his colleagues explore the use of vibro-tactile interaction, especially
useful for new mobile devices such as palmtop computers.

Chapter 6 is called “Bridging Viewpoints”: this refers to an ongoing activity of the
IFIP 2.7/13.4 working group, which is to find ways to reconcile the fundamental
paradigms of user-centered design and software engineering. For instance, Blandford,
Green and Connel analyze the misfits between the user’s conceptualization of the
domain and device with which they are working and the conceptualization
implemented within those systems. Barbosa et al. discuss the role of an enhanced
extended lexicon as a shared communicative artefact during software design. They
describe how it may act as an interlingua that captures the shared understanding of
both stakeholders and designers. Lopez-Jaquero et al. contribute a short paper on a
design process for adaptive interfaces.

Chapter 7 is concerned with the emerging application domain of plastic and
adaptive interfaces. Increasingly often, the same application has to be delivered on
widely different platforms, ranging from a complete workstation to a PDA or a cell
phone. Clearly, advances in design approaches are needed to avoid redesigning the
user interface from scratch for each platform. Dobson’s work is concerned with laying
out such principles, in particular for pervasive computing systems. Calvary and her

Preface viI

colleagues present a software widget explicitly dealing with plasticity of the user
interface. Gilroy and Harrison propose the incorporation of interaction style into
abstract Ul specification, in order to accommodate with different UI platforms.
Correani et al. present a new version of the TERESA tool supporting flexible
development of multidevice interfaces.

Chapter 8 (Groupware) concludes the book with two papers, both concerned with
supporting collaborative software construction. Wu and Graham present the Software
Design Board, a prototype collaborative design tool supporting a variety of styles of
collaboration and facilitating transitions between them. Gutwin et al. explore ways to
improve group awareness in collaborative software design.

The conference was held in the beautiful, quiet and secluded Tremsbiittel Castle,
near Hamburg, Germany, providing a studious atmosphere propitious to after-hours
discussion. As usual for the EHCI conference series, the discussion that followed each
paper presentation was transcribed, revised and appended to the edited version of the
paper. From these, the reader may catch a glimpse of the lively debates that were held
at the conference.

Rémi Bastide
Philippe Palanque
Jorg Roth

Conference Chairs

Rick Kazman
Philippe Palanque

Programme Committee Chairs

Rémi Bastide
Nick Graham
Jorg Roth

Programme Committee Members

Len J. Bass

Ann Blandford
Annie Chabert
Stéphane Chatty
Joélle Coutaz
Anke Ditmar

Alan Dix

Gavin Doherty
Peter Forbrig

Phil Gray

Morten Borup Harning
Michael Harrison
Rob Jacob

Bonnie John

Chris Johnson
Joaquim Jorge
Reed Little
Quentin Limbourg
Panos Markopoulos
Laurence Nigay
Nuno Jardim Nunes
Fabio Paterno
Oscar Pastor

Greg Phillips

Chris Roast

Daniel Salber
Kevin Schneider
Helmut G. Stiegler
Halvard Treetteberg
Claus Unger

Jean Vanderdonckt
Leon Watts

Programme Committee

SEI, Carnegie Mellon University, USA
LIIHS-IRIT, France

LIIHS-IRIT, France
Queen’s University, Kingston, Canada
University of Hagen, Germany

SEI, Carnegie Mellon University, USA
University College London, UK

GPS Pilot, France

Intuilab, France

Université Joseph Fourier, France
University of Rostock, Germany
Lancaster University, UK

Trinity College, Dublin, Ireland
University of Rostock, Germany
University of Glasgow, UK

Open Business Innovation, Denmark
University of York, UK

Tufts University, USA

HCII, Carnegie Mellon University, USA
University of Glasgow, UK

Instituto Superior Técnico, Lisbon, Portugal
SEI, Carnegie Mellon University, USA
Catholic University of Louvain, Belgium
University of Eindhoven, The Netherlands
Université Joseph Fourier, France
Universidade da Madeira, Portugal
ISTI-CNR, Italy

Universidad Politécnica de Valencia, Spain
Royal Military College, Canada
Sheffield Hallam University, UK

CWI, The Netherlands

University of Saskatchewan, Canada
STI Consulting, Germany

NTNU, Norway

University of Hagen, Germany
Université Louvain-La-Neuve, Belgium
UMIST, UK

Lecture Notes in Computer Science

For information about Vols. 1-3480

please contact your bookseller or Springer

Vol. 3587: P. Pemer, A. Imiya (Eds.), Machine Learning
and Data Mining in Pattern Recognition. X VII, 695 pages.
2005. (Subseries LNAI).

