

, 95600008
Robert Cypher Jorge L.C. Sanz

The SIMD Model of
Parallel Computation

With 13 Illustrations

"

(* ?fo/oooé’;\
'i_/é \ r’f”\ 0 e '9: /\.gf' /
N y,

IR

E9560008

Springer-Verlag

New York Berlin Heidelber gL

ndon Paris
Tokyo Hong Kong Barcelon a Budapest

Robert Cypher Jorge L. C. Sanz

IBM T. J. Watson University of Illinois at
Research Center Urbana-Champaign
Yorktown Heights, NY 10598, Department of Electrical
USA and Computer Engineering
Urbana, IL 61801, USA

Cover illustration: Mesh connected computer. Detail from Fig. 4.1, p. 21

Library of Congress Cataloging-in-Publication Data
Cypher, Robert.
The SIMD model of parallel computation/Robert Cypher, Jorge L. C.
Sanz.
p. cm.
Includes bibliographical references and index.
ISBN 0-387-94139-8
1. Parallel processing (Electronic computers) 2. Computer
architecture. 1. Sanz, J. L. C. (Jorge L. C.), 1955—-
II. Title.
QA76.58.C96 1994
004'.35—dc20 93-27497

Printed on acid-free paper.

© 1994 Springer-Verlag New York, Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New
York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis.
Use in connection with any form of information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter developed
is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if
the former are not especially identified, is not to be taken as a sign that such names, as under-
stood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by
anyone.

Production managed by Terry Kornak; manufacturing supervised by Vincent Scelta.
Typeset by Asco Trade Typesetting Ltd., Hong Kong.

Printed and bound by R. R. Donnelley & Sons, Inc., Harrisonburg, VA.

Printed in the United States of America.

987654321

ISBN 0-387-94139-8 Springer-Verlag New York Berlin Heidelberg
ISBN 3-540-94139-8 Springer-Verlag Berlin Heidelberg New York

The SIMD Model of Parallel Computation

Contents

1 Introduction 1
2 Parallel Computer Architectures 4
3 High-Level Models 12
4 Mesh Connected Computers 20
5 Algorithms for Mesh Connected Computers 34
6 Pyramid Machines 51
7 Algorithms for Pyramid Machines 56
8 Hypercube Computers 61
9 Hypercube-Derived Computers 69
10 Communication Primitives for Hypercube Computers 78
11 Algorithms for Hypercube Computers 111
12 Conclusions i 124
Bibliography 127
IIRAE oo scumss 58 50000085 55 5m e mm oo e e 5 e 6 3 8 6 4 143

CHAPTER 1

Introduction

1.1 Background

There are many paradigmatic statements in the literature claiming that this
is the decade of parallel computation. A great deal of research is being de-
voted to developing architectures and algorithms for parallel machines with
thousands, or even millions, of processors. Such massively parallel computers
have been made feasible by advances in VLSI (very large scale integration)
technology. In fact, a number of computers having over one thousand pro-
cessors are commercially available. Furthermore, it is reasonable to expect
that as VLSI technology continues to improve, massively parallel computers
will become increasingly affordable and common.

However, despite the significant progress made in the field, many funda-
mental issues still remain unresolved. One of the most significant of these is
the issue of a general purpose parallel architecture. There is currently a huge
variety of parallel architectures that are either being built or proposed. The
problem is whether a single parallel computer can perform efficiently on
all computing applications.

When considering this question, it is important to notice that there is no
unique serial architecture that dominates over all of the others. The advent of
special purpose workstations and dedicated architectures has provided cost-
effective solutions to many demanding computational problems. Today, no-
body would perform low-level image processing without a pipeline of dedi-
cated components performing specific image functions.?°” Signal processing
chip sets and systolic arrays '*° are well-suited to many numerically intensive
problems. Graphics stations are exclusively dedicated to certain design prob-
lems, and in many cases, these computers are single-user oriented. In a com-
pletely analogous manner, vector computers have been heavily used by the
numerical computing community. These devices are specialized attachments
to central processors. It is unlikely that people will stop using them in favor
of large-scale, general purpose serial computers. Thus, the profusion of paral-
lel architectures is not very different from the situation with regard to serial
architectures.

2 1. Introduction

To understand the arguments for and against a single, general purpose
parallel architecture, it is important to recognize the motivation for parallel
processing. Parallelism may be regarded as a vehicle to accomplish two dif-
ferent goals. First, it may become a viable way to provide a given amount
of computation at a lower cost. Second, it may be used to extend the range of
problems that can be solved by computers, regardless of the cost. Of course,
these two motivations may coexist, and indeed, they are the ultimate goal of
many of today’s research projects. Research on general purpose parallel com-
puters could be beneficial for future systems that will provide inexpensive
computer power. These computers will be aimed at supporting a very large
number of simultaneous users, much in the same way as today’s powerful
mainframes. Software will provide users with multiprogramming environ-
ments, time-sharing operating systems, and programming languages oriented
to a rich variety of applications.

