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Chapter |
INTRODUCTION

““Begin at the beginning,”’ the King said gravely, “‘and go on
till you come to the end; then stop.”’

Lewis Carroll, Alice in Wonderland

In order to present a problem to a digital computer for solution, it is necessary to trans-
mit to the machine a statement of the problem, a procedure for solving it (usually called an
algorithm for the solution of that problem), and the data which is needed in the 'solution. In
fact, a statement of the problem is not really necessary, since the algorithm and data are suf-
ficient for a computer, provided the algorithm is stated unambiguously and completely.

As a simple example, let us consider the problem of determining the largest number in a
collection of n+1 numbers A = {ao, a;, a2, ..., 4} with n > 1. A verbal description of
the procedure (algorithm) might be

(1) Pick up the first number.

(2) Compare it with the second number.

(3) If the first is larger or if they are equal, keep the first one.
(4) If the sécond is larger, keep the second one.

(5) Whichever one was saved from this comparison is now compared with the
third number.

(6) Continue to repeat steps 2 through 5 (each time moving down the list) until
the n+1st number has been included in the comparison.

(7) The number which has been finally saved is then the largest number in the
collection A.

Unfortunately, this method of description is not very precise. Such words as ‘‘compare’’,
“‘moving down the list’’, and ‘‘finally saved’’ should really be spelled out more exactly.

The following restatement of the procedure would probably be more suitable:
(1) Let Z = ao.
(2) Let j =1.
(3) If j > n, the problem is done,* go to step 7; otherwise go on.

4) 1f 2z < aj, let Z = aj; otherwise, go on.

*This test is redundant the first time, but after n times through steps (3) - (6) it will terminate the
process for us.



(5) Let j increase by 1.
(6) Return to step 3.

(7) Z is the answer.

This may be illustrated by following ‘‘flow diagram’’:

START Z=ag i=1

i=i+1 Z=a]’ S

Note that the following conventions have been used here:
A. Computation occurs in rectangular boxes. [ |
B. Decisions, based on comparisons, occur in diamond-shaped boxes. O

C. The ““=”’ inside the computation boxes ((___]) is meant in the dynamic sense:
‘‘Compute the value of the expression on the right and let that now be the value of
the variable whose name appears on the left.”’

Although this problem does not require it, we frequently ask a question like ‘“Does j = n?”’
The ‘‘=’’ in this context is a 7elation and yields either ‘‘YES’’ or ‘‘NO’’ when placed between
two arithmetic expressions.

We return to the example problem. The algorithm exhibits an important concept, which
occurs in a great many procedures; namely, it contains a loop. A loop has the following char-
acteristic properties:

(a) It is repeated over and over until some condition is satisfied (occasionally this
may be a very complex condition). In the example, the condition was ‘‘j> n’’.

(b) Before the first ‘‘iteration’’, some initialization may be performed. In the ex-
ample, Z =3, and j = 1.

(c) After the ‘‘body’’ of the loop is performed, (the comparison, in the example), some
variable is incremented, and the termination condition is tested again. In our
example, j is increased by 1, and if j < n, the ‘“body’’ of the loop is computed
again - with the new value of j.

It is often convenient to take advantage of this standard structure of a loop, and use an
‘“jteration box’’ in the flow diagram. This box would have to indicate the ‘“scope’’; i.e., the
extent of the body of the loop, the variable which is to be initialized, and later incremented,
and the condition which will determine the number of iterations in the execution of the loop.
The contents of a typical iteration box, (not related to the example above) might be:



Repeat the computation through the box labeled (for example) ‘*BACK’’, starting with the
variable a having the value 12, and increasing it by the amount 3 after each time until either
a>90, or [x+y| <.

We shall abbreviate this by the form:
THROUGH BACK, FOR ALPHA = 12,3,ALPHA .G. 90 .OR. .ABS. (X+Y) .LE. EPSILON

Here we have substituted ¢‘.G.”” for ‘>”’, ¢ LE.”” for ¢<’’, ‘““.ABS.” ‘“(X+Y)”’ for “|x+y|”’.
(The reason for these simple substitutions is the lack of characters such as >, < as input to
the computer. Such details are fully presented in Chapter II of this manual.”’

The flow diagram for our previous example, then, may be rewritten as follows: (In order
to keep the notation familiar when possible, the above-mentioned character substitutions will
not be made in diagrams.)

