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PREFACE

In this book we have tried to present a concise summary of most of the material
covered in an undergraduate program in physics. Each topic is developed from
fundamental principles and then applied to the solution of illustrative problems..
These problems are of the type used by American graduate schools in their
comprehensive physics examinations and in the Graduate Record Examination.
This book should therefore be especially useful to someone who is preparing for
such a comprehensive examination. We hope it will also be useful to students who
are currently in an undergraduate physics program, and to engineers and
scientists who are interested in more advanced treatments of subjects they
encountered in their introductory physics courses.

We have tried to make our presentation as self-contained as possible. Of
course, each of our chapters is too brief to be considered as a replacement for a
monograph or textbook on its subject. However, if the goal is a review of a wide

" variety of physical ideas and applications in a reasonable amount of time, tuen

brevity is necessary. Furthermore, by treating different subject areas of physics
within the same volume, we have emphasized the important basic ideas that are
common to these different aréas. This makes the review process more efficient
and deepens our appreciation of the unity of physics.

We believe that a book of this sort is most useful if its size and cost are both
kept reasonably small. We have therefore included very little factual material
of the kind that would be covered in introductory courses in atomic, nuclear, or
solid-state physics. This factual material is an important component of a physics
education, but it is not easily summarized. Moreover, in the interest of brevity
we have assumed that the reader has a good understanding of vector algebra and
calculus, and of the elementary properties of differential equations.

Most of this text uses the cgs Gaussian system of units. This is the system
used in most graduate-level work in physics and in most of the research
literature. Of course, the physical description of any system should be
independent of units. Thus, a student who prefers to work in a different system
of units should be able to transcribe all our expressions into his or her units with
no change in essential physical content.

The idea for this book developed out of an informal seminar offered during
the past ten years to help first-year physics graduate students at the University
of Minnesota prepare for our Graduate Written Examination. Most of our
illustrative examples are taken from previous University of Minnesota examina-
tions. We have also included problems from the comprehensive examinations
given at several other universities.

B

.F.B
M. H.
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CHAPTER 1

CLASSICAL
MECHANICS

Books that attempt to survey all of physics traditionally begin with classical
mechanics. There are several good reasons for following this tradition. Most of
our physical intuition is based on'mechanical models, most of the important
concepts of physics have their simplest realization in mechanical systems, and the
newer ideas of relativity and quantum mechanics are perhaps best appreciated in
terms of their contrast with the views of classical ‘hechanics.

d

1.1 NEWTON’S SECOND LAW OF MOTION

it

If the force f acts on a point particle of mass m, then

" dp dv d’r (1.12)

sS—=m—=m - da
a "a "al

Here p and v are the momentum and velocity of the particle relative to an

inertial frame of reference, and r is a vector from a fixed point 0 in that frame of

reference to the location of the particle. From (1.1a) we can derive

)| dV d

‘ =rXf=n‘1rXE=Z(mer) -

, d dl .
= exp)=— (L.1:

T is the torque on the particle and 1 = r X p is its angular momentum, both
defined relative to the point 0.

Now consider a system of particles. The force f, on particle ; can be wtitten
as

f.=f>+ ) f(jon) A (1.2
J*i

f is the external force on particle 7, and f( j on 1) is the force on pamcle / due
to particle ;. Newton’s third law of motion asserts that

f(joni) = —f(z ony) {(1.3)



2 Classical Mechanics

If we now sum (1.1a) and (1.1b) over all the particles and use (1.2) and (1.3), we
find that :

d d
F= fo’“ = Z Zpi,= Zptm (1.4a)

d d
T= ZT = ;1, L (1.4b)
The derivation of (1.4b) also requires that we assume that f( 7 on ?) is directed
along the line joining particles i and j. Both the total torque T and the total
angular momentum L, in (1.4b) must be defined with respect to the same
point. This point may be any point fixed in an inertial frame of reference (i.e., at
rest in such a frame or moving with uniform velocity relative to it), or it may be
the point that moves with the mass center of the systern,' located at

Zml-r,- zmiri
1

Z m i B M(ot

(1.5)

Roy =

to the motion of the system. For P,

Usually we need to relate P, and L,
we have

dr, d

d d
P, = ZP;‘ = mez = —aTt : mr;, = _(MmtRCM) =M, Ry

. dt: °dt

(1.6a)

The relationship between angular momentum and angular velocity is more
complicated. It is discussed in Section 1.8 below. Our present considerations will
be limited to uniform rigid bodies rotating about an axis about which the body
has rotational symmetry, or an axis which is perpendicular to a plane of
reflection symmetry. In these cases we can write

L=Iw (1.6b)

Here w is the angular speed of the body (in radians per unit time), and / is the
moment of inertia of the body about the rotation axis, defined by

]=fdm52 , (1.7)

The integration goes over every mass element dm of the body, and s is the
perpendicular distance of the mass element dm from the rotation axis. Equations
(1.4) and (1.6) can be combined to yield

dVey R gy
F= M(ot dt = Mtot dt2 (1-83)
L | 8
T=Ir =1 (1.8b)

where w = d6 /dt. We purposely avoid writing (1.8b) as a vector equation since it
applies only to the case of rotation about a principal axis (see Section 1.8).