On the other hand, it is unlikely that these systems will be able to provide
the amount of computing power that is demanded by applications involving
numerical analysis, computer vision systems, or physics simulations. Fur-
thermore, the environment provided by a general purpose system is not the
most appropriate one for the computing needs of these users. There will be
other, more specialized, parallel computers operating as backend coproces-
sors to satisfy the computing needs of those sophisticated users. These com-
puters will be tailored to classes of applications and will play a role similar to
today’s special purpose attachments, such as vector processors. The software
and hardware involved in these computers will be different from those re-
quired by general purpose parallel systems. Time and cost overheads intro-
duced by some software and hardware features are considerable and can be
justified only in the presence of a general computing environment. An in-
sightful discussion on this topic, titled “shared memory and the corollary of
modest potential”, is given by L. Snyder.23°

Overall, the parallel processing field should not be polarized. It is unlikely
that a single parallel computer or architecture will satisfy the computing
requirements of all possible applications. In retrospect, the short, but rich,
history of computing demonstrates that there is a diversity of serial machines
tailored to different applications. There is, and probably will continue to be,
a large zoo of parallel computers. Ultimately, the nature of the application
areas and cost considerations will make some of them more useful or ap-
pealing than others. On the other hand, it is likely that some consolidation
will occur as parallel architectures become better understood and more
widely used. The need for consolidation is particularly acute in the area of
models for parallel programming. If a small number of models of parallel
computation can be agreed upon, programmers and algorithm designers can
focus on these models and create applications that will be portable across a
variety of parallel architectures.

In this monograph, a tour through this zoo of parallel architectures is
presented. For each architecture that is studied, algorithms that are tailored

1.3. Outline 3

to the given architecture will be presented. Although a range of applications
areas will be considered, a set of basic operations related to image processing,
sorting and routing, and numerical computing will be examined for each of
the architectures. These algorithms will be useful in their own right, but will
also serve as a means of comparing the different types of parallel computers
and will aid in selecting the correct architecture for a given problem area.
The emphasis will be on the SIMD (single instruction-stream, multiple
data-stream) model of parallel computation and its implementation on
both SIMD and MIMD (muliple instruction-stream, multiple data-stream)
architectures.?%231

1.2 Notation

N is used to represent the size of the input to a problem, such as the number
of pixels in an image to be processed or the number of entries in each of two
matrices to be multiplied. P is used to represent the number of processors in
a parallel machine. A function F(X) is said to be O(G(X)) if, for all sufficiently
large X, there exists a constant C, such that F(X) < C % G(X).

If X is a nonnegative integer, then the Y-bit representation of X will be
written as (Xy_;), X y_2),- .., X(0)), and the i-th bit of X will be denoted by X
(where the 0-th bit is the least significant bit). Also, X is the integer obtained
by complementing the i-th bit of X.

The notation log X will denote the base-2 logarithm of X. The function
log!” X = X, and for all integers i > 0, log® X = log(log“~" X). The function
log* X equals the smallest nonnegative integer i, such that log? X < 1.

1.3 Outline

The remaining chapters are organized as follows. Chapters 2 and 3 present
an overview of parallel architectures and programming methodologies, re-
spectively. Chapters 4 through 12 provide a critical survey of various parallel
architectures and algorithms, based on the topology of the connections be-
tween the processors. Specifically, Chapters 4 and 5 look at mesh connected
computers, Chapters 6 and 7 focus on pyramid computers, and Chapters 8
through 11 are devoted to hypercube and related computers. For each to-
pology, several existing and proposed parallel machines are discussed and
compared. Also, an analysis of parallel algorithms for image processing and
scientific and symbolic tasks is presented. The effects of architectural deci-
sions on algorithm design are examined in detail. Finally, some conclusions
are outlined in Chapter 12.

CHAPTER 2

Parallel Computer Architectures

The basic types of parallel computer architectures are examined in this chap-
ter. The focus here will be on the physical design of the computer. In Chapter
3, the different high-level models that can be presented to a programmer of a
parallel machine will be studied.