START Z =aq ] =1
i>n

=J'+l

—n

-_—

The three operators specified in a ““THROUGH’’ statement are written in a single box to
indicate the correspondence to a single statement.

The question still remains: How does one communicate the algorithm to the computer?
A translator such as MAD is designed according to the philosophy: Once the algorithm has
been stated, as in a flow diagram, it should be presented to the computer directly in that form,
or as near to it as possible. The ‘‘translator’’ then has the job of producing a translation from
a flow diagram representation of the algorithm to a machine language representation of the
same algorithm, i.e., into the basic code of the machine. In other words, aside from the details
of preparing the flow diagram in a form acceptable as input to the translator, the user’s work
ends with the diagram itself.

It should be remembered that the MAD language was designed with several important
criteria in mind:

(a) Speed of translation - the choice of some words of more than six characters
(e.g., WHENEVER, TRANSFER, THROUGH) enables the translator to recognize
the statement type with a minimum of analysis.

(b) Generality - as few restrictions on the construction of statements and expressions
have been introduced as possible.

(c) Ease of adding to the language - desired additions can be made easily, since most
of the necessary information can be stored in tables during translation.



It is obvious that a different set of criteria could lead to a different language. The details
of the form of statements in this ‘‘input language’’ are the subject of Chapter II.* We are con-
cerned here with introducing some of the basic ideas, such as the loop, etc. The input form of
our example would be:

DIMENSION A(100)

Z = A(0)

THROUGH BACK, FOR J=1,1,J.G. N
BACK WHENEVER Z .L. A(J), Z = A(J)

INTEGER J,N

END OF PROGRAM

The DIMENSION statement assigns a block of storage in the computer large enough to
handle aq, a1, ..., ai00, if necessary. The INTEGER statement declares J and N to be in-
tegers. We have already seen that different shaped boxes are used for operations on integers,
such as subscript modification and counting. The reason for this is that integer arithmetic can
be done more simply and efficiently, usually with less round-off error, than arithmetic on non-
integers. [Numbers which may have fractional parts are usually written in the so-called
‘‘scientific notation’’, such as 3.1 x 107°, are called floating point numbers.] Numbers are
assumed to be in the floating-point mode unless otherwise declared, as in the INTEGER state-
ment in the example. The WHENEVER statement above is to be interpreted in the sense:
Whenever the following condition (in this case Z < aj) is satisfied, do the specified action
(z = aj), otherwise just go on.

It is interesting to ask just how complicated a condition can be used in making decisions.
We have seen that such conditions may occur in iteration statements, and “WHENEVER”’
statements, etc., for the purpose of making binary (i.e., ‘‘yes’’ or ‘‘no’’) choices. An expres-
sion which can be labeled ‘‘True’’ or ‘‘False’’ is exactly what is needed here. Such expres-
sions are called Boolean** expressions, and usually involve ‘‘and’’, ‘‘or’’, ‘“not’’, and possibly
other such words connecting shorter expressions involving <, <, =, #, >, and >. For
example, the following is a Boolean expression:

(x-3°%<y and i< j) or x> 3

This will be ‘“true’’ for some values of x and y, and ‘‘false’’ for others. It might then occur
in statements such as:

WHENEVER ((X - 3) .P. 3.L. Y.AND.I.LE. J) .OR. X .GE.3,
TRANSFER TO AGAIN

or in the iteration statement

THROUGH ALPHA, FOR BETA =1,1, (X - 3) .P. 3.L. Y .AND.
I .LE.J) .OR. X .GE. 3

where .P. denotes exponentiation (i.e., ‘‘to the power”’).

Returning again to the example problem on the largest of a set of numbers, we observe
that no provision was made for obtaining the values of n, ao, a1, ..., ap on which to per-
form our computation, nor was any provision made for producing an answer. Normally, each
program would contain suitable input and output statements, such as are described in Chapter
II and illustrated in Chapter III. Let us assume instead that we are interested in making our
little algorithm available for use in any other program, as a prepackaged ‘‘function’’, in the

*The reader may find some clarifying effect if he rereads Chapter I after reading Chapter II.

**After the logician George Boole.



sense that, given n and ao, ..., ap, this function computes as its value the largest of a,, .
an. In this case we shall call our algorithm an EXTERNAL FUNCTION, and give it a name,
say MAX., since it will be written and translated externally with respect to the program which
will later call upon it. The program will now be written:

EXTERNAL FUNCTION (N,A)

ENTRY TO MAX.

