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§0 INTRODUCTION.

This course falls into two different parts. The first part (Sections 1-5) is the
written version of ten lectures I gave in Nankai University in Octdber 1985. It can
be seen as an introduction to my work with J. Sjostrand ([HE—SJ]1_6) . My purpose was
to give in a simpler situation a relatively self-contained presentation of the tun-
neling effect. In fact, we have tried to refer only to the two basic bocks of Reed-
Simon [RE-SI] and Abraham-Marsden. [AB-MA] (see also Abraham-Robin for the theory
of the stable manifolds) . The material presented here comes essentially from [HE—SJ]1
but we have also used improvements that we found later in [HE-SJ ]2—6 and the proof
presented here is, at least in the form, partly different (particularly for the
B.K.W construction, where we present a simpler method, less general, but perhaps
easier to understand for non-specialists in microlocal analysis).

Almost two years later, in June 1987, I was asked to complete these notes to
permit a publication as a volume of the Springer Lecture Notes (Nankai Subseries) .
During these two years, we had applied these techniques, in collaboration with
J. Sjdstrand or through students, to many other problems where the tunneling effect
plays an important role: resonances, Schrddinger with periodic potential, Schrtdinger
with magnetic fields, etc... but it is probably too early to write a definite book
on the subject. At the same time, a very good book on the Schridinger operator by
Cycon-Froese-Kirsch-Simon [C.F.K.S] has appeared. We have therefore chosen to
present in § 6 and § 7 subjects which are complementary to this bock and which are
natural applications of the theory developed in the first 5 sections.

This book is organized as follows.

In § 1, we present a brief survey of semi-classical mechanics and recall basic facts
on the Schrdinger operator. This material is more developed in the recent bock by

D. Robert [Ro] which we recommend to the reader interested in pseudodifferential
techniques.

§ 2 is concerned with the B.K.W construction at the bottom. In § 3, we study the
decay of the eigenfunctions in the spirit of Agmon [AG]. These results were developed
in the semi-classical context by B. Simon [SI], , and B. Helffer-J. Sjostrand
[HE-ST]4 _g-
§ 4 is concerned with the interaction between different wells. This is a mathema-
tical version of the well-known L.C.A.O method used by chemists.

In § 5, we present briefly the application to Witten’s proof of the Morse inequali-
ties [WIT]. There is an intersection with one chapter of the bock [C.F .K.S] but we
have tried to go a little further using the techniques of sections 2,3,4, however
we still remain far from the best results (related to the method of instantons) ob-
tained in [HE-SJ] 4- In § 6, we study the asymptotic behavior of the first band of
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the Schrodinger operator with periodic potentials and present results obtained by
B.Simon [SI]; and A. Outassourt [OU].

§ 7 is devoted to the study of same classical problems on the Schrcinger operator
with magnetic fields: criteria for the compactness of the resolvent (after Helffer-
Mohamed) [HE-MO] ), multiplicity of the first eigenvalue (after Avron-Herbst-Simon
[A-H-S], Lavine-O'Carroll [LA, O'CA], Helffer-Sjostrand [HE-SJ],'0 and Helffer
[HE]) , effect of the flux of the magnetic field [H:E]3) . The study of these problems
is only beginning and we just give a flavor of some of the prcblems (see also the
chapter in [C.F.K.S] devoted to these questions) .

I have many people to thank at the end of this introduction. First of all the
Universities of Wuhan and Nankai which organized this course in October 1985 with
the help of the French "Ministére des Relations Extérieures" and particularly
Professors Chi Min-yu, Wang Rou-hai and S.S. Chern.

I want also to thank J. Sjdstrand and D. Robert with whom I have collaborated in
this field, M. Dauge who read a part of the text and C. Brunet and M. Coignac who
typed the manuscript.

For the reader who does not appreciate my poor English, let me mention in closing
that there exists a Chinese version of this course, written up by Professor

Chi Min-yu and his students.
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§1 GENERALITIES ON SEMI-CLASSICAL ANALYSIS.