2.1 Memory Organization

The physical location of the memory in a parallel computer can be classified
as being either shared or distributed. In a shared (also called “centralized”)
memory parallel architecture, there is a set of memory locations that are not
local to any processor. In order for the processors to access these shared
memory locations, they must issue read or write requests that are routed to
the memory via a bus or a switching network. In addition to these shared
memory locations, each processor in a shared memory architecture has a
local private memory in which it can store private data, copies of shared data,
and pointers to the shared memory.

In a distributed memory parallel computer, each memory location is local
to some processor. A processor can access its own local memory directly.
However, to access another processor’s local memory, it must send a message
to the processor that owns the memory. A processor and its local memory
will sometimes be referred to as a processing element (PE).

2.2 Communication Medium

In both shared memory and distributed memory computers, a processor
must communicate in order to access data that are not stored in its local
memory. In shared memory computers, this communication occurs between
processors and the shared memory, while in distributed memory computers,
it occurs between pairs of processors. There are three techniques that are

2.2. Communication Medium 5

used for performing this communication, namely, busses, switching net-
works, and direct processor-to-processor links. Computers that use these
communication techniques are called bus-based, switch-based, and processor-
based, respectively. These distinctions are not always sharp, since a single
computer can have multiple communication media. For example, some com-
puters have both busses and direct links between pairs of processors.

Both switch-based and processor-based architectures can use either packet
routing or circuit switching to deliver messages. In packet routing, messages
are divided into packets that are routed to their destinations. Packets com-
pete with other packets for resources (such as wires and buffers) in a dynamic
manner. In circuit switching, an entire path between the message sender and
receiver is established. All of the communication links along this path are
reserved for the given sender-receiver pair. They cannot be accessed by other
senders. Once the path is established, the sender may transmit messages
without fear of interference.

There are also several switching modes for packet routing. In store-and-
forward routing, the packet “hops” between buffers, and the head of the
packet waits until the tail of the packet has been stored in the buffer. In
wormhole routing®* and virtual cut-through routing,'?° each packet is divided
into small units called flits. The flits follow one another in a snakelike man-
ner from the sender to the receiver. Thus, if a packet consists of only one flit,
these techniques store the entire packet after each hop, and a store-and-
forward implementation is obtained. On the other hand, if a message con-
tains a very large number of flits, the first flits will arrive at the receiver before
the later flits have even been sent. As a result, the entire path between the
sender and receiver will be occupied, as is the case with circuit switching.
Wormhole and virtual cut-through routing behave differently when a packet
encounters congestion. In wormhole routing, the entire packet is stopped
in place, thus, blocking all of the communication links that it occupies.
In virtual cut-through routing, the tail of the packet continues to advance,
and the entire packet is stored in the node where the congestion was
encountered.

In a processor-based distributed memory computer, only certain pairs of
processors are connected by direct communication links. Thus, access to
another processor’s memory may require that a message be routed to the
other processor via several intermediate processors. Some processor-based
computers allow data to be transferred in both directions simultaneously
along a single communication link, while others require that data be trans-
ferred in one direction at a time. Some processor-based machines, called
strong communication machines, allow a single processor to send a differ-
ent data item over each of its communication links simultaneously. Other
processor-based machines, called weak communication machines, limit each
processor to sending a single data item over a single communication link at
a time.

6 2. Parallel Computer Architectures

2.3 Topology

Whether busses, switches, or direct links between processors are used for the
communication, the communication network can have a wide range of topol-
ogies. In bus-based systems, a single bus or multiple busses may be used.
When multiple busses are present, every bus may be connected to every
processor and/or memory bank, or different busses may be connected to
different subsets of processors and memory banks.

One of the most common topologies for switch-based computers is the
Omega network.!*> An Omega network connects N inputs to N outputs by
means of log N stages of switches. Each stage consists of N/2 switches, each
of which has two inputs and two outputs. An Omega network can perform
many useful permutations of the inputs to the outputs, but it cannot perform
every permutation. As a result, it is possible that some collisions will occur
within the network, even though each input is accessing a different output.

Another switching network topology that has been used in a parallel com-
puter is the Benes network.'®2° Benes networks can be defined for various
switch sizes. When it is composed of switches with two inputs and two out-
puts, the Benes network has 2(log N) — 1 stages, each of which consists of
N/2 switches. A Benes network is capable of performing every permutation
of the inputs to the outputs. However, it is time-consuming to calculate
how the switches should be set in order to implement a given permutation
without having collisions. Therefore, the Benes network is typically used only
if the patterns of communication are known in advance and the switch set-
tings can be calculated by the compiler.

A rich class of topologies has been proposed for processor-based parallel
computers. These include trees, two- and three-dimensional meshes, pyra-
mids, hypercubes, shuffle-exchanges, and cube-connected cycles. Processor-
based architectures will be emphasized in this monograph, and the topol-
ogies for these architectures will be studied in depth in the remaining
chapters.

