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Chapter 1

Superﬁuzds and
Macroscopic Quantization

1.1 Basic properties of liquid He*

The two isotopes of helium have the lowest normal boiling points of all known
substances, 421 K for He* and 3-19 K for He?. When the temperature is reduced
further, both He? and He® remain liquid under the saturated vapour pressure, and
would apparently do so right down to absolute zero. To produce the solid phases
requires application of a rather high pressure, 25 atmospheres or more (Figs. 1.1
and 1.2). ' '

This reluctance of helium to condense arises from a combination of two factors.
the low mass of the atoms and the extremely weak forces between them. The forces
are weak because of the simplicity and symmetry of the helium atom with its
closed shell of two electrons and the absence of dipole moments except for the
small magnetic moment of the He® nucleus. The effect of low atomic mass is (o
ensure a high value of zero-point energy, as may be seen from the following
argument. '

At a given instant of time, one particular atom in liquid He* occupies a certain
volume bounded by the atoms immediately surrounding it. Owing to the motion
of the atoms, this volume varies, but we can say that, on average, the atom is.
contained within a sphere of volume equal to the atomic volume V,, and that the

sphere has radius R~ V}/3. From the quantum-mechanical uncertainty relation, it
can be inferred that a particle inside such a cavity has an uncertainty in its
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i 11 Phase diagram of He* (after London 1954).

momentum Ap ~ i/ R, and, consequently, that it possesses kinetic energy of locali-
zation, or zero-point energy, E o~ (Ap)?/2m, ~ h?/2m, R?, where m, is the mass of a
He* atom. In terms of the atomic volume E ,~ h?/2m, V'3 and this dependence of
E,upon V, is shown schematically in Fig. 1.3. Calculation of the potential energy
of the liquid is not easy, and depends upon the choice of model interaction
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Fi. 1.2 Phase diagram of He? (after Grilly and Mills 1959). Hatched area shows region of negative
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F1G. 1.3 Energy of liquid helium. Total energy is sum of potential energy and zero-point energy.

between two atoms, but it will have the general form of the lowest curve in Fig. 1.3.
Because m, is small, the zero-point energy is comparable in magnitude to the
minimum in the potential-energy curve. The result is that the total energy of the
liquid reaches a minimum at a considerably greater atomic volume than
the potential-energy minimum. Thus the interatomic forces a.e strong enough to
produce the liquid phase at a low enough temperature, but the high zero-point
energy keeps the density of the liquid rather small.

This qualitative argument may be extended to the formation of solid helium.
The potential minimum-for a lattice will occur at smaller atomic volume than for
the liquid (Fig. 1.3), but here the zero-point energy is 5o large that the lattice is
unstable unless a large external pressure is applied. The arguments we have used
apply equally to liquid He®, which has a lower atomic mass and in which the
effects of zero-point energy are consequently even greater. Hydrogen is not
comparable because the H, molecule is much more easily polarized than the
single He atom, with the result that the van der Waals force between two H,
molecules is twelve times stronger than that between two He atoms. In hydrogen,
therefore, the binding forces far outweigh the zero-point energy and the solid
phase is the stable one at absolute zero. Since all other substances are heavier than
hydrogen and have stronger van der Waals interactions, it follows that helium is
unique in remaining liquid at indefinitely low temperatures.

Immediately below their respective boiling points, both He? and He* behave as
ordinary liquids with small viscosity. However, at 2:17 K liquid He* undergoes a
change which is not shared by He?3. This transition is signalled by a specific heat
anomaly, whose characteristic shape (Fig. 1.4) has led to the name /-point being
given to the temperature (T ;) at which it occurs. Furthermore, observation of the
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liquid at the instant that its temperature is reduced below T , reveals a remarkable
alteration in its appearance. Liquid helium is maintained at temperatures blow
42K by lowering the vapour pressure above the helium bath so that boiling
occurs under reduced pressure. Above T'; bubbles of vapour form within the bulk
of the liquid in the customary way and the whole liquid is violently agitated as
these rise to the free surface and escape. On the other hand, as soon as the
transition point is reached, the liquid becomes quite still and no more bubbles are
formed. We infer that T, marks the transition between two different forms of
liguid He®, known conventionally as Helium I above the A-point and Helium II
below it. On the phase diagram (Fig. 151) the regions in which the two forms are
stabie are separated by a broken line, which is not quite vertical, indicating that
the transition temperature is lowered when the pressure is increased. The fact that
He Il is very different from Hel, liquid He? and all other liquids. will become clear
as we describe its thermal and flow properties. In §1.3 we shall return to the
A-transition, which occupies a crucial place in the macroscopic theory of liquid
He*.

