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Preface

Infinite ergodic theory is the study of measure preserving transformations of
infinite measure spaces (early references being [Hop1] and [St]). It is part of ”non-
singular ergodic theory”, the more general study of non-singular transformations
(since a measure preserving transformation is also a non-singular transformation).

Non-singular ergodic theory arose as an attempt to generalise the classical
ergodic theory of probability preserving transformations. Its major success was the
ratio ergodic theorem. Another side to the theory also developed concentrating on
facts which are valid ”in the absence of invariant probabilities”.

This book is more concerned with properties specific to infinite measure pre-
serving transformations.

It should be readable by anyone initiated to metric space topology and measure
theoretic probability.

Some readers may like to begin by following an example and perhaps one of the
simplest in the book is Boole’s transformation 7' : R — R defined by Tz = = — %

This is a conservative, exact measure preserving transformation of R equipped
with Lebesgue measure; and for each absolutely continuous probability P on R and
non-negative, integrable function f : R — R with unit integral,

n—1 t
P([ZfoTkg—mt]>—>2/ & da
k=0 i ™ Jo
as n — 0OQ.

The book begins with an introduction to basic non-singular ergodic theory
(chapters 1 and 2), including recurrence behaviour, existence of invariant measures,
ergodic theorems and spectral theory. One of the results in §2.4 is the collapse of
absolutely normalised pointwise ergodic convergence for ergodic measure preserving
transformations of infinite measure spaces.

This leaves a wide range of possible ”ergodic behaviour” which is catalogued
in chapter 3 mainly according to the yardsticks of intrinsic normalising constants,
laws of large numbers and return sequences (the return sequence of Boole’s trans-
formation is @)

The rest of the book (excepting chapter 5) consists of illustrations of these
phenomena by examples.

Markov maps which arise both in probability theory and in smooth dynamics
are treated in chapter 4. They illustrate distributional convergence phenomena
(mentioned above) as do the inner functions of chapter 6. Geodesic flows on hy-
perbolic surfaces were one of the first examples considered ([Hop1]), and these are
treated in chapter 7. Some of the extremely pathological examples in the subject

xi



xii AN INTRODUCTION TO INFINITE ERGODIC THEORY

can be found in the chapter on cocycles and skew products (chapter 8). In chapter
5, there is a modest beginning to the classification theory.

There is a small (but insufficient) amount of probability preserving ergodic
theory in the book, and I recommend the uninitiated reader to take advantage of
the excellent books available on this subject, including [Cor-Sin-Fom], [De-Gr-
Sig|, [Fu], [Mai], [Parr2], [Pet], [Rudo], [Wa].

The reader will no doubt find that many (but hopefully not the reader’s
favourite) topics are conspicuous by their absence. By way of excuse I can only
say that some of these are better covered elsewhere, while others are deemed too
advanced for an introduction and yet others are too ”fresh” for a book (there being
no time to write about them).

Lastly I come to the thanks. I would like to thank the people who worked with
me on the topics described in the book (see bibliography). Without them, none of
this would have been possible. Also I would like to thank my colleagues Gilat and
Lemaniczyk; and my student Omri Sarig who found mistakes in early versions (any
remaining errors being my sole responsibility having been introduced subsequently
while correcting mistakes).

Jon. Aaronson
Tel Aviv, October 1996
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CHAPTER 1

Non-singular transformations

§1.0 Standard measure spaces

Apart from the well known, classical theory of abstract measure spaces to be
found (for example) in [Halm1], we’ll also need certain results from the theory of
standard measure spaces.

This section is a review of that theory. Some (but not all) proofs are supplied
here. Complete treatments of the subject can be found in [Coh], [Kec], [Kur| and
[Part].

DEFINITION: POLISH SPACE, BOREL SETS.

A Polish space is a complete, separable metric space. Let X be a Polish space
X. The collection of Borel sets B(X) is the o-algebra of subsets of X generated
by the collection of open sets.

DEFINITION: STANDARD MEASURABLE SPACE.
A standard measurable space (or standard Borel space) (X, B) is a Polish space
X equipped with its collection of Borel sets B = B(X).

DEFINITION: MEASURABLE FUNCTION.
Let X, X’ be Polish spaces. A function f : X — X' is called (Borel) measurable
if f71B(X') C B(X).