'Another valid (but less useful) choice is any point accelerating toward or away from the mass center.
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1.2 SOME COMMONLY ENCOUNTERED FORCES

"FIGURE 1.1 The gravitational
force on m, is that of a point
particle of mass m, located
at the center of the sphere.
The total mass within the
dotted sphere of radius r is
m,.

1.2.1 Friction

Suppose that an object is in contact with a surface. The force that the surface
exerts on the object can be resolved into a perpendicular component N and a
tangential component f. If the object slides along the surface, it is often a good
approximation to assume that the magnitudes of f and N are related by

f=mN (1.9a)

k. is called the coefficient of kinetic or sliding friction. The direction of f is
usually assumed to be opposite to the velocity of the object relative to the surface,
If the object is at rest on the surface the value of f depends on the other forces
acting, but cannot exceec. 2 critical value given by

f<uN (1.9b)

p, is called the coefficient of static friction. The values of p, and p, are usually
assumed to depend only on the nature of the surfaces in contact, and to be
independent of the area of contact and the magnitude of N. If a problem refers
to a “smooth” surface, this implies that p, = p, = 0 = f, so that the force that
such a surface exerts on an object is exactly perpendicular to theé surface.

s

.

1.2.2 Gravltation ' ‘
The gravitational force on a point mass 7, due to another point mass m, is
(r,— 1) _
e, — 1)

where G is the fundamental gravitational constant and r is the vector from mass
m, to mass m,. We can also use (1.10) to find the force on a point mass m, due to
a spherically symmetric mass distribution. In this case r is the vector to m; from the
center of the continuous mass distribution, and m, is the total mass within a
distance r from the center (see Figure 1.1). In particular, if m, is wholly outside
the continuous distribution, m, is the total spherical mass. ,
Now suppose the continuous mass distribution is the earth (assumed spheri-
cal), and we want the gravitational force on a point particle m, slightly above its
surface. Then r points from the center of the earth, so an observer near the
particle would say that the force on m, is vertically downward. If the height of

A

F, = Gmm,

r r
onldueto?2) — —Gm]mg;'g = _GmlmZF (110)
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FIGURE 1.2 Three springs

< Suspended from a ceiling: (a)
the unstretched spring; (b)
mass m in equilibrium under
the combined forces of grav-
ity and the spring; and (c)
the mass displaced a dis-
tance x from equilibrium.

the peirticle above the earth is small compared to the radius of the earth, (1.10)

becomes

Gm, \ R
F=-m, R |F= —mg=mg (1.11)

Thus, we can describe the gravitational field near the surface of the earth as
uniform, of magnitude g (= 32.2 ft/s* = 9.8 m/s?) and directed vertically
downward. The total gravitational force and torque on a finite object are given
by

Fgrav = fdmg = gfdm = Mmtg (1123.)

'rgm=fr><dmg= (/dmr) Xg=M,RpyXg

= Reum X(Mm:g) = Rgum X Fgrav (1.12b)
Equation (1.12b) shows that we get the correct value of the gravitational torque
on an object if we assume that the entire gravitational force (weight) acts at a
single point of the object, its mass center. This implies that the gravitational
torque on an object, defined with respect to its mass center, is zero. This is true in
general only for a uniform gravitational field.

1.2.3 Hooke’s Law Springs

Suppose that a Hooke’s law (or ideal) spring has an unstretched length /, and
spring constant k. If the spring is stretched or compressed to length [/ it exerts a
restoring force of magnitude

F=kll— 1 (1.13)

Now consider the situation shown in Figure 1.2. Since the mass in Figure 1.26 is
in equilibrium, the upward force due to the spring must equal the downward

%

L" S §
5 e g
p
b o g B
4 ! © S
5 o S

N Nk

¢ € g !

p L

N v

(a) Y (c)



PROBLEM 1.2.1

PROBLEM 1.2.2

Some Commonly Encountered Force.