2.4 Control

An important characteristic of a parallel machine is whether it operates in an
SIMD or an MIMD mode. In an MIMD architecture, different processors
can perform different operations at a single time. As a result, each processor
in an MIMD machine must have its own copy of its program as well as
instruction fetching and decoding logic in order to interpret its program.

In an SIMD architecture, all of the processors are forced to execute the
same instruction at the same time. Thus, in an SIMD machine, it is possible
to have only one copy of the program and a single controller that fetches the
instructions, decodes them, and broadcasts the control signals to all of the
processors. However, most SIMD machines offer some degree of processor

2.5. Clocking 7

autonomy by allowing a subset of the processors to ignore the current in-
struction while the remaining processors execute it. This is accomplished by
placing a binary register, called a mask register, in each processor and de-
signating certain instructions as being maskable. When a maskable instruc-
tion is executed, those processors that have a 1 in their mask register perform
the instruction, while those processors that have a 0 in their mask register are
idle.

Most SIMD architectures do not have a direct data connection from the
controller to the processors. However, there are situations in which the con-
troller must broadcast a data value to all of the processors. This can be
accomplished by having the processors calculate the number one bit at a
time. For instance, if each processor has the ability to calculate arbitrary
boolean functions, then they can be directed to calculate the function that
always returns TRUE for those bit positions of the broadcast value that
contain a 1 and to calculate the function that always returns FALSE for the
remaining bit positions.

In addition to distinguishing between SIMD and MIMD control, there are
two other ways in which the type of control may be classified. First, in a
distributed memory machine, the local memory addresses of the operands
and results can be the same for every processor at a given time or they can be
different in separate processors. The former case will be referred to as uniform
addressing, while the latter will be referred to as independent addressing. It is
possible to have independent addressing even when all of the processors are
operating under the direction of a single controller; this can be accomplished
by using indirection.

Second, processor-based distributed memory computers with weak com-
munication can be separated into two categories. Assume that the communi-
cation links leaving each processor are numbered. If every processor must
send data along the same communication link (such as the third one) at a
given time, the machine will be said to operate with uniform communication.
If, instead, separate processors can send messages along different communi-
cation links at a given time, the machine will be said to operate with indepen-
dent communication. Independent communication can be implemented when
there is a single controller by using indirection to choose the communication
port from which data will be sent.

2.5 Clocking

Parallel computers use several different clocking schemes. One option is the
use of a single global clock that is broadcast to all of the processors. This
option is particularly natural for SIMD machines, but it can be used in
MIMD machines as well. A difficulty with using only a single clock is that the
clock signal may reach different processors at different times. This phenome-
non is called clock skew. Clock skew puts a limit on the cycle time of the

8 2. Parallel Computer Architectures

clock, because the skew between any two communicating processors must
be kept below the cycle time to guarantee that the processors are operating
on the same cycle. Fortunately, it appears that clock skew can be effectively
controlled by careful design of the clock lines. For example, clock skew in the
4096 processor J-machine is kept below 2 ns.!”?

Another clocking scheme is the use of a separate clock for each processor.
This avoids the problem of clock skew, but it creates problems associated
with communicating between separate clocked regions. When two clocked
regions exchange data, arbitration between the clocks is required. The time
required by this arbitration depends on the relative phases of the clocks, but
it can be significant. If the architecture is processor-based, then each commu-
nication between connected processors requires a separate clock arbitration.
If the architecture is switch-based, then the switching network can be asyn-
chronous. In this case, both clock skew and clock arbitration problems are
minimized. Furthermore, an asynchronous network has the potential to run
more quickly than a synchronous one. This is because in an asynchronous
network, data are passed on as soon as they are ready, while in a synchro-
nous network, the cycle time is set to the time required by the slowest opera-
tion. However, asynchronous networks often require some overhead, both in
terms of wires and time, to perform handshaking.