Vol. 3580: L. Caires, G.F. Italiano, L. Monteiro, C.
Palamidessi, M. Yung (Eds.), Automata, Languages and
Programming. XXV, 1477 pages. 2005.

Vol. 3578: M. Gallagher, J. Hogan, F. Maire (Eds.), Intelli-
gent Data Engineering and Automated Learning - IDEAL
2005. XVI, 599 pages. 2005.

Vol. 3576: K. Etessami, S.K. Rajamani (Eds.), Computer
Aided Verification. XV, 564 pages. 2005.

Vol. 3575: S. Wermter, G. Palm, M. Elshaw (Eds.),
Biomimetic Neural Learning for Intelligent Robots. IX,
383 pages. 2005. (Subseries LNAI).

Vol. 3574: C. Boyd, J.M. Gonzilez Nieto (Eds.), Informa-
tion Security and Privacy. XIII, 586 pages. 2005.

Vol. 3573: S. Etalle (Ed.), Logic Based Program Synthesis
and Transformation. VIII, 279 pages. 2005.

Vol. 3572: C. De Felice, A. Restivo (Eds.), Developments
in Language Theory. XI, 409 pages. 2005.

Vol. 3571: L. Godo (Ed.), Symbolic and Quantitative
Approaches to Reasoning with Uncertainty. XVI, 1028
pages. 2005. (Subseries LNAI).

Vol. 3570: A. S. Patrick, M. Yung (Eds.), Financial Cryp-
tography and Data Security. XII, 376 pages. 2005.

Vol. 3569: F. Bacchus, T. Walsh (Eds.), Theory and Ap-
plications of Satisfiability Testing. XII, 492 pages. 2005.

Vol. 3567: M. Jackson, D. Nelson, S. Stirk (Eds.),
Database: Enterprise, Skills and Innovation. XII, 185
pages. 2005.

Vol. 3565: G.E. Christensen, M. Sonka (Eds.), Information
Processing in Medical Imaging. XXI, 777 pages. 2005.

Vol. 3562: J. Mira, J.R. Alvarez (Eds.), Artificial Intelli-
gence and Knowledge Engineering Applications: A Bioin-
spired Approach, Part II. XXIV, 636 pages. 2005.

Vol. 3561:J. Mira, J.R. Alvarez (Eds.), Mechanisms, Sym-
bols, and Models-Underlying Cognition, Part I. XXIV, 532
pages. 2005.

Vol. 3560: V.K. Prasanna, S. Iyengar, P.G. Spirakis, M.
Welsh (Eds.), Distributed Computing in Sensor Systems.
XV, 423 pages. 2005.

Vol. 3559: P. Auer, R. Meir (Eds.), Learning Theory. XI,
692 pages. 2005. (Subseries LNAI).

Vol. 3557: H. Gilbert, H. Handschuh (Eds.), Fast Software
Encryption. XI, 443 pages. 2005.

Vol. 3556: H. Baumeister, M. Marchesi, M. Holcombe

(Eds.), Extreme Programming and Agile Processes in
Software Engineering. XIV, 332 pages. 2005.

Vol. 3555: T. Vardanega, A. Wellings (Eds.), Reliable Soft-
ware Technology — Ada-Europe 2005. XV, 273 pages.
2005.

Vol. 3554: A. Dey, B. Kokinov, D. Leake, R. Turner (Eds.),
Modeling and Using Context. XIV, 572 pages. 2005. (Sub-
series LNAI).

Vol. 3553: T.D. Hémildinen, A.D. Pimentel, J. Takala, S.
Vassiliadis (Eds.), Embedded Computer Systems: Archi-
tectures, Modeling, and Simulation. XV, 476 pages. 2005.

Vol. 3552: H. de Meer, N. Bhatti (Eds.), Quality of Service
—IWQoS 2005. XV, 400 pages. 2005.

