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PREFACE

During the past two decades a rapid growth of interest in the motion
of compressible fluids has accompanied developments in high-speed
flight, jet engines, rockets, ballistics, combustion, gas turbines, ram jets
and other novel propulsive mechanisms, heat transfer at high speeds,
and blast-wave phenomena. My purpose in writing this book is to make
available to students, engineers, and applied physicists a work on com-
pressible fluid motion which would be suitable as an introductory text
in the subject as well as a reference work for some of its more advanced
phases. The choice of subject matter has not been dictated by any
particular field of engineering, but rather includes topics of interest to
aeronautical engineers, mechanical engineers, chemical engineers, ap-
plied mechanicians, and applied physicists.

In selecting material from the vast literature of the field the basic
objective has been to make the book of practical value for engineering
purposes. To achieve this aim, I have followed the philosophy that the
most practical approach to the subject of compressible fluid mechanics
is one which combines theoretical analysis, clear physical reasoning, and
empirical results, each leaning on the other for mutual support and ad-
vancement, and the whole being greater than the sum of the parts.

The analytical developments of this book comprise two types of treat-
ments: those leading to design methods and those leading to exemplary
methods. The design methods are ditect and rapid, and easily applied
to a variety of problems. Therefore, they are suited for use in the engi-
neering office. The discussions of these design methods are detailed and
illustrative examples are often given. The exemplary methods, on the
other hand, comprise those theoretical analyses which are time consum-
ing, which generally require mathematical invention, and which are not
easily applied to a variety of problems. Such methods are primarily of
value for yielding detailed answers to a small number of typical prob-
lems. Although they are not in themselves suitable for the engineering
office, the examples which they permit to be worked out often provide
important information about the behavior of fluids in typical situations.
Thus they serve as guides to the designer in solving the many complex
problems where even the so-called design methods are not sufficient.
The treatment of exemplary methods in this book usually consists of a
brief outline of the method, together with a presentation of those results

obtained by the method which illuminate significant questions concern-
v



vi PREFACE

ing fluid motion and which help to form the vital “feel’” so desired by
designers.

In keeping with the spirit of the several foregoing remarks, all
the important results of the book have been reduced to the form
of convenient charts and tables. Unless otherwise specified, the
charts and tables are for a perfect gas with a ratio of specific heats (k)
of 1.4.

In those parts of the book dealing with fundamentals, emphasis is
placed on the introduction of new concepts in an unambiguous manner,
on securing a clear physical understanding before the undertaking of an
analysis, on the rigorous application of physical laws, and on showing
fruitful avenues of approach in analytical thinking. The remaining part
of the work proceeds at a more rapid pace befitting the technical ma-
turity of advanced students and professionals.

The work is organized in eight parts. Part I sets forth the basic con-
cepts and principles of fluid dynamics and thermodynamies from which
the remainder of the book proceeds and also introduces some funda-
mental concepts peculiar to compressible flows. In Part II is a discus-
sion of problems accessible by the most simple picture of fluid motion
—the one-dimensional analysis. Part III constitutes a summary of the
basic ideas and concepts necessary for the succeeding chapters on two-
and three-dimensional flow. Parts IV, V, and VI then present in order
comprehensive surveys of subsonic flows, of supersonic flows (including
hypersonic flow), and of mixed-subsonic-supersonic flows. In Part VII
is an exposition of unsteady one-dimensional flows. Part VIII is an
examination of the viscous and heat conduction effects in laminar and
turbulent boundary layers, and of the interaction between shock waves
and boundary layers. For those readers not already familiar with it,
the mathematical theory of characteristic curves is briefly developed in
Appendix A. Appendix B is a collection of tables which facilitate the
numerical solution of problems.

The “References and Selected Bibliography’’ at the end of each chap-
ter will, it is hoped, be a helpful guide for further study of the volumi-
nous subject. Apart from specific references cited in each chapter, the
lists include general references appropriate to the subject matter of each
chapter. The choice of references has been based primarily on clarity,
on completeness, and on the desirability of an English text, rather than
on historical priority.

My first acknowledgment is to Professor Joseph H. Keenan, to whom
I owe my first interest in the subject, and who, as teacher, friend, and
colleague, has been a source of inspiration and encouragement.