Experiments to determine the viscosity of He II can be divided into two classes:
those designed to measure viscous resistance to flow, and those which detect the
viscous drag on a body moving in the liquid. The results shown in Fig. 1.5 are
typical of the former; the flow velocity through narrow channels of width varying
between 0-1um and 4 um is found to be almost independent of the pressure
gradient along the channel. This suggests that the viscosity of HelIl is virtually
zero, a conclusion that is supported by the persistent-current experiments of
Reppy and Depatie (1964). In these a torus-shaped vessél was packed with porous
material to provide very narrow channels for the liquid. The torus was rotated
about its axis of symmetry and then brought to rest, after which the He [l
continued to flow, showing no reduction in angular velocity over a twelve-hour
period, and indicating that He Il can flow without dissipation.

On the other hand, experiments using oscillating disks (e.g. Keesom and
MacWood, 1938), vibrating wires (Tough, McCormick and Dash, 1963), and
rotation viscometers (e.g. Woods and Hollis Hallett, 1963; Fig. 1.6 in this book)
demonstrate the existence of a visgous drag, consistent with a viscosity coefficient
not much less than that of He* gas. It seems that He Il is capable of being both
viscous and non-viscous at the same time. This apparent contradiction is the
essence of the two-fluid model, first suggested by Tisza (1938), in terms of which
many of the properties of He Il can be explained. According to this model, He IT
behaves as if it were a ‘mixture’ of two liquids, one, the normal fluid, possessing an
ordinary viscosity, and the other, the superfluid, being capable of frictioniess flow
past obstacles and through narrow channels. To avoid any misunderstanding, it

- must be clearly stated at the outset that the two fluids cannot be physically

separated; it is not permissible even to regard some atoms as-belonging to the
normal fluid and the remainder to the superfluid, since all He* atoms are identical.
We therefore state the assumptions of the two-fluid model in the following way.
Below T, liquid He®* is capable of two different motions at the same instant.
Each of these has its own local velocity, respectlvely v, and v, for the normal fluid
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F1G. 1.6 Viscosity of Hell measured in a rotation viscometer (Woods and Hollis Hallett 1963).

and the superfluid; likewise each has its own effective mass density, p,and p. The
total density p of the Hell is therefore given by

p=patps (1.1)
and the total current density by

1= PaVatpgVe (1.2)

This approach in which the two fluids are treated independently is most useful
when the velocities are small. At higher velocities, the superfluid flow becomes
dissipative, the normal fluid exhibits turbulence, and there is the possibility of
interaction between the two. When these factors are allowed for, the two-fluid
equations become rather complicated.

The validity of the two-fluid model is most strikingly demonstrated in the
experiment devised by Andronikashvili (1946). He used a pile of equally spaced
thin metal disks (Fig. 1.7), suspended by a torsion fibre so that they were able to
perform oscillations in liquid helium. The disk spacing was sufficiently small to
ensure that above T, all the fluid between the disks was dragged with them.
However, below T, the period of oscillation decreased sharply, indicating that not
all the fluid in the spaces was being entrained by the disks. This result confirmed
the prediction that the superfluid fraction would have no effect on the torsion
pendulum. The experiment gave a direct method of measuring the variation of
pn/p with temperature (Fig. 1.7), and by inference p,/p. We note that Hell is
almost entirely superfluid below 1 K.
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FiG. 1.7 Andronikashvili’s experiment (after Atkins 1959).

Another example of the flow properties of liquid He* below the A-point is
provided by the film which covers the exposed surface of a body partially im-
mersed in He I1. Adsorption on a surface in contact with any liquid or its saturated
vapour is common enough, but He Il films are unusually thick. Optical measure-
ments (Jackson and Grimes, 1958) revealed that a typical thickness under sa-
turated vapour is 30nm or about 100 atomic layers, sufficiently wide to permit
superfluid flow through the film. Owing to the presence of the film on its walls, an
empty beaker lowered into a He Il bath begins to fill with bulk liquid, even though
the rim is kept well above the bath surface (Fig. 1.8). Filling continues until the
inner level reaches the level of the bath, at which point it stops. If the beaker is now
raised, it empties itself again, and if it is raised clear of the bath, drops are seen to
fall from the base of the beaker. We conclude that the superfluid fraction flows
through the film whenever there is a height difference between the two bulk liquid
levels. In other words, the film acts like a siphon, the driving force for the
superfluid being provided by the gravitational potential difference between the
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FiG. 1.8 Film flow of Hell over the walls of a beaker.

ends of the film. By observing the rate at which the beaker liquid level changes,
the superfluid velocity may be determined: a typical value is 20ems™ . On
the other hand, by virtue of its viscosity, the normal fiuid fraction is almost
stationary in the film. We shall discuss film flow in greater detail in Chapter 2.