Z = A(0)

THROUGH BACK, FOR J=1,1,J .G. N
BACK WHENEVER Z .L. A(J), Z = A(J)

FUNCTION RETURN Z

INTEGER J,N

END OF FUNCTION

The first statement specifies the inputs to the function to be N and A, the second state-
ment indicates the point of entry, the FUNCTION RETURN statement specifies the value of Z
as the desired value of the function, and the other statements are as before. Any program
using this function now need only call upon it by name, as in the statement:

LARGEQ = 1. + MAX. (6,Q)/3.

Note that the set (in this use of MAX.) whose largest element is desired is called Q, and N has
the value 6. No DIMENSION statement is needed for A in the EXTERNAL FUNCTION defi-
nition program above, since A is there only as a ‘‘dummy variable’’, anyway. When used, with
a concrete set Q, we would expect a DIMENSION statement for Q in the program that calls

on MAX. for a value.

For a second example consider the problem of repeatedly solving, by Newton’s method, of
the equation f(x) = a¥ + x = 0, taking a different value for a each time but with the restriction
that a > 1. This method involves the repeated evaluation of the formula

_ £(x4)
Xit] = %j - f—v(;fl)—

(the prime denotes the derivative with respect to x) until X471 is a root - i.e., until f(xj+1) = 0.
Actually, in the numerical solution of equations where we deal with approximate numbers the
latter condition becomes: until [f(xj4+1)| < €, where € is a small positive number.

To evaluate the iterative formula above the first time it is necessary to have an initial
approximation, X, to the desired root. The use of the index, i, as well as the initial subscript
zero suggests that we will produce a sequence, Xo, X1, ..., Xp, Of approximations to the root.
However, from the computational point of view we do not need all of these values simultane-
ously, since to evaluate the formula it is sufficient to know only the last value, X, produced.
We can say

f(x)
f'(x)

Often a left arrow (<) is used to mean ‘‘is replaced by’’ but in the actual statements pro-
duced for the computer the ‘="’ symbol conventionally has this meaning. It is important to
realize what the ‘="’ means in this context; it is different from the usual use of the symbol
where it indicates a relation. When the ‘="’ symbol is used as such a ‘‘replacement operator’’
the item on the left of the ‘‘="’ is always the name of a variable. The variable may have a
complicated subscript but nevertheless it is not an expression, but the name of a variable. The
item on the right of the symbol is an expression involving one or more constants, variables,
etc. The operation implied is simply that the value of the expression on the right becomes the
value of the variable whose name appears on the left. This is referred to as substitution.

X 1is replaced by x -



For our specific example, then, the evaluation of the iterative formula could be described

as

) a¥ + x
logea - a%X + 1.0

X=X R

although we will for convenience break this into two statements. The entire computational
procedure can be represented by the following flow diagram.

START READ
a, X, €

f=aX+x

x=x - f/((Ina)

- a¥X +1.0)
T
PRINT
a, X, € F

The corresponding statements are:

ST

REPEAT

PRT

READ FORMAT ALPHA, A, X, EPS
WHENEVER A .L. 1.0, TRANSFER TO PRT

F=A.P. X +X

X = X - F/(ELOG.(A)*A .P.X + 1.0)

WHENEVER .ABS.F .GE. EPS, TRANSFER TO REPEAT
PRINT FORMAT ALPHA, A, X, EPS

TRANSFER TO ST

PRINT FORMAT BETA, A
TRANSFER TO ST
VECTOR VALUES ALPHA
VECTOR VALUES BETA
END OF PROGRAM

$S1,3F15.6*$
$17THOA TOO SMALL, A =F15.6*$

(1) The first statement, labeled ST, causes a value for a,x, and € to be read into

(2)

computer storage. A block of adjacent storage locations in the computer (a ‘‘vec-
tor’’) named ALPHA is designated as containing a description of how the three
numbers were punched on the card. (This description - which is the value of
ALPHA - is described in a later statement; see (9) below.)

The second statement is a simple conditional which causes the statement labeled
PRT to be the next one executed if a < 1. Otherwise, the next one in sequence
(labeled REPEAT in this case) will be executed.

6



(3)

(4)

(5)

(6)

(9)

(10)

The statement labeled REPEAT computes a* + x using the current value of x,
and places the result of this computation in a storage location named F.