In an intangible yet real way I am indebted to my students, who have
made teaching a satisfying experience, and to my friends and colleagues
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at the Massachusetts Institute of Technology who contributed the cli-
mate of constructive criticism so conducive to creative effort.

Many individuals and organizations have been cooperative in supply-
ing me with helpful material and I hope that I have not failed to ac-
knowledge any of these at the appropriate place in the text. The Na-
tional Advisory Committee for Aeronautics and the M.I.T. Gas Turbine
Laboratory have been especially helpful along these lines.

I was fortunate in being able to place responsibility for the important
work of the drawings in the competent hands of Mr. Percy H. Lund,
who, with Miss Prudence Santoro, has been most cooperative in this
regard.

For help with the final revision and checking of the manuscript I wish
to give thanks to Dr. Bruce D. Gavril and Dr. Ralph A. Burton.

Finally, but by no means least, I must express a word of appreciation
to Sylvia, and to young Peter, Mardi, and Bunny, who, one and all,
made it possible for me to escape from the office into the somewhat less
trying atmosphere of the home, and there to carry this work forward
to its completion.

Ascuer H. SHAPIRO
Arlington, Mass.
April 4, 1953
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Chapter 1

FOUNDATIONS OF FLUID DYNAMICS

1.1. Introductory Remarks

An engineering science like fluid dynamics rests on foundations com-
prising both theory and experiment. With fluid dynamics, progress has
been especially dependent upon an intimate cross-fertilization between
the analytical and empirical branches; the experimental results being
most fruitfully interpreted in terms of theoretical reasoning, and the
analyses in turn suggesting critical and illuminating experiments which
further amplify and strengthen the theory.

The analytical branch of a science is constructed from concepts, defini-
tions, and the statements of physical laws. The latter are in terms of
the concepts and definitions and are in conformity with experimental
observations. All analyses concerning the motion of compressible fluids
must necessarily begin, either directly or indirectly, with the statements
of the four basic physical laws governing such motions. These laws,
which are independent of the nature of the particular fluid, are

(i) the law of conservation of mass
(i) Newton’s second law of motion
(iii) the first law of thermodynamics
(iv) the second law of thermodynamics

In addition to these fundamental principles, it is usually necessary to
bring into an analysis certain subsidiary laws relating to the particular
fluid or class of fluids in question. Examples are the equation of state
of a perfect gas, the proportionality law between shear stress and rate
of shear deformation in a Newtonian fluid, the Fourier law of heat
conduction, ete.

In this book emphasis is placed on the manner in which important
conclusions spring from analyses growing out of the four basic laws men-
tioned above. For this reason the first two chapters are devoted to a
review of these principles and the associated concepts and definitions.
In this way the general point of view and phraseology of the book will
be established.

Definition of a Fluid. The rigorous classification of substances in

various ways is usually thwarted because certain substances behave so
3



4 FOUNDATIONS OF FLUID DYNAMICS Ch. 1

anomalously as to defy being neatly placed in a pigeonhole. For our
present purpose, we wish principally to distinguish between the numer-
ous common substances we call fluids and such other substances as solids
and plastics.

We shall define a fluid as a substance which deforms continuously
under the action of shearing forces. When shearing forces are applied to
a solid, the latter undergoes a certain deformation which does not change
so long as the applied forces are maintained constant. A fluid, however,
whether viscous or nonviscous, exhibits relative motion between its
elementary parts so long as shearing forces are applied. Thus we say
that “‘a fluid cannot withstand shearing stresses.” jj%ﬂq o> x%

An important corollary which follows from the definition of a fluid is
the observation that if there is no relative motion within the fluid, i.e.,
if fluid particles are not deformed, then there can be no shear stresses
acting on such particles.

Liquips vs. Gases. The usual methods of attempting to distinguish
rigorously between a liquid and a gas, both of which are fluids, are futile
and indeed not of any practical use. That this is so may be seen by con-
sidering that a mass of “water’” at 1 atm and 100°C in a glass cylinder
closed by a piston may, by suitable heat transfers and motions of the
piston, be transformed to a mass of “steam’’ at 1 atm and 100°C, with-
out a meniscus once being observed! For most practical purposes the
words “liquid” and “gas’ are of value insofar as the former denotes a
fluid which generally exhibits only small percentage changes in density.

The subject matter of this book relates for the most part to highly
compressible fluids, and so we shall generally speak of gases.