Given a standard measurable space (X, B), we consider the collection of prob-
ability measures defined on (X, B)

P=P(X,B):={p: B—[0,1] : p a probability measure}.

Let B(P) be the smallest o-algebra of subsets of P such that for each A € B, the
function p — p(A) is measurable (P — [0,1]). It follows that (P,B(P)) is also a
standard measurable space.

To see this, choose a compact topology on X generating B, then with respect to
the corresponding vague topology (inherited from the weak * topology on C(X)*):
P is compact metric space and B(P) is its collection of Borel sets.

DEFINITION: STANDARD MEASURE SPACE.
A standard measure space is a measure space (X, B, m) where (X, B) is a stan-
dard measurable space.

We sometimes suppress the o-algebra B in these notations, denoting the stan-
dard measurable space (X,B(X)) by X, and the standard measure space
(X,B(X),m) by (X, m).

A standard probability space is a probability space which is a standard measure
space. A measure space is called pure if it is either non-atomic or purely atomic,

1



2 1. NON-SINGULAR TRANSFORMATIONS

and symmetric if it is either non-atomic or purely atomic with all atoms having the
same measure.

The first result we review simplifies the treatment of measurable functions on
standard spaces.

1.0.0 LUSIN’S THEOREM.

Suppose that (X, B,m) is a standard probability space, that X' is a Polish space,
and that f : X — X' is measurable, then ¥V € > 0, 3 a compact set K C X with
m(K) > 1 — €, and such that f is continuous on K.

A Polish space is either finite, countable or has the cardinality of the continuum.
The next result shows that there is essentially only one standard measurable space
with the cardinality of the continuum.

1.0.1 KURATOWSKI’'S ISOMORPHISM THEOREM.

Suppose that (X, B) and (X', B’) are standard measurable spaces with the same
cardinality, then (X,B) and (X',B') are isomorphic in the sense that there is a
bijection m : X — X' such that 1B =B'.

DEFINITION: ANALYTIC SET. Let (X, B) be a standard measurable space. A
subset A C X is called analytic if 3 another standard measurable space (X', B’), a
measurable function f : X’ — X and a set A’ € B’ such that fA' = A.

Clearly Borel sets are analytic.

It was shown by Souslin [So] that in any uncountable standard measurable
space there are analytic sets which are not Borel. This fact (unknown to Lebesgue)
contributes some subtlety to the subject and we shall therefore need the following
three results.

1.0.2 UNIVERSAL MEASURABILITY THEOREM. Let (X,B,m) be a standard

measure space.
If A C X is analytic, then 3 B, D € B such that AAB C D and m(D) = 0.

1.0.3 MEASURABLE IMAGE THEOREM. Suppose that (X,B) and (X',B') are
standard measurable spaces and that f : X — X' is measurable and 1-1, then

f(A)eB Vv AeB.

1.0.4 ANALYTIC SECTION THEOREM. Suppose that (X,B) and (X',B') are
standard measurable spaces and that f : X — X' is measurable, then 3 g: X' — X
which is analytically measurable (in the sense that g~ ' A is an analytic subset of X'
whenever A € B) such that f og = Idx:.

Let (X, B) be standard.

Given A € B,let BN A :={B € B: B C A}. There is a Polish topology on
A so that Id: A — X is continuous. It follows from the measurable image theorem
that BN A = B(A), whence (A, BN A) is a standard measurable space.

Now let (X,B,m) be a standard measure space and let A € By := {B € B :
m(A) > 0}. The induced measure space is (A, BN A,m|4) (where BN A := {B €
B: B C A} and m|s(B) := m(B N A)) and this is standard by the above.

Here, and throughout, we’ll denote, for a collection C C B of measurable sets,
C,={CeC:m(C)>0},and,for ACX,CNA={C€eC:Cc A}.
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DEFINITION: MEASURABLE MAP, AND INVERTIBLE MAP.

Let (X,B,m) and (X', B',m’) be measure spaces, and let A€ B, A’ € B'.

The map f : A — A’ is measurable if f~1C € BVYC € B'.

The measurable map f : A — A’ is called invertibleon Be BN Aif fis1—1
on B, fBe€ B, and f~!: fB — B is measurable.

