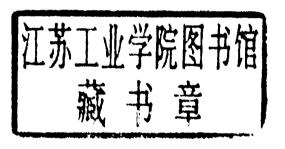


HANDBOOK OF ANALYTICAL SEPARATIONS

SERIES EDITOR: ROGER M. SMITH

VOLUME 4
BIOANALYTICAL SEPARATIONS


EDITED BY
IAN D. WILSON

Bioanalytical Separations

Edited by

IAN D. WILSON

AstraZeneca Macclesfield, U.K.

2003

ELSEVIER

Amsterdam – Boston – Heidelberg – London – New York – Oxford – Paris San Diego – San Francisco – Singapore – Sydney – Tokyo ELSEVIER SCIENCE B.V.

Sara Burgerhartstraat 25

P.O. Box 211, 1000 AE Amsterdam, The Netherlands

© 2003 Elsevier Science B.V. All rights reserved.

This work is protected under copyright by Elsevier Science, and the following terms and conditions apply to its use:

Photocopying

Single photocopies of single chapters may be made for personal use as allowed by national copyright laws. Permission of the Publisher and payment of a fee is required for all other photocopying, including multiple or systematic copying, copying for advertising or promotional purposes, resale, and all forms of document delivery. Special rates are available for educational institutions that wish to make photocopies for non-profit educational classroom use.

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: permissions@elsevier.com. You may also complete your request on-line via the Elsevier Science homepage (http://www.elsevier.com), by selecting 'Customer Support' and then 'Obtaining Permissions'.

In the USA, users may clear permissions and make payments through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA; phone: (+1) (978) 7508400, fax: (+1) (978) 7504744, and in the UK through the Copyright Licensing Agency Rapid Clearance Service (CLARCS), 90 Tottenham Court Road, London W1P 0LP, UK; phone: (+44) 207 631 5555; fax: (+44) 207 631 5500. Other countries may have a local reprographic rights agency for payments.

Derivative Works

Tables of contents may be reproduced for internal circulation, but permission of Elsevier Science is required for external resale or distribution of such material.

Permission of the Publisher is required for all other derivative works, including compilations and translations.

Electronic Storage or Usage

Permission of the Publisher is required to store or use electronically any material contained in this work, including any chapter or part of a chapter.

Except as outlined above, no part of this work may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of the Publisher.

Address permissions requests to: Elsevier's Science & Technology Rights Department, at the phone, fax and e-mail addresses noted above.

Notice

No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made.

First edition 2003

Library of Congress Cataloging in Publication Data

A catalog record from the Library of Congress has been applied for.

British Library Cataloguing in Publication Data

A catalogue record from the British Library has been applied for.

ISBN: 0-444-50658-6

© The paper used in this publication meets the requirements of ANSI/NISO Z39.48-1992 (Permanence of Paper).

Printed in The Netherlands.

Preface

"Nothing tends so much as to the advancement of knowledge, as the application of a new instrument. The native intellectual powers of men in different times are not so much the causes of the different success of their labour, as the peculiar nature of the means and artificial resources in their possession"

Sir Humphrey Davy, 1840

In the context of this volume "bioanalysis" has a very specific meaning. It is the analysis of drugs and their metabolites in biological fluids. There is probably no field which has benefited from the introduction of new instrumentation and ways of analysing samples as much as this type of analysis. Today the laboratories of pharmaceutical companies, and the contract houses that serve them, are filled with sophisticated HPLC-MSMS systems devoted to the analysis of compounds at concentrations unachievable by previous generations of analysts. Thus, detection and quantification at concentrations below 1 nanogram per millilitre are now commonplace, and the pace of innovation seems still to be increasing. The bulk of these advances in bioanalysis have resulted from the development and implementation of robust and sensitive HPLC-MS interfaces. The high capital cost of much of this instrumentation has also led to increasing pressures on improving the efficiency of method development and instrument usage.

The application of these new HPLC-MS-based methods is covered in this volume in chapters on forensic bioanalysis and the role of this way of analysis in drug discovery. However, despite the success of such devices, all of the problems of bioanalysis have not been solved by their introduction, and there is a continuing need for sustained innovation. In particular the low concentrations, and the presence of large amounts of endogenous interferences in biological fluids and tissues, has meant that sample preparation techniques remain of prime importance to the bioanalyst seeking the highest sensitivities and specificity. This activity is reflected in several contributions on the theme of sample preparation. Chromatography is still important, even when the detector is as sensitive and specific as the mass spectrometer is claimed to be, and new phases of the types described in this volume, providing chiral separations or improvements in conventional chromatography, are always needed. In addition the linking of spectrometers other than mass spectrometers has been an important area of innovation, and this is reflected in contributions on HPLC-NMR and HPLC-ICPMS.