The next statement divides the value F of the function by the derivative of the
function (logea * aX + 1.0), evaluated using the current value of x, subtracts this
quotient from the current value of x and the resulting difference is stored as the
current value of x. The name ELOG. is the name for the function loge and the
item in parentheses following this name indicates the variable whose natural
logarithm is desired.

The following statement is a simple conditional which causes the function and iter-
ative formula to be evaluated again if [f(x)| > €. Otherwise, (i.e., |{(x)| < ¢), the
next statement in sequence is executed.

The PRINT statement causes three numbers - the current values for a, x, and ¢
to be printed. The arrangement and form of the numbers on the printed page are
controlled by the format description which is the value of the vector named
ALPHA.

The TRANSFER statement following causes the statement labeled ST to be the
next one performed.

The statement labeled PRT is the one executed immediately after the first state-
ment whenever a < 1.0. This statement causes the current value of a to be
printed (here a must be < 1.0) according to a format description stored in BETA.
The format description also causes the printing of some constant alphabetic infor-
mation preceding the number; namely, the remark ‘“A TOO SMALL, A =",

The next two statements following the last TRANSFER TO ST set the initial
values of two vectors named ALPHA and BETA. Although VECTOR VALUES
statements can be used to preset vectors to specified numeric values, in both in-
stances here the values are format descviptions. The strings of characters be-
tween the dollar signs (MAD quotation marks!) are to be taken literally as they
appear and stored in designated vectors. The actual format specifications are
described in more detail in Chapter II, but, for example, the first description:
S1,3F15.6* means that the first item is to be a space (S1), followed by three (3)
numbers printed with a deeimal point but no exponent (F), each occupying fifteen
card or print positions (15), and that there will be six positions to the right of the
decimal point (.6). The asterisk (*) indicates the termination of the description.

The final statement indicates the end of the statements and is the last statement
executed when a definite termination to the problem is known. In our particular
example, the computer would continue until it had exhausted the given input values
of a,x,e.

The final example before the description of the language in Chapter II is a more general
and more elaborate illustration of Newton’s Method. Here, we consider the solution of the
equation x° + ax® + bx + ¢ = 0, starting with some input value for X,, using the iterative

formula:

x§ +axi +bxj+c
X4 = Xj - ——
3xj +2ax;+b

_2x +axi - ¢

3xf +2axj +b

which is obtained from the standard Newton’s Method formula

7



(|xi+1 - xj| < €1 and [i(x;)| <€z) or i> no.

where no is some upper limit to the number of iterations which we can tolerate. We are re-
quiring that at xj the value of the function f(xj) be between the upper and lower bounds €. and
- €2. Also, the distance between Xxj,1 and Xj should be less than €¢,. Observe that we are
never concerned with more than two consecutive approximations to the root - say x and xp,
(for next x) - and that the incrementing of i is not really necessary.

PRINT
READ a,b,c, TITLE AND X = %o xp = d(x) H@
X0,€1,€ 2,10 INPUT
INFORMA-
e e

|f(x)| <e€:2

and | x-xnl <e1

: ori> nolL
i=i+1 -
F ‘___% :)
PRINT
i, x
]
1 PRINT
“NO
CONVER-
‘GENCE”’
where f(x) =x%®+ax® +bx +c
d(z)= (2z% + az® - ¢)/(32® + 2az + b)
The program:
GAMMA READ FORMAT CARDs Ay By Cs XZEROs EPS1, EPS2s NZERO
PRINT FORMAT TITLEs As Bs Cs XZEROs EPS1s EPS2s NZERO
X = XZERO
NEXTX = De(X)
INTERNAL FUNCTION De(Z) = (2e%ZePe3 + A¥Z4Po2
1 =C)/(3e*Z oPe2 + 2.%A%¥Z + B)
ALPHA THROUGH BETAs FOR I = 09 1ls (eABSe(NEXTX-X) ele
1 EPS]1 oANDe ¢ABSe Fe(X) ele EPS2) eORe I «GEe
2 NZERO
X = NEXTX
BETA NEXTX = De(X)

WHENEVER 1 «GEe NZEROs PRINT FORMAT REMARK
PRINT FORMAT RESULTs Is X

TRANSFER TO GAMMA

INTERNAL FUNCTION FelY) = Y oPe3 + A % YePso2

8



1 +B*Y+C

INTEGER Is NZERO

VECTOR VALUES CARD = $6F10e5s I4%3%

VECTOR VALUES TITLE = $27H1SOLUTION OF CUBIC EQUATION

1 /4HOA = F8e3s S8y 3HB = FBe3s S8s 3HC = FB8.3
2 S8y THXZERO = F8e3/12HOEPSILON 1 = FB8e3s S8»
3 11HEPSILON 2 = FB8e3s S8y 3HN = 14%*$%