DEFINITION: NON-SINGULAR MAP, AND MEASURE PRESERVING MAP. The
measurable map f : A — A’ is called (two-sided) non-singular if for C € B' N A,
m(f~1C) = 0 iff m'(C) = 0; and measure preserving if m(f~'C) = m/(C) for
cCeBNA.

If f: A— A’is measurable, invertible, and non-singular on B € BN A, then
by the Radon-Nikodym theorem, 3 ¢ € L'(A), such that m(fC) = [, ¢dm for
C € B'N A’. The function ¢ is called the Radon-Nikodym derivative of f on A
and is denoted by f' = ddl:li. Evidently f : A — A’ is measurable, invertible, and
non-singular is measure preserving iff f' = 1.

The chain rule for Radon-Nikodym derivatives applies. If f : A — B and
g : B — C are measurable, invertible, and non-singular on A and B (respectively),
then go f : A — C is measurable, invertible, and non-singular on A and (go f) =
goff.

In case f : B — fB is measurable, invertible, and non-singular, then f~1 :
fB — B is non-singular and f~V = #

EXAMPLE. Let (X,B,m) be the unit interval equipped with Borel sets and
Lebesgue measure, and suppose that 7" : X — X is a strictly increasing homeomor-
phism; then T': X — X is invertible.

We have that T is nonsingular iff both T and T~! are absolutely continuous

functions, and 7" := 22T = | DT| where DT (z) := lims_.o ——L-J—ZT(”’th_T 2.

DEFINITION: FACTOR MEASURE SPACE, AND FACTOR MAP.

The measure space (X', B',m’) is a factor space of (X, B, m) if there are subsets
Y € B, Y’ € B such that m(X \Y) =m/(X’\Y’) = 0, and a measurable, measure
preserving map 7 : Y — Y’. This map is called a factor map and we sometimes
denote it m: X — X',

In the same situation, we sometimes call the measure space (X,B,m) an ez-
tension of (X', B',m').

DEFINITION: CARTESIAN PRODUCT SPACE. If (Q, F,p) is a probability space,
then the Cartesian product space (X x Q,B® F,m x p) is always an extension of

(X,B,m). Here BQ F := o(B x F) and (m x p)(A x B) := m(A)p(B).

DEFINITION: ISOMORPHISM OF MEASURE SPACES.

An isomorphism between the measure spaces (X, B, m) and (X', B, m’) is an in-
vertible factor map 7 : X — X’, and the measure spaces (X, B, m) and (X', B',m’)
are tsomorphic if there is an isomorphism between them.

REMARK: INON-ATOMIC STANDARD SPACES.

Any non-atomic standard probability space is isomorphic with the unit interval
[0,1] C R equipped with its Borel sets B and Lebesgue measure A. This is proven
using theorem 1.0.1 to obtain isomorphism with the unit interval [0, 1] C R equipped
with its Borel sets and some non-atomic probability p; and then using A(J) = p(J)
for intervals J C I where 7(z) := p([0,z]) to obtain the final isomorphism with

([0,1], B, \).
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This can be used to show that any non-atomic, o-finite standard measure space
whose total mass is infinite is isomorphic to R equipped with its Borel sets and
Lebesgue measure.

DEFINITION: COMPLETION OF A MEASURE SPACE.
Given a measure space (X, B,m), the completion of B (with respect to m) is
the collection (a o-algebra)

B :={AC X: 3 B,D € B such that AAB C D, m(D) = 0}.

The measure space (X, B,,,m) is also known as the completion of (X,B,m). A
measure space (X, B,m) is complete if B,, = B.

DEFINITION: SEPARABLE MEASURE SPACE.

A measure space (X, B, m) is separable if 3 a countable collection .4 C B such
that o(A) = B mod m (that is: mm = B,,) which separates points in the
sense that

la(z) =1a(yy VA€ A = z=y.

DEFINITION: LEBESGUE SPACE.
A Lebesgue space is a complete measure space which is isomorphic to the com-
pletion of a standard measure space.