Finally, it has always to be remembered that, because of the importance of bioanalytical data in the generation of regulatory submissions, such work is subject to

vi Preface

very precise and challenging regulatory control. The needs of the regulators for bioanalytical separations are therefore also covered in the final contribution to the volume.

I would like to thank all of the authors who have contributed to this work for their time, patience and expertise. The collected wisdom and scholarship that these chapters reflect have been a source of considerable pleasure and education to me as I have put the volume together.

Ian D. Wilson
AstraZeneca
Macclesfield, U.K.

Contents

Chapter 1.		New developments in integrated sample preparation for bioanalysis		
		M.W.J.	van Hout, H.A.G. Niederländer, R.A. de Zeeuw and	
			Jong	
2			y-based extraction techniques	
	1.2.1	_	hase extraction – gas chromatography	
		1.2.1.1		
		1.2.1.2	Applications of SPE-GC	
		1.2.1.3	Remarks regarding the applicability of SPE-GC	
	1.2.2		chromatography – gas chromatography	
		1.2.2.1	General aspects of LC–GC	
		1.2.2.2	Applications of RPLC–GC	
		1.2.2.3	Remarks regarding the applicability of RPLC-GC	
	1.2.3		nt-flow chromatography	
		1.2.3.1	General aspects of TFC	
		1.2.3.2	Applications of TFC	
		1.2.3.3	Remarks regarding the applicability of TFC	
3			d extraction techniques	
	1.3.1	_	hase microextraction	
		1.3.1.1	General aspects of SPME	
		1.3.1.2	Applications of SPME–LC	
		1.3.1.3	Applications of SPME–MS	
		1.3.1.4	Remarks regarding the applicability of SPME	
	1.3.2		ane-based sample preparation techniques	
		1.3.2.1	General aspects of membrane-based techniques	
		1.3.2.2	Porous membrane techniques	
		1.3.2.3	Non-porous membrane techniques	
		1.3.2.4	Remarks regarding the applicability of membrane-based	
			techniques	
4	Conclu	iding ren	narks	
			ents	
.6	List of	abbrevia	ations	
7	Refere	nces		

viii Contents

Cha	pter 2.	Solid-phase extraction on molecularly imprinted polymers
		Lars I. Andersson and Leif Schweitz
2.1	Introd	uction
2.2	Imprir	nt preparation
	2.2.1	Removal of template molecules
	2.2.2	Choice of template
	2.2.3	Format of polymer
2.3	MISPI	E method development strategies
	2.3.1	Non-specific adsorption
	2.3.2	Solvent switch
	2.3.3	Elution
	2.3.4	Template bleeding
2.4	Solid-	phase extraction applications
	2.4.1	On-line extraction systems
	2.4.2	Extraction systems with direct detection 63
	2.4.3	Off-line extraction systems
2.5		usions
2.6		ences
2.0	1101010	
~-		
Cha	pter 3.	Techniques for sample preparation using solid-phase
		extraction
		Uwe Dieter Neue, Claude R. Mallet, Ziling Lu,
2.1		Yung-Fong Cheng and Jeffrey R. Mazzeo
3.1		uction
3.2		ption of the sorbents
3.3		ne Methods
	3.3.1	1-D Reversed-phase solid phase extraction of biological samples . 76
	3.3.2	2-D Reversed-phase solid phase extraction of biological samples . 77
3.4		exchange solid phase extraction
3.5		-exchange solid phase extraction
3.6		e methods
3.7		usions
3.8	Refere	ences
Cha	pter 4.	Turbulent flow chromatography in bioanalysis
		Tony Edge
4.1	Introd	uction
4.2	Backg	round
	4.2.1	Band broadening processes
	4.2.2	Theoretical interpretation
	4.2.3	Description of the van Deemter constants
		4.2.3.1 A term
		4.2.3.2 B term
		4.2.3.3 C term