force due to gravity. Thus,
k(l—1,)—mg=0

In Figure 1.2¢ the mass m has been given an additional upward displacement x,
so that the length of the spring is now / — x. The upward force due to the spring
is now k(! — x — [,) while the downward gravitational force is still mg. Thus, the
net upward force on the mass is

F=k(l—x—1l))—mg= —kx . (1 14)

The minus sign in —kx implies that an upward displacement of the mass results
in a downward net force on the mass, and vice versa. We see that £ governs the
restoring force for oscillations about equilibrium. The equation of motion of the
mass is

F=m¥= —kx (1.153)

whose general solution

x(t)=Asin(\/§t+qb

describes oscillations about equilibrium (x = 0), with constant amplitude 4 and
initial phase ¢. 4 and ¢ depend on the initial conditions under which the mass i<
set into oscillation. The circular frequency

k
w = = y :'"
m

depends only on the materials of which the system is made. In parti~
independent of the amplitude of the oscillations. '

, (A, ¢, constants)

A heavy object, when placed on a rubber pad that is to be used as a shock
absorber, compresses the pad by 1 cm. If the object is given a vertical tap, it will
oscillate. Ignoring the damping, estimate the oscillation frequency. *

Let k be the spring constant of the rubber, and let x, (= 1 cm) be the
equilibrium displacement. At equilibrium the upward force on the cbhject is x,,,
and the downward force is mg. Thus, kx, = mg, k = mg/x,. The circular
frequency of small oscillations about equilibrium is =__Wm = -\/E/x()

= /980/1 rad/s. Thus, the frequency is (1,/2m)vy980 cycles/s = 4.98 Hz.

An automobile, with nobody inside, has a mass of 1000 kg, and has ground
clearance 18 cm. After four persons with total mass 300 kg get into the car, the
ground clearange is only 12 cm. They drive off. At what speed will the car, with
its four passengers, bounce in resonance while moving along a road that is
straight, level, and smooth, except for a transverse tar patch every 15 m? For
simplicity assume that the shock absorbers are ineffective, and also that the fore
and aft suspensions have the same bouncing frequency.

Adding passenger weight of 300g Newtons causes a 6-cm deflection. Thus,
k = 300 kg X 9.8 m/s?/.06 m = 5000 X 9.8 kg/s° Since the total mass of the
loaded car is 1300 kg, the circular frequency is '

w = Jk/M = /5000 x 9.8 kg/s>/1300 kg = /5000 X 9.8,/1300 s '
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PROBLEM 1.2.3

PROBLEM 1.2.4

Thus, the period of the oscillations is
1 27 1300

T = = — =

= =27\ ————— s
v w 5000 X 9.8
If the car has a speed of
15m 15 (5000 X 9.8
= —1\ ——— m/s=147m/s = 52.8 km/h
T 27 1300

the impulses due to the tar patch will be at the resonant frequency.

v =

A stick of length / is held so that one end rests on a smooth plane, making an
angle @ with the plane. The stick is then released. How far will the left end of the
stick have moved by the time the stick hits the plane?

«cos 6

4
2

The external forces acting on the stick (gravity and the surface contact
force) are both vertical. Thus, F,, has no horizontal component, and the
acceleration of the mass center of the stick is vertical. Since the horizontal
component of the velocity of the mass center is initially zero, it remains zero as
the stick falls. This implies that the mass center of the stick falls vertically, so that
by the time the stick is horizontal the left-hand end will have moved by

(1/2)[1 = cos 8].

A thin stick of length L and mass m is supported at its ends by vertical strings so
as to be in a horizontal position. One of the strings is cut at time ¢.

(a) Find the downward acceleration of the center of the stick at time ¢ + 8
(where § — 0).

At time ¢ + §, the external forces acting on the stick are shown in the
free-body diagram (Figure 1.36). The total external torque about the left end is
mgL /2. Thus, the angular acceleration, a, of the stick about its left end is

T mgL /2 3¢

I (1/3)mL? 2L
The linear acceleration, a, of the center of the stick is then
al

vertically downiward.

(b) Find the sideward acceleration of the center of the stick. At time ¢ + §,
all the external forces acting on the stick are vertical. Thus, the total external
force has no horizontal component, and the sideward acceleration of the stick is
zero.



FIGURE 1.3 (a) The stick im-
mediately after the
right-hand string has been
cut. (b) The forces acting on
the string at that instant.

Some Commonly Encountered Forces 7

(a)

e— L —

fs |

mg

(c) Find the tension f, in the remaining string.
Newton’s second law applied to the stick gives

mg — f=ma=m- g

fi=1img

PROBLEM 1.2.5 An hourglass with vertical sides is placed on a critically damped balance, the

sand trickling through the hole. What does the balance read? Discuss the
direction of deflection of the balance during all stages of the flow.