A Lebesgue space (X,B,m) is evidently separable and complete, and there
is a subset Xo € B, m(X \ Xo) = 0 endowed with a Polish topology such that
BN Xy = B(Xo),,-

Let (X,C,m) be separable and complete with A = {A, }nen as the countable
generating collection. Consider the compact metric space Q := {0, 1}V, and define
m: X — Q by m(x), := 14, (z). Evidently, 7 : X — 7(X)) is 1-1, and measurable.
In fact if p:=mon~!: B(Q) — [0,00), then 7 is an isomorphism of the measure
spaces (X, B,m) and (7(X), B(Q2) N 7(X),, p).

As shown in ([Rol], [Rudo]), the space (X,C,m) is a Lebesgue space if and
only if m(X) € 73(_@#. To see this, if 7(X) € B-(_Q_)#, then 3 Qy € B(2) such
that Qo C 7(X) and p() = 1 with the consequence that (X, C,m) is isomorphic

with (Qo, B(S20m),,, ) - a Lebesgue space. Conversely, if (X,C,m) is a Lebesgue
space then 3 X, € B, m(Xo) = 1 such that X is Polish, C N X, = B(Xj),,, and
7 : Xo — {2 is Borel measurable. By the universal measurability theorem (or by
Lusin’s theorem) m(Xo) € B(f2), and since u(m(Xo)) = 1, m(Xo) C 7(X) we have
m(X) € B(Q2),.

This shows that 3 complete, separable measure spaces which are not Lebesgue
spaces, for example (X,C,m) where X C [0,1] has full outer measure and zero

inner measure, C := B(([0,1]),, N X and m is outer measure.

DEFINITION: MEASURE ALGEBRA. Let (X,B,m) be a measure space, and
define the relation ~ on B by A ~ B if m(AAB) = 0, then (see [Halm1]) ~ is an
equivalence relation,

An,AL€EB, A, ~ AL, (n>1) =

AS ~ A, GA,m GA;, & ﬁAn~ ﬁA;.
n=1 n=1 n=1 n=1
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The collection of equivalence classes
S(X,B,m):={{A'eB: A~ A}: AeB}
is called the measure algebra of (X,B,m).

DEFINITION: MEASURE ALGEBRA CONJUGACY. A measure algebra conju-
gacy between the measure spaces (X,B,m) and (X',B’,m’) is a bijection 7 :

S(X,B,m) — S(X',B,m') such that (A \ B) = n(A) \ n(B), ”(U:o:1 An) -
U:.ozl m(A,) and m’' o = m.

Isomorphic measure spaces are measure algebra conjugate, a measure algebra
conjugacy being induced by an isomorphism.

Conversely, any measure algebra conjugacy between Lebesgue spaces induces
an isomorphism ([Rol], [Rudo]).

All separable, non-atomic probability spaces are measure algebra conjugate
([Halm1]), and every separable measure space is measure algebra conjugate to a
standard one ([Fu]).

A non-singular- (or measure preserving-) transformation is a non-singular- (or
measure preserving-) map mod m. The next definitions make this precise.

DEFINITION: NON-SINGULAR TRANSFORMATION AND MEASURE PRESERVING
TRANSFORMATION.

A non-singular transformation T of X is a measurable, non-singular map T :
Y - Y where Y € Band m(X \Y) =0.

A measure preserving transformation T of X is a measurable, measure preserv-
ingmap7T:Y — Y where Y € Band m(X \Y) =0.

1.0.5 PROPOSITION. Suppose that (X,B,m) is standard, Y € B, m(X\Y) =0
and T : Y — X is a non-singular map, then T' is a non-singular transformation of
X.

PROOF. By the universal measurability theorem, TY € B,,. Also,
0=m(X\Y) 2 m(X\TITY) =m(T"}(X \TY))

whence m(X \ TY) = 0 since T : Y — X is non-singular.

Choose Z € B, Z Cc TY, m(X \ Z) = 0 and set U := (|-, T~"Z, then
TU =ZNUand TU € B, TU CU,and T : U — TU is a nonsingular map.

By non-singularity of 7: Y — X, m(X \ T "Z) =0 V n > 0 whence
m(X\U)=m(X\TU) =m(U\TU) = 0;
T :U — U is a non-singular map,

and T is a non-singular transformation of X. O

EXAMPLE 1.0.1, A NON-SINGULAR TRANSFORMATION. Let (X,B,m) be the
unit interval equipped with Borel sets and Lebesgue measure, and let {4; : j > 1}
be a partition of X into open intervals (i.e. the {A; : j > 1} are disjoint open
intervals, and X = [J;Z, A; mod m).