Vol. 3551: T. Hirder, W. Lehner (Eds.), Data Management
in a Connected World. XIX, 371 pages. 2005.

Vol. 3548: K. Julisch, C. Kruegel (Eds.), Intrusion and
Malware Detection and Vulnerability Assessment. X, 241
pages. 2005.

Vol. 3547;: F. Bomarius, S. Komi-Sirvi6 (Eds.), Product
Focused Software Process Improvement. XIII, 588 pages.
2005.

Vol. 3543: L. Kutvonen, N. Alonistioti (Eds.), Distributed
Applications and Interoperable Systems. XI, 235 pages.
2005.

Vol. 3541: N.C. Oza, R. Polikar, J. Kittler, F. Roli (Eds.),
Multiple Classifier Systems. XII, 430 pages. 2005.

Vol. 3540: H. Kalviainen, J. Parkkinen, A. Kaarna (Eds.),
Image Analysis. XXII, 1270 pages. 2005.

Vol. 3537: A. Apostolico, M. Crochemore, K. Park (Eds.),
Combinatorial Pattern Matching. XI, 444 pages. 2005.

Vol. 3536: G. Ciardo, P. Darondeau (Eds.), Applications
and Theory of Petri Nets 2005. XI, 470 pages. 2005.

Vol. 3535: M. Steffen, G. Zavattaro (Eds.), Formal Meth-
ods for Open Object-Based Distributed Systems. X, 323
pages. 2005.

Vol. 3533: M. Ali, F. Esposito (Eds.), Innovations in Ap-
plied Artificial Intelligence. XX, 858 pages. 2005. (Sub-
series LNAI).

Vol. 3532: A. Gémez-Pérez, J. Euzenat (Eds.), The Se-
mantic Web: Research and Applications. XV, 728 pages.
2005.

Vol. 3531: J. Ioannidis, A. Keromytis, M. Yung (Eds.), Ap-

plied Cryptography and Network Security. XI, 530 pages.
2005.

Vol. 3530: A. Prinz, R. Reed, J. Reed (Eds.), SDL 2005:
Model Driven. X1, 361 pages. 2005.

Vol. 3528: P.S. Szczepaniak, J. Kacprzyk, A. Niewiadom-
ski (Eds.), Advances in Web Intelligence. XVII, 513 pages.
2005. (Subseries LNAI).

Vol. 3527: R. Morrison, F. Oquendo (Eds.), Software Ar-
chitecture. XII, 263 pages. 2005. :

Vol. 3526: S.B. Cooper, B. Léwe, L. Torenvliet (Eds.),
New Computational Paradigms. XVII, 574 pages. 2005.

Vol. 3525: A.E. Abdallah, C.B. Jones, J.W. Sanders (Eds.),
Communicating Sequential Processes. XIV, 321 pages.
2005.

Vol. 3524: R. Bartik, M. Milano (Eds.), Integration of Al
and OR Techniques in Constraint Programming for Com-
binatorial Optimization Problems. XI, 320 pages. 2005.

Vol. 3523: J.S. Marques, N. Pérez de la Blanca, P. Pina
(Eds.), Pattern Recognition and Image Analysis, Part II.
XXVI, 733 pages. 2005.

Vol. 3522: 1.S. Marques, N. Pérez de la Blanca, P. Pina
(Eds.), Pattern Recognition and Image Analysis, Part 1.
XXVI, 703 pages. 2005.

Vol. 3521: N. Megiddo, Y. Xu, B. Zhu (Eds.), Algorithmic
Applications in Management. XIII, 484 pages. 2005.

Vol. 3520: O. Pastor, J. Falcdo e Cunha (Eds.), Advanced
Information Systems Engineering. XVI, 584 pages. 2005.

Vol. 3519: H. Li, P. J. Olver, G. Sommer (Eds.), Computer
Algebra and Geometric Algebra with Applications. IX,
449 pages. 2005.

Vol. 3518: T.B. Ho, D. Cheung, H. Liu (Eds.), Advances in
Knowledge Discovery and Data Mining. XXI, 864 pages.
2005. (Subseries LNAI).