VECTOR VALUES RESULT = $20HONOe OF ITERATIONS = 14,
1 S20s 3HX = F8e3%%

VECTOR VALUES REMARK = $15HONO CONVERGENCE*$
END OF PROGRAM

The first statement, labeled GAMMA, would cause the program to read from a data card
the numbers a, b, ¢, Xo, €1, €2, and no. The format of the input information is to be found in
a block of storage labeled ‘‘CARD’’, whose values are set by a VECTOR VALUES statement.
The vector CARD actually has as values the format information in alphabetic form (some-
times called Hollerith, or binary-coded-decimal (BCD) form). The construction and analysis
of format information is thoroughly discussed in Chapter II.

The second statement in the program causes the input information, properly labeled, to
print out, preceded by the title ‘‘SOLUTION OF CUBIC EQUATION’’. The appropriate alpha-
betic information is contained in the format information which is to be found in the vector
TITLE, as set by a VECTOR VALUES statement.

Two functions are defined in this program, and each is designated as an INTERNAL
FUNCTION. The statement following that which is labeled BETA illustrates a conditional
output statement. If the iteration is terminated because i > no, the alphabetic information NO
CONVERGENCE is printed before the values of I and X are printed, otherwise that remark
is not printed. The final transfer to GAMMA causes the program to start over with a new set
of data, if additional data is present, otherwise, the computation is automatically terminated.

The VECTOR VALUES statement, illustrated here, may be used to cause vectors (and
matrices) to be initialized to any desired values (even alphabetic values) before the program
computation is begun. Of course, these values could be computed or read in as input, if de-
sired, so that the data for a problem could be preceded by its own description of format, in
problems where the format may change from one set of data to another.



Chapter Il
DESCRIPTION OF THE LANGUAGE

“Theve is a pleasure sure in being made, which
none but madmen know.”’

Dvyden: The Spanish Friar

1. Constants, Variables, Operations, and Expressions

1.1 Constants

There are five classes of constants. Integer, floating point, alphabetic, Boolean,
and octal.

1.1.1 Integer Constants

Integer constants must be less than or equal to 268435455 in absolute value.
The decimal point is assumed to be immediately to the right of the rightmost digit,
but is always omitted. Integers may be positive or negative, and while the ‘‘+’’ sign
may be omitted, the “-’’ sign must be present if the number is negative (e.g., 2, -2,
0, +0, -0, 100 are all integers). Leading (but not following) zeros may be omitted
(e.g., 5 and 005 represent the same integer, but 3 and 300 do not).

1.1.2 Floating Point Constants

Floating point constants may be written with or without exponents. If written
without an exponent, the constant contains a decimal point ¢‘.’’, which must be written,
but which may appear anywhere in the number. Thus, 0., 1.5, -0.05, +100.0, .1 and -4.
are all floating point constants.

If the number is written with an exponent, it may be written with or without a
decimal point, followed by the letter ‘““E’’, followed by the exponent of the power of 10
that multiplies the number. (If the decimal point is omitted, it is assumed to be im-
mediately to the left of the letter ““E’’.) The exponent m consists of one or two digits
preceded by a sign (although a ‘“+’’ sign may be omitted), and must satisfy the condi-
tion -38 < m < 38. More specifically, the value of the number F must be 0 or else
satisfy the condition

.1469368 x 107* < |F|< .1701412 x 10%

Examples of floating point constants with exponent are: .05E -2(= .05 x 107%),
- .05E2(= -.05 x 10?), 5E02(=5.0 x 10%), 5.E2(=5.0 X 10%).

Negative floating point constants must be preceded by a ‘‘-’’ sign. Positive
constants may be preceded by a ‘“+’’ sign.

