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PREFACE

The present volume is the first of three that will be published
under the general title Lectures im Abstract Algebra. These vol-
umes are based on lectures which the author has given during
~ the past ten years at the University of North Carolina, at The
- Johns Hopkins University, and at Yale University., The general
plan of the work is as follows: The present first volume gives an
introduction to abstract algebra and gives an account of most of
the important algebraic concepts. In a treatment of this type

- it is impossible to give a comprehensive account of the topics

which are introduced. Nevertheless we have tried to go beyond
the foundations and elementary properties of the algebraic sys-
‘tems. This has necessitated a certain amount of seléction and
omission. We feel that even at the present stage a deeper under-
standing of a few topics is to be preferred toa superﬁcn.al under-
standing of many. _

The second and third volumes of this work will be more special-
ized in nature and will attempt to give comprehensive accounts
of the topics which they treat. Volume II will bear the title -
Linear Algebra and will deal with the theory of vector spaces.
Volume 111, Thé Theory of Fields and Galois Theory, will be con-
cerned with the algebraic structure of fields and w1th valuations
of fields. :

All three volumes have becn planned as texts for courses. A ‘
great many exercises of varying degrees of difficulty have been
included. Some of these perhaps rate stars, but we have felt .
that the disadvantages of the system of starring difficult exercises
outweigh its advantages. ‘A few sections have been starred
(notation: *1) to indicate that these can be omitted without
jeopardizing the understanding of subsequent material.
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We are indebted to a great many friends for helpful criticisms
and encouragement during the course of preparation of this vol-
ume. Professors A. H. Clifford, G. Hochschild and R. E. Johnson,
Drs. D. T. Finkbeiner and W. H. Mills have read parts of the
manuscript and given us useful suggestions for improving it.
Drs. Finkbeiner and Mills have assisted with the proofreading.
I take this opportunity to offer my sincere thanks to all of these
men. )

N. J.
New Haven, Conir.
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Introduction

.

CONCEPTS FROM SET THEORY
'THE SYSTEM OF NATURAL NUMBERS

The purpose of this volume is to give an introduction to the
basic algebraic systems: groups, rings, fields, groups with opera-
tors, modules, and lattices. The study of these systems encom-
passes a major portion of classical algebra. Thus, in a sense our
subject matter is old. However, the axiomatic development
which we have adopted here is comparatively new. A beginner
may find our account at times uncomfortably abstract since we
do not tie ourselves down to the study of one particular system

. (e.g., the system of real numbers). Supplementary study of the
exercises and examples should help to overcome this difficulty. At
any rate, it will be obvious that much time is saved and a clearer
insight is eventually achieved by the present method.

The basic ingredients of the systems that we shall study are
sets and mappings of these sets. Notions from set theory will
occur eonstantly in our discussion. Hence, it will be useful to
consider briefly in the first part of this Introduction some of these
ideas before embarking on the study of the algebraic systems. We
shall not attempt to be completely rigorous in our sketchy account
of the elements of set theory. The reader should consult the
standard texts for systematic and detailed accounts of this sub-
Ject. Of these we single out Bourbaki’s Théorie des Ensembles as
particularly appropriate for our purposes. '

The second part of this Introduction sketches a treatment of
the system P of natural numbers as an abstract mathematical

system. The starting point here is a set and a mapping in the
1
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set (the successor mapping) that is assumed to satisfy Peano’s
axioms. By means of this, one can introduce addition, multiplica-
tion, and the relation of order in P. We shall also define the
system 7 of i integers as a certain extension of the system P of
natural numbers. Finally, we shall derive one or two arithmetic
facts concerning [/ that are indispensable in elementary group
theory.  Full accounts of the foundations of the system of natural
numbers are available in Landau’s Grundlagen der dnalysis and in
Graves’ Theory of Functions of Real Variables.

‘1. Operations on sets. We begin our discussion with a brief
survey of the fundamental concepts of the theory of sets.

Let § be an arbitrary set (or collection) of elements g, 4, ¢, -
The nature of the elements is immaterial to us. We indicate the
fact that an element-z is in § by writing se§ or Ssa. If 4
and B are two subsets of §; then we say that A is contained in
B or B contains A (notation: 4 T Bor B2 A) ifevery ain A4
is also in B.  The statement 4 = B thus means that 4 2 B and
B2 A. Also we write A DB if 4 2B but B 4. In this
case A is said to contain B properly, or B is a proper subset of A.