Vol. 3517: H.S. Baird, D.P. Lopresti (Eds.), Human Inter-
active Proofs. IX, 143 pages. 2005.

Vol. 3516: V.S. Sunderam, G.D.v. Albada, PM.A. Sloot,
1.J. Dongarra (Eds.), Computational Science —ICCS 2005,
Part III. LXIII, 1143 pages. 2005.

Vol. 3515: V.S. Sunderam, G.D.v. Albada, PM.A. Sloot,
1.J. Dongarra (Eds.), Computational Science — ICCS 2005,
Part I1. LXIII, 1101 pages. 2005.

Vol. 3514: V.S. Sunderam, G.D.v. Albada, PM.A. Sloot,
1.]. Dongarra (Eds.), Computational Science —ICCS 2005,
Part 1. LXIII, 1089 pages. 2005.

Vol. 3513: A. Montoyo, R. Muiioz, E. Métais (Eds.), Nat-
ural Language Processing and Information Systems. XII,
408 pages. 2005.

Vol. 3512: J. Cabestany, A. Prieto, F. Sandoval (Eds.),
Computational Intelligence and Bioinspired Systems.
XXV, 1260 pages. 2005.

Vol. 3511: U.K. Wiil (Ed.), Metainformatics. VIII, 221
pages. 2005.

Vol. 3510: T. Braun, G. Carle, Y. Koucheryavy, V. Tsaous-
sidis (Eds.), Wired/Wireless Internet Communications.
X1V, 366 pages. 2005.

Vol. 3509: M. Jiinger, V. Kaibel (Eds.), Integer Program-
ming and Combinatorial Optimization. XI, 484 pages.
2005.

Vol. 3508: P. Bresciani, P. Giorgini, B. Henderson-Sellers,
G. Low, M. Winikoff (Eds.), Agent-Oriented Information
Systems II. X, 227 pages. 2005. (Subseries LNAI).

Vol. 3507: F. Crestani, I. Ruthven (Eds.), Information Con-
text: Nature, Impact, and Role. XIII, 253 pages. 2005.

Vol. 3506: C. Park, S. Chee (Eds.), Information Security
and Cryptology — ICISC 2004. XIV, 490 pages. 2005.

Vol. 3505: V. Gorodetsky, J. Liu, V. A. Skormin (Eds.), Au-
tonomous Intelligent Systems: Agents and Data Mining.
X111, 303 pages. 2005. (Subseries LNAI).

Vol. 3504: A F. Frangi, P1. Radeva, A. Santos, M. Her-
nandez (Eds.), Functional Imaging and Modeling of the
Heart. XV, 489 pages. 2005.

Vol. 3503: S.E. Nikoletseas (Ed.), Experimental and Effi-
cient Algorithms. XV, 624 pages. 2005.

Vol. 3502: F. Khendek, R. Dssouli (Eds.), Testing of Com-
municating Systems. X, 381 pages. 2005.

Vol. 3501: B. Kégl, G. Lapalme (Eds.), Advances in Artifi-
cial Intelligence. XV, 458 pages. 2005. (Subseries LNAI).

Vol. 3500: S. Miyano, J. Mesirov, S. Kasif, S. Istrail, P.
Pevzner, M. Waterman (Eds.), Research in Computational
Molecular Biology. XVII, 632 pages. 2005. (Subseries
LNBI).

Vol. 3499: A. Pelc, M. Raynal (Eds.), Structural Informa-
tion and Communication Complexity. X, 323 pages. 2005.

Vol. 3498: J. Wang, X. Liao, Z. Yi (Eds.), Advances in Neu-
ral Networks — ISNN 2005, Part III. XLIX, 1077 pages.
2005.

Vol. 3497: J. Wang, X. Liao, Z. Yi (Eds.), Advances in
Neural Networks — ISNN 2005, Part II. XLIX, 947 pages.
2005S.

Vol. 3496: J. Wang, X. Liao, Z. Yi (Eds.), Advances in
Neural Networks — ISNN 2005, Part II. L, 1055 pages.
2005.

Vol. 3495: P. Kantor, G. Muresan, F. Roberts, D.D. Zeng,
F.-Y. Wang, H. Chen, R.C. Merkle (Eds.), Intelligence and
Security Informatics. XVIII, 674 pages. 2005.