The purpose of the semi-classical analysis is to understand, from a mathematical point
of view, the general correspondance principle of the Quantum mechanics saying that,
when the Planck constant h tends to zero, we must recover, starting from the Quantum
mechanics, the classical mechanics. The best references for this section are for example :
Fedoryuk-Maslov [FE-MA], D. Robert [RO], J. Leray [LE] for the semi-classical aspects,
Arnold [AR] and Abraham-Marsden [AB-MA] for the classical mechanics and Reed-Simon
[RE-SI] for the study of the Schrddinger Operator.

§1.1 - The Classical mechanics (See section 3.3 in [AB-MA]).

In the most simple cases, the classical mechanics describes the motion of a point x(t)

In a space er:( (x is the position) and more generally in a Cc® manifold M. But adding
the i*mpulsion £(t) of the point , we pref*er to work iIn (Rr)‘( 3 (Rz and more intrinsically
in T M the cotangent bundle to M. T M is a symplectic manifold, that means that
we have on ™ M a canonical non-degenerate, closed 2 -form w. In the case of

T R" , wis defined by :

(1.1.1) =T Ealid x.

j ) J
In the case of "M oot (Xj) is a system of local coordinates and (gj) is the dual system
of coordinates, w can be written in the same way.
More generally, if ® is a symplectic manifold of dimension 2n, we can always find locally
a system of coordinates (x,E) s.t w is defined by (l.1.1). These coordinates are called
the canonical coordinates.
In Hamiltonian Mechanics, the motion is described by a c” function on T* M = @ called

the hamiltonian :

(1.1.2) (x,€) > p(x,£)

Associated to this hamiltonian, we define the hamiltonian vector Hp on  , which is

given in canonical coordinates by :

T ap
(1.1.3) H = (3% e )

The motion of a point in Q is described by the integral curves of Hp (called the bicharac-

teristics) which are the solutions of the system :

% :‘g‘% (X’E) X(O,y,n) & y
(1.1.4)
%% = ‘%E (x,8) £(0,y,n) =N

:
1
3
;
1




It is not our purpose to give here precise existence theorems for the equations (l.1.4), but
it is well-known that at least locally and for |t| small, the solutions exist and we can

define the Hamiltonian flow ¢t Dy
(1.1-5) ¢t(y,ﬂ) = (x(t,)’,ﬂ),i(t,y,n))

We are mainly interested in these lectures by the Hamiltonian :
P(Xrg) = Ez az V(X) 2
In the case where M is a Riemannian manifold, if G = glJ is the matrix of the metric

in the coordinates x, we define G_l = g.. and we must define E? as s

1j

(1.1.6) £

Then the motion is given (in the case of R") by :

dx _ HE- oY
(11.7) RN pram

so we recover the classical equation of the motion in M :

d? vV
(1.1-8) d—tx,-:—z ﬁ':-ZgradV

2
(the number 2 appears because usually one takes p(x,f) = % + V(x))

§1.2 - The Quantum Mechanics

One of the problems is to find a natural Hilbert space. Here, because, we consider only
the case when Q = ;i M, the natural choice is L?(M) (where the measure is the canonical
measure associated to the Riemannian Structure ; because we consider only the case
M = R" or the case M = compact C® Manifold, L2%(M) is complete). We need also a
dense subspace (usually C™(M) if M is compact and Cc(; (R™ or #(R™ in the case of R™).

Let us consider the case of R". Under some conditions on p (See [HO]J, the Weyl-Calculus,

for a general point of view), we associate to the Hamiltonian p an operator a priori
defined on F(R") by the so-called Weyl Quantification :
p »0pV(p) = pV(x,h D)

!
& T <x-y,&>
Opw(p).f SRR T pl ZE_X ,E) f(y) dy dE
(1.2.1) for f € 3(R") , h€10,h,] :
with the convention d€ = (2m™" dg

via a theory of pseudodifferential operators on ® . : 3

I | O R



This choice is not the only possible but it is very convenient because you get for example

that, if p is real, Opw(p) is formally self-adjoint, that means :

(1220 (YhD) uV) = (] p(x,hDIV) Vue F(RM
Yve (R

where ( / ) denotes the L? scalar product.