If 4 and B are any two subsets of §, the collection of elements
¢ such that ce 4 and ce B is called the intersection 4 N B of
A and B. More generally we can define the intersection of any
finite number of sets, and still more generally, if {4} denotes any
collection of subsets of §, then we define the intersection N.A
* as the set of elements ¢ such that ¢ e £ for every 4 in{A}. -If the
collecuon {4} is ﬁmte, so that its members can be denoted as

.41, dz, . A,., then the i mtersectmn can be written as ﬂ Ad;or

Casdy N dy N-:N 4, i

"~ Similar remarks apply to logical sums of subsets of §S. The
logical sum or unjon of the collection {4} of subsets A is the set
of elements # such that # & 4 for at least one 4 in {4}. We

n

denote this set as UA or, if the collection is finite, as U .4 or

Ay UA U---U 4. '

The collectlon of all subsets of the given set S will be denoted
as P(S). In order to avoid considering: exceptional cases it ls
.necessary to count the whole set § and the vacuous set as mem-
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bers of P(S). One may regard the latter as a zero element that
is adjoined to the collection of “real’” subsets. We use the nota-
tion g for the vacuous set. ‘The convenience of introducing this
set 1s illustrated in the use of the equation 4 N B = g to indi-
cate that 4 and B are non-overlapping, that is, they have no
elements in common. If § is a finite set of # elements, then
P(S) consists of &, »n sets containing single elements,
(”) _nr—=1)-- (n—i+,1)
7 12
so on. Hence the total number of elements in P(S) is

1+ (1) +(2) oot (n) = @+ =2” |

- 2. Product sets, mappings. If § and T are arbitrary sets, we
define the product set § X T to be, the collection of pairs (s,8),
s S, 2in T. The two sets § and T need not be distinct. In the
product § X T the elements (s,#) and (s',#'). are regarded as equal
if and only if s = &’ and ? = . Thus if § consists of the m
elements $;, 53, <+ -, $m and T consists of the » elements #, £,
ta, then 8§ X T consists of the mn elements (s;2). More
generally, if 81, g, -+, 8 are any sets, then IIS§; or §; X §3 X
- X 8, is defined to be the collection ot r-tuples {s1, 52, - -+, )
where the ith component s; is in the set ..

A (single-valued) mapping a of a set § into a set T is a corre-
spondence that associates with each s e § a single element z¢ T.
It is customary in elementary mathematlcs to write the image
in T of 5 as a(s). We shall find it more convenient to denote this
element as sa or ¢*. With the mappmg a we can associate the
subset of § X T consisting of ‘the points (s,50). “We shall call -
this set the graph of a. Its characteristic properties are: '

tey

sets containing i elements, and

1. If s is any element of S, then there is an element of the form ’
_ (s,) in the graph.
2. If (s, tl) and (s,%5) are m the graph then 1 = Iy,

A mappmg ais said tobe a mappmg of § onto T if every teT
occurs as an image of some s € . In any case we shall denote the
image set (= set of i image elements) of § under « as Sa or §*,
A mapping e of § into T is said to be 1-1 1f s1a = sqa holds only
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if 51 = 55, that is, distinct points of § have distinct images. Sup-
pose-now that « is a 1-1 mapping of § onto T. Then if £ is any
element in & there exists a unique element s in § such that
se = t. Hence if we assoctate with ¢ this element s we obtain
a mapping of T into S. We shall call this mappmg the
inverse mapping o of a. It is 1mmed1ate that ! is.1-1 of T
onto §.

It is naturai to regard two mappings « and 8 of § into T as
equal if and only if sa = s8 for all s in 8. This means that
a = B if and only if these mappings have the same graph.
. Let a be a mapping of § into T and let 8 be a mapping of T
into a third set U. The mapping that sends the element s of §
into the element (sa)B of U is called the resultant or product of
a and B. We denote this mappmg as af, so that by definition
s(af) = (sa)B.

Mappings of a-set into-itself will be called #ransformations of -
the set. Among these are iricluded the identity mapping or trans-
formatzon that leaves every element of § fixed. We denote this
mappmg as 1 (or lg if this is necessary). If ais any transforma-
tion of §, it is clear that ol = & = la. :

If @ is a 1-1 mapping of & onto T and &~ is its inverse, then
aa™! = lgand-a'a = 1. The following useful converse of this
remark is also easy to verify: If a is a mapping of § into T, and
B is a mapping of T into § such that af = 1g and Ba = 1y, then
a and B are 1-1, ontd mappings and 8 = o™, ]

The concept of a product set permits us to define the notion
of a function of two or more variables. Thus a function of two
variables in § with values in T is a mappmg of § X § into T.
More generally we can consider mappings of §; X §, into T. Of -
particular interest for us will be the mappings of § X § into S.
We shall call such mappings binzry compositiops in the set S.