Given a collection {B; : j > 1} of open intervals, define for j > 1, T : A; — B,
to be an absolutely continuous bijection whose inverse is also absolutely continuous
(e.g. the increasing linear bijection).
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Note that T is only defined on U = |J;2, A;. Clearly T: U — TU = U;, B;
is measurable, and non-singular. Therefore by proposition 1.0.5, 7" is a non-singular
transformation of X iff

TU=|JBj=X modm.

Jj=1

If T is a non-singular transformation of a o-finite measure space (X, B, m), and
p is another measure on (X, B) equivalent to m (denoted p ~ m) in the sense that

p(4) =0 & m(4)=0,

then T is a non-singular transformation of (X, B, p).
Thus, a non-singular transformation of a o-finite measure space is actually a
non-singular transformation of a probability space.

EXAMPLE 1.0.2, A PROBABILITY PRESERVING TRANSFORMATION. Let X =
[0,1]Y and let B be the o-algebra generated by cylinder sets of form [A, ..., A,] :=
{z € X:z; € Aj, 1 <j < n}, where A;,...,A, € B(I) (the Borel subsets of
I =10,1]), and let the shift T : X — X be defined by (T'z), = z,+1. Note that X
is a compact metric space when equipped with the product topology, and B is its
collection of Borel sets.

Define using Kolmogorov's existence theorem ([Kol], [Part]) a probability
m: B(X) — [0,1] by

m([A1, ..., An]) = [] 14| (A1,...,An € B(I))

k=1
where |A| denotes the Lebesgue measure of A € B(I)). Evidently,
m(T~ A1, ..., An)) = m([I, Ay, ..., An)) = m([A1, ..., An]) (A4,..., A, € B(I))

whence
moT ! =m.

The measure space X represents the set of (possibly random)
”configurations” of some system, and T represents the change un-
der ”passage of time”. The non-singularity of T' reflects the as-
sumed property of the system that configuration sets that are im-
possible sometimes are always impossible. A probability preserving
transformation would describe a system in a ”steady state”, where
configuration sets occur with the same likelihood at all times.

One might conjecture that each non-singular transformation
is obtained by starting with a measure preserving transformation,
and then ”passing” to some equivalent measure, however we’ll see
in §1.2 that this is not the case.
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DEFINITION: INVERTIBLE, AND LOCALLY INVERTIBLE NON-SINGULAR TRANS-
FORMATIONS.

The non-singular transformation T' of X is called invertible if T is invertible
on some Y € B with m(X \Y) = 0, and locally invertible if there is are disjoint
measurable sets {A; : j > 1} such that m(X \U,>, 4;) =0, and T is invertible on
each A;.

The non-singular transformation in example 1.0.1 is locally invertible (being
invertible on each A;). It is invertible iff {B; : j > 1} is a partition of X mod m.

Evidently, if T is a locally invertible, non-singular transformation of X, then T’
is positively non-singular in the sense that

AeB, m(A) =0 = m(TA)=0.

The probability preserving transformation 7" in example 1.0.2 does not have this
property. If C € B(I) is a non-empty set of Lebesgue measure zero, and D := [C],
then m(D) =0 and TD = X.

A non-singular transformation 7' of a standard probability space (X, B,m) is
locally invertible iff 7-'{z} is countable for m-a.e. z € X.

Clearly if T is locally invertible, then 7-'{x} is countable ¥ z € X. The
converse follows from the

1.0.6 LOCAL INVERTIBILITY LEMMA.

Let (X,B,m) and (Y,C, n) be standard probability spaces, and suppose that 7 :
X — Y is a measurable, measure preserving map with 7~ '{z} countable ¥ = € X,
then 3 a countable, measurable partition o of X such that 7 : a — Ta is non-
singular and invertible V a € a.

We prove the local invertibility lemma using two results which will also be
important in the sequel:
the exhaustion lemma 1.0.7; and the disintegration theorem 1.0.8.