1.1.3 Alphabetic Constants

An alphabetic constant consists of from one to six admissible characters pre-
ceded and followed by the character ‘“$’. The admissible characters include all
letters of the alphabet, the digits 0 through 9, the special characters +, - (minus
sign), - (dash), *, /, =, ), (, ., the comma *‘,”’ and the blank space, to be represented

10



here occasionally (but not punched on input cards), as the character ‘‘0’’. Thus the
following are alphabetic constants: $ABCD$, $TO BES$, $DEC. 4$, $5 + 3 = 8. Note
that blank spaces, while ignored elsewhere in the language, count as characters in
alphabetic constants. An alphabetic constant is stored internally as an integer, and
any constant containing fewer than six characters will be extended to six characters
by adding blanks on the right; thus $ABCDS$ will appear internally as $ABCDODO $.

1.1.4 Boolean Constants

There are two Boolean constants - ‘‘true,’”’ which is written 1B, and ‘‘false,”’
which is written 0B.

1.1.5 Octal Constants

These constants are written as twelve digit octal integers followed by the letter
K, except that leading zeros may be omitted. If one or more decimal digits follow the
letter K, this is interpreted as an octal scale factor. Thus 127K2 would be the octal
integer 000000012700, and 1K10 would produce the octal number 010000000000.

1.2 Variables

The name of a variable consists of one to six letters or digits, the first of which must
be a letter. If the variable is defined as an n-dimensional array variable (see section 3.3) then
the name of an element of the array consists of the variable name, (i.e., one to six letters or
digits, starting with a letter), followed by the appropriate subscripts separated by commas and
enclosed in parentheses. Thus the following are ‘‘single variables’’: X51, ALPHA6, LAMBDA,
GROSS, while the following are elements of arrays: BETA (C1, C2, 6), X15(Y, Z1), J(6),

J(Z1 + 5%Z2, 5). (See section 1.11 for the description of subscripts.) Parentheses enclosing
subscripts may not be omitted.

1.3 Statement Labels

A statement may be labeled or unlabeled. Labels are used to refer to a statement by
other statements. A statement label consists of from one to six letters or digits, the first of
which must be a letter, e.g., IN or BACK. A statement label may be an element of a state-
ment label vector, in which case the vector name is followed by a constant integer subscript
enclosed in parentheses, e.g., S(2) or LBL(3). A statement label appears in the label field
(i.e., columns 1-10) of the statement it identifies. When a statement extends to additional
cards (i.e., cards identified by a digit punched in col. 11) the statement label need not be
punched on the additional cards.

1.4 Functions

The name of a function consists of one to six letters or digits followed by a period
which must be written. The first character of a function name must be a letter. If the
function is single-valued, then the value of the function is represented by following the function
name by the proper number of arguments (see section 3.8 for the definition of function) sep-
arated by commas and enclosed in parentheses. Thus, ADD51., COS., POLY., and FUNCT3.
are function names, while ADD51.(X,Y3,ADD.), POLY.(N, VJ, 7) and COS. (X) are.values of
functions. A function name given explicitly in this form will be called a function name constant.
(See also sec. 2.8.)

¢
.

1.5 Arithmetic Operations

The following arithmetic operations are available:
(a) Addition, written as ‘“+’’, e.g., Z5 + D.

(b) Subtraction, written as ‘“-’’, e.g., Z5 - D.

11



and

(c)

(d)

(e)

(g)

(h)

(i)

G)

1.6

(a)

(b)

(c)
1.7

Multiplication, written as ‘“*’’  e.g., Z5*%D. (Note that the ‘“*’’ may not be omitted. It
is illegal to write Z5D, since it would be impossible to distinguish such a product
from the variable Z5D.) :

Division, written as ¢‘/’’; e.g., Z5/D. If both Z5 and D are integers, the result is
again an integer; e.g., the ““fractional part’’ of the true quotient is truncated (not
rounded). For example, if Z5 =7, and D = 3, then Z5/D will have the value 2.

Exponentiation, written as ¢“.P.”’, e.g., Z5.P.D, and meaning (Z5)P; i.e., Z5 raised
to the power D.

Absolute value, written ‘“.ABS.”’; e.g., .ABS.Z5, meaning |Z5], the absolute value of
Z5 and .ABS. (Z5-D) meaning |Z5 - DJ.

Negation, written as ‘“-’’; e.g., ~ALOHA, meaning the ‘‘negative of ALOHA.’’ Thus
-X.P.-.5 means -(X"'°), the negative of the reciprocal of the square root of X.

Full word bitwise negation, written .N. I, where I is an integer expression, and
meaning the operation of negating each binary digit in the value of I. The result is
again an integer.