Early experiments-designed to measure the thermal conductivity of He I1 showed
thatitis very high, tending to infinity for small heat currents. In fact it is impossible
to cstablish a temperature gradient in the bulk liquid, a resvl. vhich explains the
sudden cessation of bmlmg as the liquid is cooled through 7°,. In ordinary liquids,
a bubble is formed when the local temperature is sufficiently greater than that at
the free surface. In He II, supposing that a large enough temperature fluctuation

- were to occur, it would decay so quickly that a bubble would not appear. Thus
evaporation of Hell takes place only at the fres surface. -

A temperature gradient can be set up betv :a two volumes of buik Hell
provided that they are connected only by 2 superleak, that is a channel through
which the superfluid can flow, but not the normal fluid. A common form of
superleak is a tube packed tightly with fine powder: the spaces between the
particles form winding channels of varying width (typically ~100nm) which
allow the superfluid to pass and clamp the normal fluid. If heat is supphed to one
side of the superleak, a pressure head is set up as well as a temperature difference
(Fig. 1.9). This happens because the superfluid fraction flows Sen. the low-
temperature side to the high-temperature side of the supcrieak. Since p,/p
increascs with decreasing temperature, we infer that the superfluid moves to the
region-of higher temperature in order to reduce the temperature gradient.

- A dramatic demonstration of this effect is furnished by the so-called helium
fountain, first seen by Allen and Jones (1938) (Fig. 1.10). The superleak in this case
is a wide tube containing emery powder. One end is open to the He 1l bath, while -
the other is joined to'a vertical capiilary. When the emery powder is heated, the
superfluid-flows into the superleak with such speed that He IT is forced out of the
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FiG. 1.9 Two vessels connected by a superleak. A temperature difference between the two is
accompanied By a pressure head.

capillary tube in a jet. The heat provided by.a small hand torch is sufficient to
produce a fountain rising to heights of 30 or 40 cm.

Fic. 1.10 The helium fountain (Wilks 1967, after Allen and Jones 1938).

These manifestations of the thermomechanical effect show clearly that heat
transfer and mass transfer in He II are inseparable. The steady supply of heat to
the bulk liguid, achieved for example by passing direct current through a resistor,
and its removal elsewhere into a constant-temperature reservoir causes internal
convection (Fig. 1.11). Normal fluid flows from the source to the sink of heat,
whilst superfluid flows in the opposite direction, under the constraint that the total
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density remains constant everywhere. Thus heat is not transferred in He I by the
ordinary processes of conduction and simple convection of the whole fluid. Only

the normal fluid fraction carries heat: superfluid flow by itself cannot transport
heat.

H -~ —m e~ .
T T+ar T
Normal Superfluid
component component

Fic. .11 Internal convection in Hell. Heat is supplied by heater H and temperatures are held
constant.

When the heat supply to He Il is made to vary periodicalily, by passing alternat-
ing current through the resistor, the two fluids oscillate in antiphase with one
another. Once more, this has no effect on the total density p which remains
uniform throughout. The result is that the local value of the ratio Py p, and
consequently the local temperature, undergo oscillations. In this way He I1 is ablc
to propagate temperature waves, which are given the name second sound to
distinguish them from first sound, the ordinary longitudinal pressure wavesinvolv-
ing fluctuations in the total density at constant temperature. Provided that the rate
of heat supply is not too large, and the frequency not too high, second-sound
waves are propagated with virtually no attenuation. We shall discuss second
sound in more detail after we have introduced the two-fluid hydrodynamic
equations in Chapter 2.

The behaviour of He II when set into rotation can be described in terms of the
two-fluid model, but this is a much more complicated situation than the properties
we have described so far, and, for instance, it is not possible to ignore the
interaction between the two components. In a rotating vessel, the normal fluid
behaves in the expected way, undergoing solid-body rotation. The superfluid
fraction appears to do the same, but in reality it experiences vortex motion. A
series of vortex lines threads the fluid in the rotating vessel. Superfluid rotates
round each line. the angular momentum associated with each vortex being
quantized. The occurrence of vortices in the superfluid is not limited to the case of
a rotating vessel; indeed it is extremely easy for vortices to be created in many
situations involving superflow. Vortices in liquid helium will be discussed fully in
Chapter 4.