3. Equivalence relations. We say that a re/ation R is defined in
a set § if, for any ordered pair of elements (2,5), 4,6 in §, we can
determine whether or not # is in the given relation to 4. More
precisely, a relation can be defined as a mapping of the set § X §
into a set consisting of two elements. We can take these to be
the words “yes” and “no.” Then if (4,8) — yes (that is, is
mapped into “yes”), we say that 4 is in the given relation to &.
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In this case we write s R4. If (a,6) — no, then we say that «
is not in the given relation to 4 and we write a R 4. '

A relation ~ (in place of R) is called an equivalence relatzon
if it satisfies the following conditions:

1. @ ~ a (reflexive property).
2. a ~ b implies & ~ 4 (symmetric property).
3. a ~ & and b ~ ¢ imply that a ~ ¢ (transitive property).

An example of an equwalence relation is obtained by letting
§ be the collection of points in the plane and by deﬁmng a~b
if 2 and % lie on the same horizontal line. If z ¢ §, it is clear that
‘the collection Z of elements 4 ~ & is the horizontal line through
the point . The collection of these lines gives a decompogition
of. the set § into non-overlapping subsets. We shall now show
that this phenomenon is typical of equivalence relations.

Let S be any set and let ~ be any equivalence relation in 8.
If ae S, let 4 denote the subset of § of elements 4 such that
b~a. Byl,aedandby?2and3,if 5, and &, e 4, then &, ~ 4,.
Hence 4 is a collection of equivalént elements. Moreover, & is a
maximal collection of this type; for, if ¢ is any element equivalent
to some 4 in 4, then c e 4. We call 3 .the equivalence class deter-
mined by (or containing) the element 2. If be4, then 5 C 3;
hence by the maximality of 4, 5 = 4. This implies the important
conclusion that any two equivalence classes are either identical
or they have a vacuous intersection. Hence, the collection of
distinct equlvalence classes gives a decompos1tlon of the set §
into hon-intersecting sets.

Conversely, suppose that a given set § is decomposed in any
way into sets 4, B, --- no two of which overlap. Then we can
define an equivalence relation in § by specifying that @ ~ & if
_ the sets 4, B containing # and & respectively are identical. It
is clear that this relation has the required -properties. Also,
obv:ously, the equivalence classes determined by tlus relation.
are just the given sets 4, B,

The collection § of equxvalence classes defined by an equlvalence
relation in § is called the guotient set of § relative to the given
relation. It should be emphasized that § is not a subset of §
but rather a subset of the collection P(S) of subsets of §. '
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There is an intimate connection between equivalence relations -
and mappings. In the first place, if § s a set and § is its quotient
set relative to an equivalence relation, then we have a natural -
mapping » of § onto §. This is defined by the rule that the
element 2 of § 1s sent into the equlvalence class @ determmed by a.
-Ewdently this. mapping is a mapplng onto . ‘

> On the other hand, suppose that we are given any mapping o
of the set § onto a second set T. Then we can use a to define
an equivalence relation, Our rule here is that 2 ~ % if ga = Za.
Clearly this satisfies the axioms 1, 2 and 3. If 4’ is an element
of T and 4 is an element of § such that aa = 4/, then the: equiva—
lence class @ 1s just the set of elements of § that are mapped into
@'. We call this set the inverse image of &’ and we denote it as

-—1( a').

Suppose now that ~ is any equwalence relation in S Wlth
quotient set §. Let a be a mapping of § onto 7 which has the
property that the inverse images o™ (4’) are logical sums of sets
belongmg to §. Thisis equ1valent to saylng that any set belong-
ing to § is contained in some inverse image a’‘a!. Hence it
means simply that, if 2 and 5 are any two elements of § such that
a ~ b, then aa = ba. It is therefore clear that the rule @ — za
defines a mappmg of § onto T. We denote -this mappmg as &
and call it the mappmg of & induced by the given mappmg a.
The defining equation 4@ = aa shows that the original mapping
is the resultant of the natural r_napping @ — 4 and the mapping
&, that is, @ = va.

This type of factorization of mappmgs will play an important
role in the sequel. It is particularly useful when the set of inverse
1mages a~1(a’) coincides with &; for, in this case, the mapping &
is 1-1. Thus if é& = %a, then g = b and 4 ~ 5. Hence & =
Thus we obtain here a factorization a = v where & is 1- 1 onto T
and » is the natural mapping.
 As an illustration of our discussion we consider thc perpen-
dicular projectlon mz of the plane § onto the x-axis 7. Here a
pomt ais sent into the foot of the perpendlcular Jjoining it to the’
x-axis. Ifa'isa point on the x-axis, =, (') is the set of pomts ‘
on the vertical line through &’. The set of inverse images is the
collcctlon of these vertlcal fines, and the induced mapping .,
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sends a vertical llne into its intersection w1th the x-axis. Clearly
this mappmg is 1-1, and 7, = »#, where » is the natural mapping
of a point into the vertlcal line containing it.