Contents

	4.2.4	Development of turbulent flow chromatography model 97
		4.2.4.1 Definition of turbulent flow
		4.2.4.2 Definition of turbulence
	4.2.5	Overcoming the problem of pressure drop
	4.2.6	Practical investigation
	4.2.7	Mass transfer into pores
	4.2.8	Combining mass transfer and pressure drop
4.3	Applic	cations of turbulent flow chromatography
	4.3.1	Applying the model
		4.3.1.1 Single valve method
		4.3.1.2 Quick elute mode
		4.3.1.3 Focus mode
	4.3.2	Application areas
		4.3.2.1 Drug metabolism and pharmacokinetic (DMPK) studies . 115
		4.3.2.2 Forensic applications
	4.3.3	Practical issues in bioanalytical TFC
		4.3.3.1 Carryover
		4.3.3.2 Pressure build up
		4.3.3.3 Protein binding
	4.3.4	Environmental applications of TFC
	4.3.5	Capillary turboflow chromatography
4.4	Conclu	asions
4.5		
Cha	pter 5.	Chiral bioanalysis
		D.M. Wallworth and J.T. Lee
5.1		action
	5.1.1	Scope and aim
	5.1.2	The mechanism of chiral recognition and choice of CSP 130
	5.1.3	Mobile phase types
	5.1.4	Direct versus indirect chiral separations
	5.1.5	Achiral-chiral column switching techniques
	5.1.6	HPLC-MS
	5.1.7	Temperature
	5.1.8	Validation
	5.1.9	Gas Liquid chromatography (GLC)
	5.1.10	Capillary electrophoresis (CE)
	5.1.11	Supercritical fluid chromatography (SFC)
5.2		stationary phases
	5.2.1	Macromolecular or polymeric CSPs
	5.2.2	Protein phases
	5.2.3	Cyclodextrins
	5.2.4	Macrocyclic antibiotics
	5.2.5	π-Complex CSPs 145

x Contents

5.3	Applica	tions of chiral HPLC in bioanalysis	7
	5.3.1	β-Adrenergic agonists	7
	5.3.2	β-Adrenergic blockers)
	5.3.3	Alcohol deterrent drugs	3
	5.3.4	Amino acids	3
	5.3.5	Analgesic drugs (narcotics)	5
	5.3.6	Analgesic drugs (non-narcotic)	5
	5.3.7	Anesthetic drugs (intravenous)	7
	5.3.8	Anorexic drugs	7
	5.3.9	Anthelmintic agents	7
	5.3.10	Antiarrhythmic agents	3
	5.3.11	Antibacterial drugs)
	5.3.12	Anticoagulants)
	5.3.13	Anticonvulsants	l
	5.3.14	Antidepressants	l
	5.3.15	Antiemetics	1
	5.3.16	Antifungals	1
	5.3.17	Antihistamines	1
	5.3.18	Antihyperlipoproteinemics	5
	5.3.19	Antihypertensives	5
	5.3.20	Antiinflammatory drugs	5
	5.3.21	Antiischaemic drugs)
	5.3.22	Antineoplastics)
	5.3.23	Antiparkinsonian agents)
	5.3.24	Antipsychotic agents	l
	5.3.25	Antivirals	l
	5.3.26	Antiulcerative drugs	l
	5.3.27	Anxiolytics	2
	5.3.28	Biochemical markers	2
	5.3.29	Calcium channel blockers	3
	5.3.30	Cholinesterase inhibitors	
	5.3.31	CNS Stimulants	
	5.3.32	Gastroprokinetic agents	
	5.3.33	Hallucinogenics	
	5.3.34	HIV protease inhibitors	
	5.3.35	Natriuretics	
	5.3.36	Leukotriene antagonists	
	5.3.37	Mucolytics	
	5.3.38	Radiosensitisers	
	5.3.39	Sedative/hypnotics	
	5.3.40	Serotonin uptake inhibitors	
	5.3.41	Thyromimetic agents	
	5.3.42	Vasodilators (cerebral)	
	5.3.43	Vitamins	
	J.J.TJ	**************************************	