Vol. 3494: R. Cramer (Ed.), Advances in Cryptology —
EUROCRYPT 2005. XIV, 576 pages. 2005.

Vol. 3493: N. Fuhr, M. Lalmas, S. Malik, Z. Szlavik (Eds.),
Advances in XML Information Retrieval. XI, 438 pages.
2005.

Vol. 3492: P. Blache, E. Stabler, J. Busquets, R. Moot
(Eds.), Logical Aspects of Computational Linguistics. X,
363 pages. 2005. (Subseries LNAI).

Vol. 3489: G.T. Heineman, I. Crnkovic, H.W. Schmidt,
J.A. Stafford, C. Szyperski, K. Wallnau (Eds.),
Component-Based Software Engineering. XI, 358 pages.
2005.

Vol. 3488: M.-S. Hacid, N.V. Murray, Z.W. Ras, S.
Tsumoto (Eds.), Foundations of Intelligent Systems. XIII,
700 pages. 2005. (Subseries LNAI).

Vol. 3486: T. Helleseth, D. Sarwate, H.-Y. Song, K. Yang
(Eds.), Sequences and Their Applications - SETA 2004.
XII, 451 pages. 2005.

Vol. 3483: O. Gervasi, M.L. Gavrilova, V. Kumar, A. La-
gand, H.P. Lee, Y. Mun, D. Taniar, C.J.K. Tan (Eds.), Com-
putational Science and Its Applications — ICCSA 2005,
Part IV. LXV, 1362 pages. 2005.

Vol. 3482: O. Gervasi, M.L. Gavrilova, V. Kumar, A. La-
gana, H.P. Lee, Y. Mun, D. Taniar, C.J.K. Tan (Eds.), Com-
putational Science and Its Applications — ICCSA 2005,
Part III. LXV, 1340 pages. 2005.

Vol. 3481: O. Gervasi, M.L. Gavrilova, V. Kumar, A. La-
gana, H.P. Lee, Y. Mun, D. Taniar, C.J K. Tan (Eds.), Com-
putational Science and Its Applications — ICCSA 2005,
Part 1. LXV, 1316 pages. 2005.

% 736.3272)

Table of Contents

Usability

Bringing Usability Concerns to the Design of Software Architecture.............cccoevvvnvees 1
B.E. John, L. Bass, M.-1. Sanchez-Segura, R.J. Adams

Empirical Usability Testing in a Component-Based Environment:

Improving Test Efficiency with Component-Specific Usability Measures........... 20
W.-P. Brinkman, R. Haakma, D.G. Bouwhuis

Software Architecture Analysis of Usabilityccccovviiiiiniiiiiiin 38
E. Folmer, J. van Gurp, J. Bosch

Task Modelling

Support for Task Modeling — A “Constructive” EXplOrationcceoeveincriceinnns 59

A. Dittmar, P. Forbrig, S. Heftberger, C. Stary
DynaMo-AID: A Design Process and a Runtime Architecture for

Dynamic Model-Based User Interface Development..........ccococvvveiinincncninnnicnnn 77
T. Clerckx, K. Luyten, K. Coninx
Using Task Modelling Concepts for Achieving Adaptive Workflows..............c.c..... 96

C. Eichholz, A. Dittmar, P. Forbrig

Browsing and Searching

Mixing Research Methods in HCI: Ethnography Meets Experimentation
in Image Browser Design.......cususcsasmsmsssasisiosimsnsasmassamsmesssassmisssmnnse 112
T.C. Ormerod, J. Mariani, N.J. Morley, T. Rodden, A. Crabtree,
J. Mathrick, G. Hitch, K. Lewis

“Tell Me a Story” — Issues on the Design of Document Retrieval Systems 129
D. Gongalves, J. Jorge

Model-Based Approaches

CanonSketch: A User-Centered Tool for Canonical Abstract Prototyping 146
P.F. Campos, N.J. Nunes
Finding Iteration Patterns in Dynamic Web Page Authoringcccoeveiiinninenne 164