4. The natural numbers. The system of natural numbers 1, 2,
3, +++ is fundamental in algebra in two respects. In the ﬁrst
place, it serves as a starting point for constructing examplés of
more elaborate systems. Thus we shall use this system to con-
stryct the system of integers, the system of rational numbers,
of residue classes modulo an integer, etc. In .the second place,
_in studying algebraic systems, functions or mappings of the set

of natural numbers play an-important role. For example, in a
gystem in which an. associative multiplication is defined, the
powers e of a fixed 4 determine a function or mappmg n—a
of the set of natural numbers. :
We shall begin with the following assumptions (essentlally'
Peano s axioms) concerning the set P of natural numbers.

1. P is not vacuous. -
2. There exists a 1~1 mapping 4 — 4% of P into 1tself (a"‘ is

the 1mmed1ate successor of a.)

3. The set of images under the successor mapplng isa proper '
subset of P.

4, Any subset of P that contains an element that is not a
successor and that contains the successor of every element in the -
set coincides with P. This is called the axiom of induction.

All the properties that we shall state concerning P are conse-
quences of these axioms. By 3 and 4 any two elements of P
that are not successors are equal. As usual, we denote the unique
non-successor as 1. Also we set 1+ =2,2% = 3, etc.

Property 4 is the basis of proofs by the ﬁr:t principle of induc-
tion.  'This cah be stated as follows: Siuppose that for each
natural number 7 there is associated a statement E(n). Su‘ppose
that E(1) is true and that E(r*) is true whenever E(r) is true.
Then E(n) is true for all #. This follows directly from 4. Thus
let § be the set of-natural numbers, s for which E(s) is true.
This set contains 1 and it containg #* for every reS. Hence
§ = P'and this means that E(#) is true for all # in P.
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) EXERCISE
1. Prove that #t 5 » for every n.

Addition of natura! numbers is defined to be a binary composi-
tion in P such that the value x + y for the pair x,v sdtisfies

(2) 1+y=y+
“{b) xt 4y =@+t

It can be shown that such a function exists and is unique. More.-
over, one has the following basic properties:

Al x+ (y+32) = (*+3) +2z (associative law)
A2 x +y=y+=x (commutative law)
A3 x+z2=y+2 impliesthat x =y (cancellation law). =

The proofs of these results and the ones on multiplication and
order that follow will be omitted. These can be found in the
above-mentioned texts. -

Multiplication in P is a binary composition satisfying

(@) Iy =y
(b) | sty =xy + 5.

Suth a composition exists, is unique, and has the usual properties:.
M1 #(yz) = (xy)z /
M2 Xy = yx
M3 ¥z = yz implies that x = y.

Also we have the following fundamental rule connecting addition
and multiplication

D x(y +2) = xy + xz (distributive law).

‘The third fundamentai cor‘lcept in the system P is that of
order. This can be defined in terms of addition by stating that
a is greater than 4 (& > 4 or 4 < ) if the equation & = 4 + x
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has a solution for x in P. The following are the basic properties
of this relation: '

Ol x>y excludes ¥ <y (asymmetry)
02 x>y and y >3z imply x>z (transitivity)

03 For any ordered pair (x,y) one and only one of the follow-
ing holds: ¥ > y, x =y, x <y (trichotomy). (Note that this
implies O1. - We include both of these since one is often inter-
ested in systems in which O1 and O2 hold but not O3.)

O4 In any non-vacuous set of natural numbers there is a
least number, that is, a number / of the set such that / < s for
all s in the set.

Proof of O4. Let § be the given set and M the set of natural
numbers m that satisfy m < s for every seS. lisin M. Ifs
is a particular element in §, then s* > s and hence st¢gM.
‘Hence M > P. By the principle of induction there exists a
natural number / such that /e M but /+ ¢ M. Then /is the re-
quired number; for 7 < 5 for every s and /e M since otherwise
] < s for every sin §. Then'/* < s contradicting /* ¢ M.

The property O4 is called the well-ordering property of P. It
is the basis of the following second principle aof induction. Sup- .
pose that for each # e P we have a statement E(n): Suppose that
it is known that E(r) is true for a particular r if E(s) is true for
all s <r. (This implies that it is known that E(1) is true.)
Then E(n) is true for all #n. To prove this let F be the sct of
elements r such that E(r) is not true. If F is not vacuous, let £
be its least element.. Then E(¥) is not true but E(s) is true for all
s < t. 'This contradicts our assumption. Hence Fis vacuous and
E(#) 1s true for all . ' ‘

The main relations between order and addition, and order and
multiplication are given in the following statements:

OA &> bimplies and isimplied by a +¢> b+ c.

OM ¢ > 4 implies and is implied by ac > Jbe.