Contents xi

5.4 5.5	Convincional		180 180
	pter 6.	Method development in reversed-phase chromatography	
Ciia	pter o.	Uwe Dieter Neue, Eric S. Grumbach, Jeff R. Mazzeo,	
			185
6.1	Introdu		185
0.1	6.2.1	Tools for the measurement of selectivity differences and the	
	0.2.1		188
	6.2.2	quality of a sopramination	192
6.3		d development strategy	200
6.4			213
6.5			214
0.5	Kelele	thees	J. 1
Cha	pter 7.	Immobilized enzyme reactors in liquid chromatography:	
		On-line bioreactors for use in synthesis and drug discovery	
		1 1011111111 11111111 Bar in many 08	215
7.1			215
7.2		on the state of th	216
	7.2.1	ories approximation of the second of the sec	217
	7.2.2	2	217
	7.2.3.	211000 01 11111110011111111111111111111	218
	7.2.4		219
	7.2.5	——————————————————————————————————————	220
	7.2.6	1	222
7.3	On-lin	·• ···································	222
	7.3.1	Biochromatography	222
	7.3.2	On-line IMERs	224
		7.3.2.1 On-line Michaelis–Menten kinetics using an LC–IMER	
		format	225
		7.3.2.2 Application of IMERs to on-line enantiospecific	
		* *	226
		7.3.2.3 On-Line study of complex biological systems using	
			228
7.4	Immo		233
7.5		· · · · · · · · · · · · · · · · · · ·	233
Cha	pter 8.	Use of liquid chromatography-mass spectrometry in acute human toxicology	
			235
8.1	Introd	1110.208000.	235 235
8.2			235 236
0.2			236 236
	8.2.1		٥٥٥
	8.2.2	Use of different ionization sources. Use of single- and triple	240
	0.0.0	1	240 240
	8.2.3	Use of various mass analyzers	44 0

xii	i Co	ontents

8.3	Applio	cations of LC–MS in clinical toxicological analysis	240		
	8.3.1	Illicit drugs	242		
		8.3.1.1 Opiate agonists	242		
		8.3.1.2 Amphetamines	246		
		8.3.1.3 Cocaine	248		
		8.3.1.4 Cannabinoids	249		
		8.3.1.5 LSD	249		
	8.3.2		251		
			251		
			253		
			254		
			255		
			255		
			257		
			257		
			260		
			260		
	8.3.3		261		
			261		
			261		
			263		
	8.3.4		263		
			263		
		8.3.4.2 Group screening for substances belonging to the same			
		therapeutic class	265		
8.4	Concl		266		
8.5			267		
8.6	Refere	ences	267		
Cha	pter 9.	HPLC-MS(MS) for bioanalysis in drug discovery and			
Ciia	ptci 7.	development			
			271		
9.1	Introd		271		
9.2			272		
·· -	9.2.1	6	273		
	9.2.2		277		
	> . _		277		
			 278		
		r	278		
	9.2.3		280		
9.3			281		
7.5	9.3.1 Sample pooling				
	9.3.2		281 283		
9.4		U	283		
9.5		Sample introduction onto HPLC			
-					

Contents	xiii
----------	------

		ledgments	291 291
Chap	ter 10.	Biomedical applications of directly-coupled	
		chromatography-nuclear magnetic resonance (NMR)	
		spectroscopy and mass spectrometry (MS)	
		John C. Lindon, Nigel J.C. Bailey, Jeremy K. Nicholson and	
10.1	T . 1	Ian D. Wilson.	293
10.1		uction	293
10.2		ical developments in HPLC-NMR and HPLC-NMR-MS	294
	10.2.1 10.2.2		294
	10.2.2	The requirement for high dynamic range in NMR spectroscopy	294
	10.2.3		295
	10.2.4		296
	10.2.5		2,0
		MS to HPLC	296
10.3	Operat	tional methods in HPLC-NMR and HPLC-NMR-MS	298
10.4		cations in combinatorial chemistry	300
10.5	Applic	cation to drug impurities	301
10.6		HPLC-NMR and HPLC-CD for pharmaceutical mixtures	302
10.7		cation to natural products	304
10.8		cation to drug metabolism	306
	10.8.1		306
	10.8.2		307
	10.8.3		210
	1004	compounds	310
	10.8.4	11	316
10.9	10.8.5	Application to drug metabolite reactivity	316 321
10.9	10.9.1		321
	10.9.1		321
	10.9.3		323
10.10		asions	325
10.11	Refere	ences	325
Chap	ter 11.	Ultra-sensitive detection of radiolabelled drugs and their	
		metabolites using accelerator mass spectrometry	
	_	Graham Lappin and R. Colin Garner	331
11.1		ction	331
11.2		entation	333
11.3	_	preparation	335
11.4	Data an	alysis	336