J.A. Macias, P. Castells

Very-High-Fidelity Prototyping for Both Presentation and Dialogue Parts
of Multimodal Interactive SYSteMScccecevuiriiiiiiniirininenieiereie et 179
D. Navarre, P. Dragicevic, P. Palanque, R. Bastide, A. Schyn

USIXML: A Language Supporting Multi-path Development of User Interfaces..... 200
Q. Limbourg, J. Vanderdonckt, B. Michotte, L. Bouillon, V. Lépez-Jaquero

A Novel Dialog Model for the Design of Multimodal User Interfaces..................... 221
R. Schaefer, S. Bleul, W. Mueller
Navigation Patterns — Pattern Systems Based on Structural Mappings.................... 224

J. Ziegler, M. Specker

XII Table of Contents

Ubiquitous Computing

Spatial Control of Interactive Surfaces in an Augmented Environment................... 228
S. Borkowski, J. Letessier, J.L. Crowley
Manipulating Vibro-Tactile Sequences on Mobile PCccccovvvveviieieceerienrenenee. 245

G. Evreinov, T. Evreinova, R. Raisamo

Bridging Viewpoints

Formalising an Understanding of User-System MisfitS..........ccoceeeerueeeinrenueierennennn 253
A. Blandford, T.R.G. Green, I. Connell
Supporting a Shared Understanding of Communication-Oriented Concerns
in Human-Computer Interaction: A Lexicon-Based Approach.............cccceeeuee. 271
S. Diniz Junqueira Barbosa, M. Selbach Silveira,
M. Greco de Paula, K. Koogan Breitman
A Seamless Development Process of Adaptive User Interfaces
Explicitly Based on Usability Properties..........c.cuevevevueeereereniereeeecreseevereneenns 289
V. Lopez-Jaquero, F. Montero, J.P. Molina, P. Gonzdlez,
A. Fernandez-Caballero

Plastic and Adaptive Interfaces

More Principled Design of Pervasive Computing Systemsc..ccoccoevevverueeurennnnns 292
S. Dobson, P. Nixon

Towards a New Generation of Widgets for Supporting Software Plasticity:
The “COMBL” convmmmmamrammssmsmr s s s s s eeies 306
G. Calvary, J. Coutaz, O. Ddassi, L. Balme, A. Demeure

Using Interaction Style to Match the Ubiquitous User Interface to the

Device-10-Hand..........cccoouiviiiiiniiniiieirieeseteee ettt 325
S.W. Gilroy, M.D. Harrison
Supporting Flexible Development of Multi-device Interfaces.............c.cceuveveuennee. 346

F. Correani, G. Mori, F. Paterno

Groupware

The Software Design Board: A Tool Supporting Workstyle Transitions in
Collaborative SOftware DESIZIcceueueriruerrieirieeeirieesieree et eesens 363
J. Wu, T.C.N Graham

Supporting Group Awareness in Distributed Software Development 383

C. Gutwin, K. Schneider, D. Paquette, R. Penner

AUTNOY INACX ..ot nesarens 399

Bringing Usability Concerns to the Design of Software
Architecture:

Bonnie E. John', Len Bass?, Maria-Isabel Sanchez-Segura’, Rob J. Adams'

! Carnegie Mellon University, Human-Computer Interaction Institute, USA
{bej, rjadams}@cs.cmu.edu
2 Carnegie Mellon University, Software Engineering Institute, USA
1jb@sei.cmu.edu
* Carlos ITI University of Madrid, Computer Science Department, Spain
misanche@inf.uc3m.es

Abstract. Software architects have techniques to deal with many quality
attributes such as performance, reliability, and maintainability. Usability,
however, has traditionally been concerned primarily with presentation and not
been a concern of software architects beyond separating the user interface from
the remainder of the application. In this paper, we introduce usability-
supporting architectural patterns. Each pattern describes a usability concern that
is not supported by separation alone. For each concern, a usability-supporting
architectural pattern provides the forces from the characteristics of the task and
environment, the human, and the state of the software to motivate an
implementation independent solution cast in terms of the responsibilities that
must be fulfilled to satisfy the forces. Furthermore, each pattern includes a
sample solution implemented in the context of an overriding separation based
pattern such as J2EE Model View Controller.