DERINITION: HEREDITARY COLLECTION, MEASURABLE UNION.
Let (X, B, m) be a measure space. A collection ) C B is called hereditary if

Ce®H, BCcC, BeB — BeS$.

A set U € B is said to cover the hereditary collection $ if A € U mod
mVY A€ S$.

A hereditary collection $§ C B is said to saturate A € Bif V B € B, B C
A, m(B)>0,3Ce$H, mC)>0, CCB.

The set U € B is called a measurable union of the hereditary collection $ C B
if it both covers, and is saturated by ).

There is no more than one measurable union of a hereditary collection. To see
this, let U, U’ € B be measurable unions of the hereditary collection ), and suppose
that m(U \ U’) > 0, then (since $ saturates U) 3 C € $, m(C) >0, C c U\ U’
whence (since U’ covers ) C C U’ mod m contradicting m(C) > 0. This shows
that U C U’ mod m and by symmetry, U = U’ mod m.

The exhaustion lemma (below) shows existence of measurable unions.

1.0.7 EXHAUSTION LEMMA. Let (X, B, m) be a probability space and let $H C B
be hereditary, then 3 Ay, As,--- € $ disjoint such that U(H) = ;- A, is a
measurable union of .
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PROOF.
Let
€1 :=sup{m(A): A€ H},
choose A; € $ such that m(A;) > %, and let
Let
e :=sup{m(A): A€ H, AnA, =0},
choose Ay € ) such that A, N Ay =0 and m(Az) > %.
Continuing the process, we obtain a sequence of disjoint {A4,}52, C Hand €, |
such that
€n =sup{m(A): A€H, ANA,=0Yk<n}, m(4,)> %"
Clearly Y o €, <23 07 1m(A ) < 2, whence €, — 0.
We claim that U := [J;, A, = X is a measurable union of . Evidently
saturates U. To see that U covers §) assume otherwise, then 3 A € , m(A) > 0
such that AN A, =0 Vn > 1 whence m(A) < ¢, — 0 contradicting m(A) > 0. O

We denote the measurable union of the hereditary collection $) by U($)).

1.0.8 DISINTEGRATION THEOREM. Let (X,B,m), (Y,C,u) be standard proba-
bility spaces and suppose that m : X — Y is a measurable, and m = pon~!, then
Y, € C such that u(Yy) = 1 and 3 a measurable function y — m, (Yo — P(X,B))
such that my(r~'{y}) =1V y €Y, and

mlAfiz-LE) = / my(A)du(y) ¥ A € B, B eC.
B

The measure m,, is called the fibre measure over 7~ {y}.

PROOF. For each f € L!'(m),, define a measure v4 on C by

v (C) = /‘mfdm.

The measure vy is p-absolutely continuous and so, by the Radon-Nikodym theorem
there is a measurable function E(f|r) = %f € L'(w), such that [, E(f|r)du =
frlc fdm.
Set
uy(A) = E(1a|m)(y),
then
/Cuy(A)d,u(y) =m(AN7®"!C) VAeB, CeC.

Also, if Ay, ... € B are disjoint, then

uy (| Ak) =D uy(Ar),
k=1

k=1

for m-a.e. y €Y.

Since X is standard and uncountable, we may assume by Kuratowski’s iso-
morphism theorem that X = {0,1}". Let .A denote the algebra of finite unions of
cylinder sets in 2, then A is countable and generates B, and each set in A is both
open and compact.
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Since A is countable, there is a set Yy = Y mod m such that

w40 = 30y (4) Wy € Yo
k=1

k=1

whenever A, ..., A,, € A are disjoint.
For y € Yy and E C X define

my(E) = 1nf{Zuy(An) UA IS E A; Ak

n=1 n=1

By Caratheodory’s theorem, m, : B — [0, 1] is a measure. Since sets in A are both
compact and open, we have that u,(A) =m,(A) V A € A.
Clearly y — my(A) is measurable (Y — [0,1]) V A € A. A monotone class
argument shows measurability V A € B and that m,(A) = u,(A) for a.e. y € Yp.
To see that m,(m~'{y}) =1 for a.e. y €Y, note first that for C € C fixed,

/ my (1 C)du(y) = / my(X)du(y) = u(C)

whence m, (7~ 1C) =1 for a.e. y € C.