Full word bitwise logical operations and and or, written .A. and .V., respectively,
meaning the bitwise and and or of the full binary integer values of the operands.
The result is again an integer.

Full word integer shifts, written .LS. and .RS., respectively; e.g., I.LS. J and
I1.RS. J, where I and J are integer expressions (see sec. 1.10). I.LS. J means the
value of I shifted left J binary places; i.e., I x 2J. Similarly with .RS. . Digits
shifted off either end of the computer word are lost. Created blank positions are
filled with zeros. The result is always again an integer.

Arithmetic Expressions

Arithmetic expressions are defined inductively as follows:

All integer, floating point, alphabetic and octal constants, integer and floating point
individual variables, subscripted integer and floating point array variables, and in-
teger and floating point values of functions are arithmetic expressions.

If E and F are any arithmetic expressions, and I and J integer expressions, then
the following are also arithmetic expressions: +E, -E, .ABS.E, E+ F, E- F, E * F,
E/F, E.P.F, (E), .N.I, 1 .A.J, 1.V.J, 1.LS.J, and I.RS.J.

The only arithmetic expressions are those arising in (a) and (b).

Boolean Operations

The following Boolean, or logical, operations are available in the language (where M

P are Boolean expressions):

(a)

.NOT.M has the value 1B if and only if M has the value 0B.

(M) has the same value as M.

M.OR.P has the value OB if and only if both M and P have the value O0OB.
M.AND.P has the value 1B if and only if both M and P have the value 1B.

M.THEN.P has the value OB if and only if M has the value 1B and P has the
value OB.

M.EXOR.P has the value 1B if and only if either M or P has the value 1B, but not
both.
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" (g) M.EQV.P has the value 1B if and only if M and P have the same values.

Thus .NOT., .OR., .AND., .THEN., .EXOR., and .EQV. correspond to the usua.
logical operations, ~, \/, A, D, ‘‘exclusive or,”” and = .

1.8 Boolean Expressions

Boolean expressions are defined inductively as follows:

(a) Boolean constants, Boolean individual variables, Boolean subscripted array variables
and Boolean-valued functions are Boolean expressions. (See sections 1.1.4 and 3.2.)

(b) If H and F are arithmetic expressions: then H.L.F., H.LE.F, H.E.F, H.NE.F,
H.G.F, H.GE.F, are Boolean expressions, where the meanings are H< F, H< F,
H=F, H#F, H> F, and H > F, respectively.

(c) If M and P are Boolean expressions, then the following are also Boolean expressions:
.NOT.M, (M), M.OR.P, M.AND.P, M.THEN.P, M.EXOR.P, and M.EQV.P.

(d) The only Boolean expressions are those that arise in (a), (b), and (c).

Examples of Boolean expressions are: (X .G. 3 .AND. Y .LE. 2) .OR. (GAMMA .L.
EPSILON), (.ABS. (X1 - X2)/X1 .LE. EPSILON) .AND. (F.(X1) .L. EPSILON), and
( (P .AND. Q) .THEN. Q) .EQV. (P .OR. .NOT.P), where P and Q are Boolean variables.

Boolean expressions of types (a) and (b) above are referred to as ‘“‘atomic Boolean
expressions.’”” Object programs produced by the translator will skip the evaluation of the
remaining terms of a disjunction (an ‘“or’’ expression) as soon as one term has the value 1B,
and a similar statement holds for conjunctions (‘‘and’’ expressions). In order to obtain the
maximum benefit from this skipping behavior, it is necessary to understand that the atomic
Boolean expressions in a complex Boolean expression are evaluated from right to left, and the
one most likely to be ‘“true’’ in a disjunction, and the one most likely to be ‘‘false’’ in a con-
junction, should be placed as far toward the right end of the expression as possible.

Thus, if one were testing for values of X between 0 and 2 and between 5 and 6, one
might write

WHENEVER 0 .L. X .AND X .L. 2.0R. 5 .L. X .AND X .L. 6

If one knew that for the data expected, the values of X would occur most often between +1 and
2, one would do better to write the above as follows:

WHENEVER X .L. 6 .AND. 5 .L. X .OR. X .L. 2 .AND. 0 .L. X

1.9 Parentheses Conventions

Parentheses are used in the same way as in ordinary algebra and logic to specify th
order of the computation. Also, certain conventions are used to allow deletion of paranthese
The conventions used here are the same as in ordinary algebra and logic, namely: Paranthe
ses may be omitted, subject to the rules (A) and (B) below, but redundant parantheses are
allowed.