Let the mass of the hourglass plus sand be M, and let F, be the upward
force that the balance pan exerts on the hourglass. According to Newton’s third
law, F, is also the force that the hourglass exerts on the balance pan and thus F,
determines the reading on the balance scale. If y is the height of the center of
mass of the hourglass plus sand, then

F, — Mg = Mj
Thus, if y = 0, F, = Mg, but if j is positive (negative), F, will be greater (less)
than Mg.

Suppose that all the sand is at rest in the upper portion of the hourglass for
t <ty At t=t, the sand starts to fall, and reaches a steady stream at ¢ = ¢,.
The steady stream continues until ¢ = ¢,, when the flow starts to wane and comes
to a stop at ¢t = t;. Thus, for ¢t < ¢,'and ¢ > ¢, the sand is at rest, ) = 0 = J,
and F, = Mg. Between t =1t and t=1¢,, ) <0, but j = 0 (since the sand is
falling at a constant rate) so that F, still equals Mg. Between ¢ = ¢, and ¢ = ¢,
we are going from a situation in which j = 0 to one in which j < 0. Thus,
» < 0 between ¢, and ¢,, so that F, < Mg. Conversely, between ¢t = ¢, and ¢t = ¢,
we are going from a situation in which < 0 to one in which § = 0. Thus,
J > 0 between ¢, and 5, so that F, > Mg. To summarize: the balance reads

Mg for t < t,
<Mg fort,<t<t,
Mg fort <t<t,
> Mg fort, <t<t,
Mg fort>t,

The transitions between the different flow conditions described above will be
smooth, since the momentum flux will not change discontinuously.



4 Clas.gica/ Mechanics

PROBLEM 1.2.6 A right circular cylinder has a density that is a function of distance from the

symmetry axis. It rests on a frictionless surface. A string is wrapped around the
periphery of the cylinder and a constant force F is applied to the string for a
time 7T, in the horizontal direction.

(a) Describe qualitatively the translational and rotational motion of the
object. .

Since the surface is frictionless, the force that it exerts on the cylinder has no
horizontal component. Thus, the horizontal component of the total external force
is F when 0 <t < T, and zero when T < t. The axis of the cylinder, therefore,

~has acceleration F/M when 0 < ¢ < T, and zero when T < ¢, so that its speed,

v, is given by

t, forO0<t<T

N

T, forT <t

In the interval 0 < ¢ < T, the external torque about the axis is FR, so the
angular acceleration is @« = FR/I for 0 < ¢t < T, and zero for T < ¢. Thus, the
angular speed of rotation of the cylinder about its axis is '

FR
w=Tt, for0<t<T
FR
=—I'T, for T <t

(b) Find a specific geometry for the object so that the kinetic energy is
equally divided between transla®bnal and rotational motion.
The translational part of the kinetic energy is

Lo L fF
o = s —t
27 T3 (M)

The rotational part is
1 1 ( FR \?
=lw?= —I| —¢
2 1

If these are to be equal, we must have

LR I = MR?
Mo I B
The only way this can occur is if all the mass of the cylinder is at distance R from

the axis. Thus, the cylinder must consist of a thin layer of material around an
empty core.



PROBLEM 1.2.7

FIGURE 1.4 The center of the
ball moves with velocity v,
while the ball rotates about
its center with angular speed
w. N and f are components
of the force that the surface
exerts on the ball.

Some Commonly Encountered Forces 9

A bowling ball of mass M and radius R is thrown onto a surface with speed ,.
The coefficient of kinetic friction between the ball and the surface is w. Initially,
the ball is sliding without rolling. What will be its speed when it rolls without
sliding?

The friction force f slows the speed of the mass center of the ball and
increases the angular speed of the ball around its mass center:

dv
M i — Mgp (horizontal component of external force)
Z[ w = MguR (torque of external force about mass center)
" Thus,
v =05 — gpL
Mgp Rt Mgu Rt
W= w, + 7 = 7

Pure rolling will occur when v = wR, because then the point of contact of the
ball with the surface will have zero speed relative to the surface. This occurs at a
time ¢ satisfying

MguR?
— gut = t
U — &K F;
%
t = -
. MR*
+ —
au 7
The speed of the mass center at this time is
g MR?
5 T EE MR*| ~ T+ MR®
gu|l + ]

To complete the solution we need the moment of inertia of a uniform sphere
about a diameter. Suppose that the center of the sphere is at the origin of a
rectangular coordinate system. The moment of inertia of the sphere about the z
axis is

I= fdm(xz+y2)

The symmetry of the sphere implies that

f=uMg