xiv	Contents

			337	
11.5	1.ppiioutions, 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.			
11.6	Emilio of detection and quantities of the control o			
11.7	Conclusions and the future			
11.8	11.8 References			
Chapter 12. Biomedical applications of inductively coupled plasma mass				
spectrometry (ICP-MS) as an element specific detect				
		chromatographic separations		
		Fadi R. Abou-Shakra	351	
12.1	An intro	oduction to ICP-MS	351	
	12.1.1	Inductively coupled plasma as an ion source	351	
	12.1.2	Interfacing the ICP to a mass spectrometer	354	
	12.1.3	The building blocks of an ICP-MS	354	
	12.1.4	Analytical capabilities of ICP-MS	358	
12.2	ICP-M	S as an element specific detector for chromatographic separations	359	
	12.2.1	Coupling an HPLC to ICP–MS	359	
	12.2.2	Coupling GC to ICP–MS	360	
	12.2.3	Coupling CE to ICPMS	361	
12.3	Applica	ations of ICP–MS in the biomedical field	362	
	12.3.1	Detection of metabolites	362	
	12.3.2	Phosphorylation detection by ICP-MS	364	
	12.3.3	Other applications	366	
12.4		ary	368	
12.5		eferences		
12.6	6 Appendix			
Chan	ter 13.	Chromatography in a regulated environment		
Спар		H.M. Hill	373	
13.1	Introdu	iction	373	
13.2		tory issues	375	
13.2	13.2.1	Regulatory environment	376	
	13.2.2	Compliance with GLP?	376	
	13.2.3	Instrument qualification and validation	378	
13.3		lytical validation process	378	
		Full validation	379	
		13.3.1.1 Pre-study phase	379	
	13.3.2	Application of a validated analytical method	392	
		13.3.2.1 System suitability	393	
		13.3.2.2 Disposition of standards, QCs and samples in a batch	394	
		13.3.2.3 Chromatographic acceptance	395	
		13.3.2.4 Reintegration of chromatographic peaks	396	
		13.3.2.5 Standard curve acceptance	397	
		13.3.2.6 Quality control acceptance criteria	397	
		13.3.2.7 Sample assay repeat criteria	397	

Contents	XV

	13.3.3	Post validation issues	18
		13.3.3.1 Metabolites in safety testing (MIST)	18
		13.3.3.2 Cross validation	90
		13.3.3.3 Method transfer	00
		13.3.3.4 Partial validation	1
		13.3.3.5 Limit assays	12
13.4	Study de	ocumentation	13
13.5	Statistic	cal considerations)4
	13.5.1	Rationale behind the consensus statistics)4
	13.5.2	Interbatch and intrabatch precision)5
	13.5.3	Standard curves)6
13.6	The futu	ure)6
	13.6.1	Ethical implications	16
	13.6.2	Instrumentation quantification and validation)7
	13.6.3	Biomarkers)7
13.7	Conclus	sion)7
	13.7.1	Regulatory changes	8(
13.8	Referen	ices	8(
Subject index			

CHAPTER 1

New developments in integrated sample preparation for bioanalysis

M.W.J. van Hout^{1,*}, H.A.G. Niederländer¹, R.A. de Zeeuw¹ and G.J. de Jong²

- ¹ Department of Analytical Chemistry and Toxicology, University Centre for Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- ² Department of Biomedical Analysis, Faculty of Pharmacy, University of Utrecht, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
- * Current address: Pharma Bio-Research Group B.V., Laboratories Assen, Westerbrink 3, 9405 BJ Assen,
 The Netherlands

1.1 INTRODUCTION

Increasing knowledge of the working mechanisms of drugs has led to the development of very potent drugs. Hence, the administered dosages are small, and consequently, the concentration levels in biological fluids are decreasing. Furthermore, biological samples are very complex, because they contain many endogenous substances. Blood fluids, such as serum and plasma, represent an extra problem due to the presence of proteins. Protein binding may affect the extractability of the analytes. Deproteinisation techniques can help to overcome this problem. It may, however, also give rise to even more difficulties, since analytes can be co-precipitated with the proteins. Thus, sample pretreatment techniques are required that retain the analyte(s) of interest, at the same time efficiently removing the endogenous interferences. The most common systems exist of an extraction step prior to separation and detection. A considerable gain in sensitivity and selectivity can be obtained during the extraction, as the analytes of interest are usually concentrated and separated from the matrix. An ideal extraction method should be rapid, simple, inexpensive, and give reproducible and high recoveries without the possibility of degradation of the analytes. Furthermore, the extraction method should not generate large amounts of chemical waste [1].