For our purpose, we are interested in the extension of this formally self-adjoint operator
defined on £ (R") as a self-adjoint non-bounded operator on L( R"). When this extension
exists and is unique, pW(x,hD) is called essentially self-adjoint. General criteria to verify
that pW(x,hD) is essentially self-adjoint for h small enough are given in the more general

context of the " admissible operators " (associated to hamiltonians depending on h
poEh)~ I b p(x,D)
=0

are given in [RO]3 and [HE-RO]l 03"

In the case of a Riemannian Manifold, the h-pseudodifferential calculus can also be
defined but you lose the notion of the ‘Weyl-Calculus at least if you don't add a group
structure (See [MELI]). But, in these lectures, we will be mainly interested in the study
of the Schrédinger operator associated to the Hamiltonian g7 + V(x), where V is a C” real

function. In this particular case, there is a natural quantification given by the geometry.

We associate to E? the Laplace-Beltrami operator on the Manifold M h%(-A) = h?(d*+d)?,

which is given in coordinates by :

(1.2.3) -h* A=-h* I /g

o g
iyj BX-l /2 i a

)

where g = (det G)
and we get the Schrédinger operator :

(1.2.4) S hi Ae ¥

which is formally self-adjoint on CQS (M) where the scalar product is given by

-1/2

(uv) > S u.vg '“dx for uand v with support in the chart.

§1.3 - Some basic results on the Schrédinger operators

In the case where M is a C* compact riemannian manifold, the Schrddinger operator
(-h? A+ V) defined on C® (M) by (1.2.3) has a unique self-adjoint extension whose domain
is the Sobolev space H?(M). Then we know that the injection of H?*(M) in L*(M) is compact.
In this case, it is well-known that we have a orthonormal basis of L?(M) constituted

by eigenfunctions (in C~ (M)) (pj(h) . (j € IN) satisfying to :

g




(-h* 8+ V) g(h) = Ah) ¢,(h)
(1.3.1)

Ah) €2 (h)

j+l(
Moreover, for h fixed, A.(h)——

j > o
The spectrum of the Schrédinger operator onanon compact manifold is more complicate.

bt % 2 = n i 3
We will restrict ourselves in these notes in the case of @R and we assume in this

case that the following hypothesis is satisfied for some constant Co :

(1.3.2) Ver (W), V.3-Cy

Under this hypothesis, one can define a self-adjoint operator on L?*( R") by taking the
Friedrichs extension starting of CGS (®R™). Moreover this is the unique self-adjoint exten-
sion of - h? A+ V starting of CE (R") (See [RE-SI] Vol. 1I, Th. X.28 and p. 340 ex 24).

Let us define :

1:3.3) Ce lim V

W=

Then, the restriction of the spectrum to J-o ,C[ is constituted of eigenvalues with finite
multiplicity (See Reed-Simon[RE-SI], § XIIL4 Cor. 2 p. 113 and Th. XIIL16).

In the future, we make the convention that C = + in the compact case.

As an example of a semi-classical result we shall need after, let us present a spectral
result.

For A <C, let us define :

(1.3.4) N = {# j, )\j(h) <A}

The problem is to study the asymptotic behavior of Nh()‘) when h tends to 0. It is a

classical result that :

f n
(1.3.5) tho hENGO) = Sz yan 9% d

(See [RE-SI], [HE-RO], [CDV] for references).

In the last years, many mathematicians have tried to give the best estimate for :
n
(13.6) RO =h"NO) - Sz ygq dxdE

Let us give the best known theorem




Theorem 1.3.1
Let V verifying (1.3.2).
Suppose that A <C and that A is not a critical value for V then :

(1L37) R, O) = 0(h)

S—

This theorem is proved in the compact case by Colin de Verdiere [C.D. V] In the case
pERY Rh()‘) oh3) was proved by Tulovski- Subin [SU] (for £ < 1/2), Hormander [HO]
(2 < 2/3), Combes-Schrader-Seiler [C.S.S], and Helffer-Robert [HE- RO]3 but always
under additionnal hypothesis of the potential of the following type :

ae, s.t B V] g C (V+Cy+ 1)
(1.3.8)
IiDM st V()| ¢ D(V(y) + Cy + D) (1 + |x-y )M

Vxe ;Rn,vye r"

Ivrii has announced theorem 1.3.1. without hypothesis (1.3.8). We shall explain in section
4.2, Remark 4.2.4. how to deduce the Theorem 1.3.1. in the general case from the Theo-

rem (1.3.1) in the particular casewhere (1.3.8) is satisfied.