Now fix a metric on Y and let 3, T be an increasing sequence of countable,
measurable partitions on Y such that sup,.; diamb — 0 as n — oo. For y €
Y, n > 1 write y € b,(y) € B,. Choose Y7 € CNYy, u(Yr) =1 such that

my(r~ b)) =1VyebnYy, b€ B, n>1.
We now have for y € Y; that
my (17 H{y}) — my(r ba(y)) =

REMARK: FIBRE EXPECTATIONS AND CONDITIONAL EXPECTATIONS.

Let (X,B,m), (Y,C,u) be standard probability spaces and suppose that 7 :
X — Y is measurable, and m = pon !, with fibre measures y — m, € P(r~'{y}).

If f: X — R is bounded and measurable, the function y — [ « fdm,, is called
the fibre expectation of f on 7~ '{y}. Evidently [, fdm, = E(f|r)(y) (as defined
above) for p-a.e. y € Y. It follows that the conditional expectation of f with
respect to 7~1C is given by

E(flrm~'C) = E(f]r)om m — a.e. on X.

PROOF OF THE LOCAL INVERTIBILITY LEMMA.

Let y — m, € P(n'{y}) (y € Yo) be the fibre measures on 7~ !{y} as in the
disintegration theorem.

Since my (7~ {y}) =1 Vy €Yy, and 7~ {y} is countable V y € Y;, the prob-
abilities m, (y € Yy) are purely atomic, and we may assume (possibly discarding
a null set) that m,,({z}) >0V z € X.

Call a set A € B a w-section if tA € Band m: A — 7wA is measurable, non-
singular and invertible, and call a section A € B onto if TA =Y mod u. Denote
the collection of 7-sections by &. It is enough to show that there is a partition of
X into w-sections.



10 1. NON-SINGULAR TRANSFORMATIONS

We claim that the hereditary collection & saturates X. To see this let B €
B, m(B) > 0, then by the universal measurability theorem
3CeC, CcwB, u(C) > 0 and by the analytic section theorem 3 f : C — B
analytically measurable such that mo f = Id|c. It follows that f(C) = BNn~1C =:
A and that A € &. To see that m(A) > 0,

m(A) = /Y my(A)dpu(y) = /C my (A)dp(y) = /C my({f @)}du(y) > 0

because x£(C) > 0 and m.,({z}) >0V z € X.
The result now follows from the exhaustion lemma. O

If T is a non-singular transformation of (X,B,m), and A € B, m(A4) >
0, T-'A = A, then T is a non-singular transformation of (4,BN A,m|4). The
concept of irreducibility for non-singular transformations is called ergodicity.

DEFINITION: ERGODIC.
A non-singular transformation T is called ergodic if A€ B, T"'A = A mod m
implies m(A) = 0 or m(A°) = 0.

This condition actually implies a stronger condition.

1.0.9 PROPOSITION.  Suppose that T' is an ergodic non-singular transforma-
tion. If f : X — R is measurable, and foT = f a.e., then

Jde € R such that f =c a.e.

PROOF. For ¢ € R the set [f < ¢| is T-invariant, and hence [f < c] =0, X
mod m. If
co=inf{ceR: [f<c =X modm},
then
1
[f =col =[f < o] \ U[fSCO_E]ZX mod m.

n>1

DEFINITION: FACTOR TRANSFORMATION, ISOMORPHISM.

The non-singular transformation 7" of (X', B, m') is a factor of the non-singular
transformation T of (X, B, m) if there are sets Y € B, Y’ € B’ such that m(X\Y) =
m/(X'\Y')=0,TY CY, T'Y' C Y’; and there is a measurable, measure preserving
maprm:Y - Y sothat roT' =TomonY.

The map 7 : Y — Y’ is called a factor map and is sometimes denoted 7 : T —
T.

An isomorphism between the non-singular transformations 7" of (X, B, m) and
T of (X',B',m') is a factor map m : T — T’ which is invertible in the sense
that there are sets Y € B, Y’ € B’ such that m(X \Y) = m/(X' \ Y’) = 0,
TY CY, T'Y' CY’; and such that 7 : Y — Y” is invertible.

The non-singular transformations 7' of (X,B,m) and 7" of (X’,B',m') are
tsomorphic if is an isomorphism between them.