The Concept of a Continuum. Matter, while seemingly continuous, is
composed of myriads of molecules in constant motion and collision.
The most fundamental approach in analyzing the motion of matter in
the aggregate is, therefore, to set down the laws of motion for each indi-
vidual molecule and to trace the history of each molecule, or of statistical
groups of molecules, subsequent to some initial state of affairs. This
approach, which usually goes under the name of kinetic theory or statis-
tical mechanics, has obvious merits, but, on the other hand, is often too
cumbersome for practical calculations.

In most engineering problems our primary interest lies not in the
motions of molecules, but rather in the gross behavior of the fluid thought
of as a continuous material. Although the postulate of a continuous
fluid is nothing but a convenient fiction, it is fortunately a valid approach
to many practical problems where only macroscopic or phenomeno-
logical information is of interest. The treatment of fluids as continua
may be said to be valid whenever the smallest volume of fluid of interest
contains 80 many molecules as to make statistical averages meaningful.
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The great simplification afforded by the concept of a continuum is
that instead of dealing with instantaneous states of innumerable mole-
cules, we deal instead with certain macroscopic properties describing
the gross behavior of the substance. In the motion of compressible
fluids the relevant properties are density, pressure, shear stress, velocity,
coefficient of viscosity, temperature, internal energy, entropy, and
coefficient of thermal conductivity. These are defined in Arts. 1.3
and 2.4.

This book concerns the motion of compressible fluids which may be
treated as continua. To avoid the impression that the methods and
results of this book are universally valid, it seems well at this point to
mention that the macroscopic approach fails whenever the mean free
path of the molecules is of comparable size with the smallest significant
dimension of the problem. Thus, whenever we deal with highly rarefied
gases (as in rocket flight at extreme altitudes, high vacuum technology,
or electronic tubes), the continuum approach of classical fluid mechanics
and thermodynamics must be abandoned in favor of the microscopic
approach of kinetic theory.

NOMENCLATURE

a acceleration u component of velocity in z-
A area direction ,
A area vector v component of velocity in y-
F force direction
F force vector 0 volume
g magnitude of body force per | V speed

unit mass v velocity
do constant of proportionality in | w mass rate of flow

Newton’s second law z,y,z Cartesian coordinates
m mass
M moment of a force, or torque
P normal force per unit area, or | v angle ,

pressure n coefficient of viscosity
r magnitude of radius vector p mass density at a point
r radius vector T tangential force per unit area,
t time or shear stress

1.2. Properties of the Continuum

We discuss here those continuum properties relevant to the laws of
motion.

Density at a Point. Consider the mass of fluid ém in a volume 80
surrounding the point P in a continuous fluid (Fig. 1.1a). The ratio
om/8 is called the average mass density of the fluid within the volume
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dU. Now suppose that at first 8V is rather large, and that it is subse-
quently shrunk about the point P. Then a plot of ém/60 versus 60
would be typified by Fig. 1.1b. At first the average density tends to
approach an asymptote as the volume encloses fluid more and more
homogeneous in nature. However, when 6U becomes so small as to
contain relatively few molecules, the average density fluctuates sub-
stantially with time as molecules pass into and out of the volume, and
80 it is impossible to speak of a definite value for §m/60. We may then
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F1a. 1.1. Definition of density at a point.

imagine the smallest volume which can be regarded as continuous to
be 61’, and then define the density at a point as
lim 1.1)
= m i .
P 50 — 50’ 60
This definition illuminates the idea of a continuum and shows the true
nature of a continuum property ‘“at a point” as a fictitious but highly
useful concept.

Fluid Velocity at a Point. The fluid velocity at a point is quite inde-
pendent of the instantaneous velocity of the molecule nearest that point.
Rather we consider the motion of the center of gravity of the volume
80’ (Fig. 1.1b) instantaneously surrounding that point, and define the
Sluid velocity at the point P as the instantaneous velocity of this center of
gravity. Thus the fluid velocity at a point is the instantaneous velocity
of the fluid particle which at that moment is passing through the point.
By fluid particle we mean here a small mass of fluid of fixed identity and
of size comparable with §U’.

Whereas density at a point is a scalar quantity, fluid velocity at
a point is a vector. After the introduction of a coordinate system,
it is therefore possible to resolve the vector velocity into three scalar
components.