Remark 1.3.2

In the following we need only a weak version of (1.3.5) :
Ny
(1.3.9) N O) = 6(h ) for some N.

but also in the study of Dirichlet problems.
This type of results is an easy consequence of the min-max principle ((RE-SI] Vol. 1V,
Th. XIII.1 and XIIL.2 and probl. 1 p. 364) which gives, if A & _ lim VO , the inequality :

Tx[+=
\ \

3.0 NPweNla i vy v

e |

Remark 1.3.3

One could think that it is rather stupid to improve the estimate of Rh(A).

But O(h) is an important step because this estimate cannot be improved without adding
extra-hypotheses on the flow ¢, on the energy level : €2 + V = X . Ivrii [IV] and V. Petkov-
-D. Robert [PE-RO] have given conditions to get 0(h).

Remark 1.3.4
Interesting questions remain, in the case of Magnetic fields, that means for operators

of the type :




P(h) = -

1 ™M3

e 2

: 1(hZ)xj 1aj) ¥y
We refer to papers of Avron-Herbst-Simon [A.H;S], J.M. Combes - R. Schrader - R. Seiler
[C.S.S], D. Robert [RO]2 , B. Simon [SI]l and more recently to three papers of H. Tamura
[TA], J.P. Demailly [DE] and Y. Colin de Verdiere [C.D.V]z.
Another interesting point is that you can get, under convenient hypotheses, a compact
resolvant without the hypotheses that V + .
For example, one can deduce from my results with Nourrigat [HE-NO] that, if

N

Ve B qhilx)
i=1 !

and if the vector space of the polynomials generated by the 3?( q contains all the poly-

nomials of d° I, the resolvant is compact.
. - 2 2 2.
Example : V = x ) on R X%,

The estimate of Nh()\) (for A + = (h fixed) or h » 0 (A fixed)) is a difficult task in general
(See for particular cases [RO]2 - [SI]6 X
Another interesting example is :

- - 2 -
(h 95 x’z) (h 3y )? o+ x’l

1 2

which is also with compact resolvant.

Remark 1.3.5.

There are many papers studying the asymptotic behavior of Nh()‘) when ) tends to .

I prefer to refer to my book [HE] where many references are given.




§2 B.K.W CONSTRUCTION FOR A POTENTIAL NEAR THE BOTTOM IN
THE CASE OF NON-DEGENERATE MINIMA.

In all this section, we work with some > potential V which admits a local non-degene-
rate minimum at a point.

By changing of coordinates, we can suppose that :

(2.0) v(0) = 0, V'(0) = 0, V"(0) >0

where V"(0) is the Hessian of V at 0.

In this section we will not try to follow the most direct way to get the results but

we prefer to see how the different technics work.

§.2.1 - The Harmonic oscillator

Before to study the general situation, it is convenient to recall the basic properties
of the Harmonic oscillator.

I:et us consider in R" :
n n

£2:11) Po(h) =- % h=— + I . x% with “j> 0
j=1 i e

This is of course a Schrédinger operator whose potential is given by :

2.2 \' P e T
( ) O(x) j Mj X

Let us recall very briefly how to compute the spectrum and the eigenfunctions of Po (h).

2
Step 1 The spectrum of (- d—gr + x2) is constituted by eigenvalues (2j+1) (j € zh.

-x2/2

The first eigenfunction is given by (-72TI)'1 e = up(x)