To conclude this introductory section, we turn our attention to the entropy of
Hell. Looking again at the phase diagram for He* (Fig. 1.1), we see that the
melting curve is steep for T> T, but that it changes its slope rapidly below T,
eventually becoming horizontal as T—0. The gradient of the melting curve is
determined by the appropriate Clausius- Clapeyron equation:
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where X is entropy and V is volume, and the subscripts have obvious meanings.
Above the A-point AZ is large, but immediately below T, it decreases quickly to
become virtually zero for all temperatures below 1 K. In this range, therefore, the
liquid cannot lose entropy by solidifying, and the liquid phase is the stable one
when the temperature is very close to zero. We conclude that Z,,,—»0as T—0, in
agreement with the Third Law of Thermodynamics. In view of the experimental
evidence that also p/p—1 as T—0, we conclude that at absolute zero Hell is
entirely superfluid and possesses zero entropy. In consequence, it is logical to
assume that at finite temperatures the superfluid fraction carries no entropy.
Indeed, this is an alternative way of saying that the superfluid can flow without
dissipation, since any dissipative process invariably involves entropy production.
Thus the entropy of Hell is confined to the normal fluid, as might be expected
after discussing internal convection, in which the normal fluid is responsible for
the transport of heat.

It is clear that the pure supertluid constitutes the ground state of He I. The He*
atom has a resultant spin of zero, and is therefore a boson; an assembly of He*
atomsis governed by Bose—Einstein statistics. As is well known, an ideal boson gas
of particles with non-zero rest mass exhibits the phenomenon known as the
Bose—Einstein condensation. At low temperatures, the particles tend to crowd in to
the same quantum state, the lowest single-particle energy level of the system,
forming a condensate. The condensation begins at a certain critical temperature
and is complete at absolute zero. It seems certain that liquid He* behavesin a very
similar way. The A-point is the temperature which marks the onset of condensa-
tion, and the condensate is associated with the superfluid fraction of He II. We
shall discuss the Bose Einstein condensation in § 1.3. Before that, in §1.2. we
introduce the basic properties of superconductors, and then lager on in the chapter
we shall describe how the idea of a condensate can be applied to both superfiuid
helium and superconductors.

1.2 Basic properties of superconductors

Superconductivity is a phenomenon with many features in common with the
superflow of He I1. One immediate difference is that there are many metals which
become superconducting at a sufficiently low temperature, whereas superfiow in a
liquid is unique to He I1. The simplest property of the superconducting state is that
it is one in which an electric current, if it is small enough. can flow without a
voltage appearing; this is analogous to the superflow of Hell through a thin
channel or a surface film. Superconductivity is characterized by a critical tempera-
ture T.: the resistance of a superconducting wire drops to zero more or less
discontinuously at T .. It is believed that the superconducting state really is a state
of zero resistance, and not simply a state of very low resistance. An elegant way of
demonstrating that the currents do flow without resistance is to suspend a bar
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magnet above a concave superconducting dish. The induced supercurrents act to
repel the magnet, and it stays suspended indefinitely. Shoenberg’s book (1952)
contains a photograph of this experiment, which of course resembles the persistent
superflow of Hell in a torus.

The transition to superconductivity is a virtuaily perfect second-order phase
transition; that is, there is no latent heat, and a sharp finite discontinuity in the
specific heat. Figure 1.12 shows the specific heat as a function of temperature for
Nb, which is typical. This almost ideal behaviour of the specific heat in supercon-
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Fic. .12 Specific heat of Nb. Normal state values are measured in a magnetic field greater than
(After Brown et al., 1953))

ductors contrasts with the 2 anomaly in helium (Fig. 1.4). We shali see in Chapter 4
that both the superfiuid and superconducting states are characterized by a range
of coherence &, which however is muych shorter in He I than in superconductors;
the behaviour of the specific heat is governed by the coherence range, in a way that
we shall discuss in §6.9.

Because so many materials undergo a transition to superconductivity, any
discussion of the subject is inevitably complicated to some extent by the need to
differentiate the behaviour of different classes of superconi ictors. The monst
complete tabulation of properiies of superconducting materials is that given oy
Roberts (1971). Table 1.1, taken from thai source, shows the elements which
become superconducting with a critical temperature above 0-8 K. It can be seen
that there is no simpie rule to decide which elements become superconductors.
However, the following points deserve mention. Firstly, only metals become
superconductors. Secondly, all the critical temperatures are under 10 K; actually
Table 1.1 does not include the highest critical temperatures, as some metallic
compounds have critical temperatures of about 20 K. Thirdly, some metals which
are good conductors at room temperature, notably the noble metals, do not