1. Introduction

For the past twenty years, software architects have treated usability primarily as a
problem in modifiability. That is, they separate the presentation portion of an
application from the remainder of that application. This separation makes it easier to
make modifications to the user interface and to maintain separate views of application
data. This is consistent with the standard user interface design methods that have a
focus on iterative design — i.e. determine necessary changes to the user interface from
user testing and modify the system to implement these changes. Separating the user
interface from the remainder of the application is now standard practice in developing
interactive systems.

Treating usability as a problem in modifiability, however, has the effect of
postponing many usability requirements to the end of the development cycle where
they are overtaken by time and budget pressures. If architectural changes required to

! This work supported by the U. S. Department of Defense and the NASA High Dependability
Computing Program under cooperative agreement NCC-2-1298.

R. Bastide, P. Palanque, and J. Roth (Eds.): EHCI-DSVIS 2004, LNCS 3425, pp. 1-19, 2005.
© IFIP International Federation for Information Processing 2005

2 B.E. John et al.

implement a usability feature are discovered late in the process, the cost of change
multiplies. Consequently, systems are being fielded that are less usable than they
could be.

Recently, in response to the shortcomings of relying exclusively on separation as a
basis for supporting usability, several groups have identified specific usability
scenarios that are not well supported by separation, and have proposed architectural
solutions to support these scenarios [2,3,5,6,11]. In this paper, we move beyond
simply positing scenarios and sample solutions by identifying the forces that conspire
to produce such scenarios and that dictate responsibilities the software must fulfill to
support a solution. Following Alexander [1], we collect these forces, the context in
which they operate, and solutions that resolve the forces, into a pattern, in this case a
usability-supporting architectural pattern.

In the next section, we argue that software architects must consider more than a
simple separation-based pattern in order to achieve usability. We then discuss why we
are focusing on forces and why the forces that come from prior design decisions play
a special role in software creation. In section 4, we describe our template for these
patterns and illustrate it with one of the usability scenarios previously identified by
several research groups. We also comment on the process for creating these patterns.
Finally, we conclude with how our work has been applied and our vision of future
work.

2. Usability Requires More than Separation

The J2EE Model-View-Controller (J2EE-MVC) architectural pattern [12], appears in
Fig. 1. This is one example of a separation based pattern to support interactive
systems. The model represents data and functionality, the view renders the content of
a model to be presented to the user, and the controller translates interactions with the
view into actions to be performed by the model. The controller responds by selecting
an appropriate view. There can be one or more views and one controller for each
functionality.

The purpose of this pattern is explained by Sun as follows [12]: “By applying the
Model-View-Controller (MVC) architecture to a Java™ 2 Platform, Enterprise Edition
(J2EE™) application, you separate core business model functionality from the
presentation and control logic that uses this functionality. Such separation allows
multiple views to share the same enterprise data model, which makes supporting
multiple clients easier to implement, test, and maintain.” Modifications to the
presentation and control logic (the user interface) also become easier because the core
functionality is not intertwined with the user interface. A number of such patterns
have emerged since the early 1980s including the original Smalltalk MVC and
Presentation Abstraction Control (PAC) [8] and they have proven their utility and
have become common practice.

Bringing Usability Concerns to the Design of Software Architecture 3

Model

- Encapsulates application state

- Responds to state queries

- Exposes application functionality
- Notifies views of changes

State query

Controller

- Defines application behavior

- Maps user actions to model updates
- Selects view for response

- One for each functionality

View Selection
- Renders the models =
- Requests updates from models
- Sends user gestures to controllers
- Allows controllers to select view

T BT 1 >
User Gestures

Method Invocations
MICIT> Events

Fig. 1. J2EE-MVC structure diagram (adapted from [12]).

The problem, however, is that achieving usability means more than simply getting the
presentation and control logic correct. For example, consider cancelling the current
command, undoing the last command, or presenting progress bars that give an
accurate estimate of time to completion. Supporting these important usability
concerns requires the involvement of the model as well as the view and the controller.
A cancellation command must reach into the model in order to terminate the active
command. Undo must also reach into the model because, as pointed out in [10],
command processing is responsible for implementing undo and command processing
is carried out in the model in J2EE-MVC. Accurate time estimates for progress bars
depend on information maintained in the model. This involvement of multiple
subsystems in supporting usability concerns is also true for the other separation based
patterns. Thus, usability requires more than just separation.