(A) Within any expression the sequence of computation, unless otherwise indicated by
parentheses, is:

.ABS., + (as unary operations), .N., .LS., .RS.
AL

V.

.P.

- (as a unary operator)
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+, - (as binary operations, i.e., addition and subtraction)
.E., .NE., .G., .GE., .L., .LE.

.NOT.

.AND.

.OR., .EXOR.

.THEN.

.EQV.

, (as used to separate function arguments)

Two other operations occur by implication only; viz., the function call (see sec. 2.8)
and subscription (see sec. 1.11). Thus the call for the function: SIN. (X + Y) implies that after
the sum X + Y is computed, the operation of actually calling the function SIN. must be per-
formed. Similarly, the array element A(I + 3 X J) is determined by first evaluating the sub-
script I + 3 X J and then performing the implied subscription operation. These two implicit
operations do not appear in the precedence list above, but may be considered to be together on
a level just above .ABS., .N., etc.

Examples:
(1) .ABS.(B - C) means |B - C|, while .ABS.B - C means |B| - C.
(2) - B+ C means (-B) + (C), while -(B + C) means the negation of the sum.
(3) B.P. - X + Y means BX + Y, while B.P.(-X + Y) means B-X+Y,

(4) K2/Z - 3 means (K2/Z) - 3, while K2/(Z - 3) implies that Z - 3 is the denomi-
nator.

(5) A* B+ C means (A * B) + C.

(6) A.P.3/J means (A®)/J.

(7) X.L. Y+ 3 means (X) .L. (Y + 3).

(8) P.AND..NOT.P .EQV.Q means (P.AND.(.NOT.P)).EQV.Q.
(9) Z=X+Y/QA means Z = (X + (Y/QA))

(10) A = -B.P.X means A = -(BX),

(B) Within an expression operations appearing on the same line of the list in (A) are to be
performed from left to right, unless otherwise indicated by parentheses.

Examples:
1) A+B-C+D-E means (((A+B)-C)+D)-E.
(2) X/Z * Y/R * S means (((X/Z) * Y)/R) * S.

1.10 Mode of Expressions

The kind of arithmetic performed on a constant, variable or function value is deter-
mined by its mode. There are five modes in MAD: floating point, integer, Boolean, statement
label, and function name. Floating point, integer, and Boolean constants were described in
section 1.1. Alphabetic constants are assumed to be of integer mode. Section 3.2 describes
how the modes of variables and functions are specified.

If an expression consists entirely of one constant, one variable, or one functional
value, the mode is that of the constant, variable, or functional value itself. If the expression
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is a compound expression; i.e., consists of two or more subexpressions joined by logical or
arithmetic operations, the following rule applies:

If an expression is a Boolean expression as defined in section 1.8, then its mode is
Boolean. An arithmetic expression is considered to be in the floating point mode if any oper-
and of any arithmetic operation in the expression is in the floating point mode. If all operands
are integer (or alphabetic), then the expression is considered to be in the integer mode. In
this determination arguments, though not values, of functions are ignored.

Thus, if Y, Z, and W are floating point variables, while the function GCD. and the
variables I and J are in the integer mode, then the expressions

Y + GCD.(1,d)
Y+ Z -1
I + 1.
GCD.(1, J)/2
are all floating point expressions while the expressions
I + GCD.(1, J)
1+ J)/3
I+1
GCD.(1,J)/1
are all integer expressions.

If an expression has subexpressions of different modes, a conversion may be neces-
sary before some of the operations can be performed. Thus, in the expression

Y + 3

if Y is in the floating point mode it cannot be added directly to the integer 3. But for one pre-
caution the user need not be concerned with this since the instructions necessary for the con-
version of the integer to floating point form before adding are automatically inserted by the
translator during the translation process. The precaution is that if the integer being converted
is greater than 134,217,728 (i.e., 2?7) then an improper conversion will take place.

In some cases, however, the user must understand the sequence in which the conver-
sions will be made. Consider the expression

(Y +7/3)+ 1 *J/K)

where Y is in the floating point mode, and I, J, and K are in the integer mode. According to
the parenthesizing conventions, the computation will proceed in the following order (where the
T’s are temporary locations):

Ty =1*J
T, = Ty/K
Ts=17/3
T, =Y+Ts
Ts =T, + T

and Ts will be the value of the expression.
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