The (j+1)th eigenfunction uj corresponding to the eigenvalue (2j+1) is deduced from Uiy

by the relation :
2 d
2.1:3) uj(x) 2 e (- - r X) uj_y where % >0

and is chosen to normalize uj 3

You get easily that :
2
@214 u =P . 2

where Pi(X) is a polynomial of order j

Step: 2 By easy manipulations, you get that the spectrum of Po(l) is given by




(2.1.5) Ay =

=

@(Zaju) c e gy

j=1

with corresponding eigenfunction

n
e /E ij/Z
- 1/4 1/4 j=1 -1/8
(2.1.6) u.a(x) = Pal(ul xl) Sk s Pan(un xn) .e . (pl A pn)
Step 3 We observe now that if ¥(x) is a normalized eigenfunction for P(1) associated

to the eigenvalues X, ¥(x/ vh) . h_n/q is a normalized eigenfunction for Po(h) associated
to the eigenvalue \h. We then get finally that the eigenvalues of Po(h) are given by :

n
@17 AW =hA M= (2 A @as)h @e (2"
j=1
with corresponding eigenfunction :
n
s /ﬁxzj/zru
T N R L R g e T
i Qa a /R 1 n IR
We keep from (2.1.8) that ua(h)(x) has the following form :
-9n(x)/h
@219 umw=n""a e °
a )
where
' T TR
B -3 —L—1
j=1
(2.1.11) aa(x,h) = €y h-|a|/2 [x*+ z CEY xB hY 1 with ¢ £0O
18l <lal
|8lexi ol

Let us also remark that cpo(x) satisfies to the " eiconal " equation :
(2:1.12) |cho(x)|2 = Volx)

§.2.2 - Approximate solutions starting from the Harmonic oscillator.

For a more sophisticated version in this spirit, we refer to B. Simon [SI]2 (and to his

references). We make the hypothesis (2.0), and suppose moreover that :

My 0
(2.2.1) Vi =2 ( ) ; p. > 0
0

]
by



and we suppose (See 1.2.3) that the metric is chosen s.t :

(2.2.2) gl gij(X) = Gij + 0(|x|)

To simplify, we shall only look at the first eigenvalue of the Schrodinger operator :

P(h) = -h? A+ V  (see 1.2.3).
Then starting from :

-nfu P
L

uo(h)(x) = ¢cyh (c0 t0)

(2:2.3)
5ot Iuo(h)l =

we introduce, for € > 0 fixed sufficiently small :
(2.2.4) ‘l’o(h)(x) = xs(cpo(x)) : uo(h)(x)
where X is a C~ function s.t Xe(t) =1 for tel[-e/2,+¢/2], and supp X cl-gel
Let us look now at :
P(h)(¥,(h)(x)
We have :
225 PO = Agh) ¥h)(x) + Ry(h)x) + R (W)
with
(22.6)  Ryh)x) = [Px] (ug(h)x)
2:2.7) Rl(h)(X) = xe(P—Po(h))(uo(h)(x))
It is immediate to see that :
-n/4 . e-€/4h

22.8)  IRyOW®] . <Ch

Let us look now at Rl(h)(x) which is the sum of two terms :

o = 2 _d__
Ry (R0 = - X (2 oo

(g.() - g.(0) =3-) un(h)x)
i,j ij 1j dxj 0

and

Rll(h)(x) - X€(<Po(x)) (V(x) - Vo(x)) uo(h)(x)
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Using (2.2.2) and the property (V(x)-V(x)) = 0(|x|?)

we have to estimate in the L?*-norm
@ = h? 0(|x]) G u () (g6
o dx dx; o B Ba Wy

®) = h? G ug®e) - x (@00
1

and
© = 0(]x]) - ugh)9 « X (90N

-2¢,(x)/h -2¢,(x)/h
@17 . <C h V2 Hutile dx + C h2M2 ¢ hjte T W
R R
-2¢,(x)/h
[®]? 2 <C RVZ e e o
®R"
-2¢,(x)/h
n(c)“sz <C pn/2 T ot 0 dx
R"
and we get easily that :
@)%+ |®]2+ [©]? <€ n’
229  |R, (X . <T n3/2
We remark also very easily that :
(2.2.10) ¥l 2 = 1 + 6"
Finally, we get a C* function ‘i’o(h)(x) St e
@211 (PO -2, () ¥lah) = 602 |y in LAR"

Suppose now that

2:2.02) lim V>0

then using a well known property of the self-adjoint operators :
(2.2.13)  dO,Sp P()) Jul; . <[ PO)Nu], .
for A € € and where Sp P(h) is the spectrum of P(h), we get from (2.2.11) that :

22.18)  dOyh),Sp P(h) <T . h*/2

i
i
i
i
,
-
;
1
i
!
{