3. The Forces in Usability-Supporting Architectural Patterns

The patterns work pioneered by Christopher Alexander in the building architecture
domain [1] has had a large impact on software engineering, e.g. [8,10]. Following
Alexander’s terminology, a pattern encompasses three elements: the context, the
problem arising from a system of clashing forces, and the canonical solution in which
the forces are resolved. The concept of forces and their sources plays a large role in
defining the requirements that a solution must satisfy.

As we mentioned above, previous work [2,3,5,6,11] focused on identifying
usability scenarios not well served by separation and providing an example solution,
architectural or OOD. These solutions did indeed support the scenarios, but included
design decisions that were not dictated by, nor traceable to, specific aspects of the
scenarios. In the work presented here, this lack of traceability is remedied by
Alexander’s concept of forces.

4 B.E. John et al.

Figure 2 depicts the high-level forces acting on a system of people and machines
to accomplish a task. In general, forces emanate from the organization that causes the
task to be undertaken.

¢ Userss Orgaaizaé&mi Settings

Fig. 2. Forces influencing the solution and benefits of the solution.

That is, the organization benefits from efficiency, the absence of error, creativity, and
job satisfaction, to varying degrees, forcing the people to behave and the machines to
be designed to provide these benefits. The costs of implementing, or procuring,
software systems that provide such benefits is balanced against the value of those
benefits to the organization. Although the balance is highly dependent on the specific
organization and will not be discussed further, our work provides a solid foundation
for determining costs, benefits, and the link between them.

Human z
desires and 2 Previous
capabilities 4 design

- decisions

Benefits

realized

when the | bt -

solution is |3 I Specific Solution (more

provided | detail): e.g., architecture,
software tactics

Fig. 3. Forces impacting the software architecture.

Bringing Usability Concerns to the Design of Software Architecture 5

Figure 3 gives more detail about the forces acting on the software that is the object of
design. In addition to the general organizational forces that put value on efficiency,
the reduction of errors and the like, there are specific forces placed on the design of a
particular software application, which may conflict or converge, but are eventually
resolved in a design solution. These forces have several sources: the task the software
is designed to accomplish and the environment in which it exists, the desires and
capabilities of humans using the software, the state of the software itself, and prior
design decisions made in the construction of the software in service of quality
attributes other than usability (e.g., maintainability, performance, security).

The first three sources of forces, task and environment, human, and software state,
combine to produce a general usability problem and a set of general responsibilities
that must be satisfied by any design purporting to solve the problem. These
responsibilities can serve as a checklist when evaluating an existing or proposed
software design for its ability to solve a given usability problem.

Combining these general responsibilities with the forces exerted by prior design
decisions produces a specific solution, that is, an assignment of responsibilities to new
or existing subsystems in the software being designed. If we assume, for example, the
common practice of using an overall separation-based architectural pattern for a
specific design, the choice of this pattern introduces forces that affect any specific
solution. In this sense, our usability-supporting architectural patterns differ from other
architectural patterns in that most other patterns are presented as if they were
independent of any other design decisions that have been made.

We now turn to the elements of a usability-supporting architectural pattern,
illustrated with an example.

4. A Template for Usability-Supporting Architectural Patterns:
Example & Process

Table 1 presents a template for a usability-supporting architectural pattern, containing
the context, the problem, and both a general solution and a specific solution. This
template is based on the concepts in Alexander’s patterns [1], past experiences
teaching architectural support for usability problems [6,11], and usability evaluation
of the pattern format itself. For example, the forces are listed in columns according to
their source under the Problem section of the template. Each row of forces is resolved
by a general responsibility of the software being designed. Even though the
responsibilities constitute the General Solution, we place them in the rows occupied
by the forces that they resolve because this spatial configuration emphasizes the
traceability of responsibilities back to the forces. In the Specific Solution we repeat
the general responsibilities rather than simply pointing to them, because it is easier for
the designer to read the text of the general responsibility in proximity to the prior
design decisions than to continually switch between different sections of the pattern
template. As with the general responsibilities, the rows in the Specific Solution
provide a traceability lacking in our previous presentations of similar material.