Sample pretreatment used to be a long step in the analysis of biological samples. Since the numbers of samples to be analysed is increasing, very rapid, but still selective and sensitive systems are required. In modern systems using advanced sample handling, the separation step may be more time-consuming. However, with the introduction of short columns in liquid chromatography (LC) and the selectivity of the mass spectrometer (MS), throughput of samples is again more and more limited by the time

required for sample pretreatment. This is especially the case in off-line systems, which may also require extensive manual work. Therefore, various systems have been developed in order to integrate sample pretreatment with the separation and detection technique (Fig. 1.1) [2].

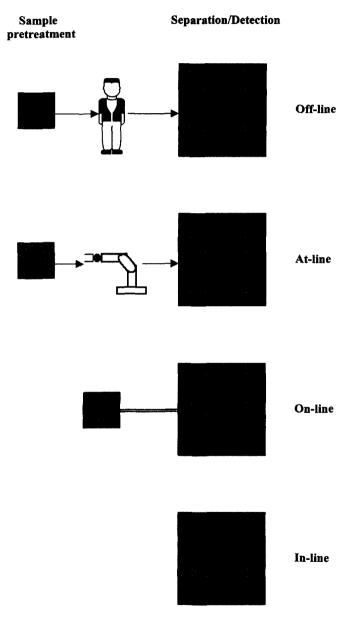


Fig. 1.1. Schematic presentation of various integration methods of the sample pretreatment step with the separation and detection technique. (Reprinted from [2, modified], with permission from Elsevier Science).

Basically, three possibilities have been proposed for integrated sample pretreatment in the analytical procedures, i.e. (1) at-line; (2) on-line; and (3) in-line. The at-line coupling involves sample preparation by a robotic device and an autoinjector to inject the extracts into the analytical instrument. No direct stream of liquid between extraction unit and analysing unit is present. Moreover, not the entire extract is transferred to the analysing instrument. Disadvantages as observed with off-line extractions, i.e. collection of the extract, evaporation and reconstitution, are not eliminated. An example of an at-line system is the 96-well plate design for solid-phase extraction (SPE). Samples can be extracted simultaneously, thus increasing the sample throughput, provided that the separation and detection can be performed very rapidly or by using simultaneous analytical instruments. With on-line systems, there is a direct transport of the entire extract to the analysing technique, and the latter is receiving the entire extract. Samples can be processed in series, i.e. samples are pretreated and analysed one after the other, or in parallel, in which one sample is being analysed while another is being extracted. The latter system offers a high sample throughput. A very prominent advantage of on-line systems is that some error-prone steps of the extraction procedure, such as evaporation and reconstitution are eliminated, hereby increasing precision and accuracy. In-line systems exist of sample pretreatment fully incorporated into the separation system, hereby creating a new device. In contrast to on-line procedures, application of in-line systems imply the direct injection of the sample into the analytical instruments. Various approaches for in-line SPE-capillary electrophoresis have been reported [2]. It should be noted that the differences in interfacing are often not as clear as mentioned above. For example, the extraction can be performed manually (off-line) or by robot (at-line), but the final step of the extraction, i.e. the desorption of the analytes may be performed on-line with the analytical step. Furthermore, dividing systems into on-line and in-line techniques is very disputable. These systems are usually closely related to each other and a distinct difference can often not be made. Therefore, in this chapter on-line and in-line systems will be considered as similar.

The goal of this chapter is to show the current status of modern sample pretreatment techniques such as SPE, solid-phase microextraction (SPME) and membrane-based extraction systems, and to outline novel trends in the bioanalytical area with regard to integrated sample preparation. It will focus not only on pretreatment techniques integrated with chromatographic separation systems, but also on their direct coupling to MS. SPE was originally designed for off-line purposes [3-5], but is now routinely used in on-line systems with LC [6-9]. The combination of SPE on-line with gas chromatography (GC) is less common, especially in the bioanalytical field. The current state of SPE-GC will be discussed here. Since an LC column can also be used as cleanup prior to GC analysis [10-13], on-line LC-GC applications without any further sample pretreatment will also be presented. Turbulent-flow chromatography (TFC) is to a certain extent similar to SPE. The use of high flow-rates offers new possibilities for sample pretreatment [14–17]. Therefore, the current state in TFC will be presented. SPME was originally designed for the analysis of volatile compounds with GC [18-22]. However, nowadays SPME is also coupled with LC for analysis of less-volatile compounds. The applicability of these SPME-LC systems in bioanalysis will be shown. Membrane-based techniques are, like SPME, diffusion-based sample pretreatment

References pp. 39-44