Yet another clocking scheme is possible when the routing is circuit-
switched. In this scheme, each communication link consists of data wires and
a strobe wire. Once a path has been established between a source and desti-
nation node, successive data and strobe wires along the path are electrically
connected to one another, forming parallel data and strobe paths. Then, data
are placed on the data path, and the strobe path is used to clock the asso-
ciated data. Specifically, each transition on the strobe path indicates that new
data are present on the data path. In this scheme, each communication path
operates synchronously, although separate data paths have separate clocks.
The advantage of this technique is that it avoids the handshaking required by
asynchronous techniques and the clock arbitration delays required by other
synchronous techniques. The disadvantages are the need for extra wires (for
the strobe signal and for status information that is sent from the destination
processor to the source processor) and the requirement that circuit switch-
ing be used. This type of clocking scheme is used in the Intel iPSC/2
computer.!78

2.6 Processor Design

Although it would be desirable to use powerful processors, cost and techno-
logical considerations force a tradeoff between the number of processors and
processor power. Commercial machines with 1K or more 32-bit processors
are available, where each processor occupies a single chip or board. These
processors could be either general purpose reduced instruction set (RISC)

2.7. Selection of a Parallel Architecture 9

processors or custom processors that have been optimized for parallel pro-
cessing.!'>:173 As the number of processors increases into the tens of thou-
sands, multiple processors are placed on a single chip and the word size
of the processors decreases. MasPar has recently introduced a machine with
up to 16K processors, each of which operates on 4-bit quantities.!>°

Other massively parallel machines have used bit-serial (1-bit word size)
processors.'7-19¢:172 A bit-serial processor can typically perform an arbi-
trary boolean function of two 1-bit inputs. Also, bit-serial processors usually
have the power of a full adder, which is a unit that takes three 1-bit operands,
Al, A2, and A3, and provides two 1-bit outputs, S and C, where S = 41 XOR
A2 XOR A3 and C = (41 AND A42) OR (A1 AND A43) OR (42 AND A43).
That is, S is the sum bit and C is the carry bit resulting from adding the three
operands. A full adder may be used to add two B bit numbers by setting
Al and A2 to the least significant bits of the addends and setting 43 to 0. The
resulting sum bit is the least significant bit of the answer. The resulting carry
bit is used as the next value of A3, and the next bits of the addends are used
as the values of A1 and A2. Repeating this process B times yields the desired
sum. Two B bit numbers can be multiplied by performing, at most, B — 1
additions of shifted versions of the multiplicand and can be accomplished by
using B(B — 1) full adds.

Support for floating-point operations varies greatly. Some powerful cus-
tom processors include full floating-point support, while some bit-serial
processors perform floating-point operations in software, one bit at a time. In
between these extremes, some machines offer limited hardware support for
floating-point operations, such as a barrel shifter, per processor, and others
have standard floating-point coprocessors that are shared by several
processors.

2.7 Selection of a Parallel Architecture

The best choice of a parallel architecture depends on the applications to be
run, the programming model to be supported, and the costs to be considered.
Distributed memory architectures typically offer better performance than
shared memory architectures, because they improve the likelihood that a
memory request can be satisfied locally. On the other hand, shared memory
machines provide a separation between the processes that are running and
the memory that they are accessing. As a result, load balancing can be ac-
complished in a shared memory architecture by moving processes from heav-
ily loaded processors to lightly loaded ones. Load balancing is more difficult
in a distributed memory architecture if the instruction set differentiates be-
tween accesses to local memory and to nonlocal memory. If such a differenti-
ation exists, the local memory of a process must be moved with the process,
thus, greatly increasing the overhead.

10 2. Parallel Computer Architectures

Although it might seem that shared memory architectures are better suited
to providing the programmer with a high-level shared memory programming
model, Chapter 3 will show that this is not necessarily the case.

Several shared memory architectures with small numbers of processors
(fewer than 100) use busses to communicate between the processors and
the memory. However, as the number of processors increases, bus-based
systems usually become impractical. This is because a bus is typically con-
nected to a large number of processors. Pin limitation (fan-out) consider-
ations prevent any one processor from being connected to too many busses.
Therefore, there are typically far fewer busses than processors, and a high
bandwidth of communication cannot be supported. Busses may be useful if
the application that is being solved involves far more computation than
communication or if the communication that is required consists of broad-
casting a small amount of data to a large number of locations. Also, several
hybrid distributed memory architectures, with both busses and direct links
between processors, have been proposed.®!:193:234 In these hybrid systems,
the direct links are used to transfer large amounts of data between a small
number of PEs, and the busses are used to transmit small amounts of data
between large numbers of PEs.

The topology of the communication network is closely related to the appli-
cations that will be implemented. For example, a two-dimensional mesh
interconnection supports low-level image processing applications very effi-
ciently, while a hypercube interconnection supports symbolic, pointer-based
data structures very well. The types of topologies that have been proposed
and the applications that they support will be studied in detail in the follow-
ing chapters.

The efficiency of SIMD or MIMD control is also very dependent on the
application being implemented. For example, SIMD control is well-suited to
those problems in which the granularity of computing is fine (that is, each PE
is assigned only a few data items). An SIMD machine will perform efficiently
in this case, since the small amount of data in each PE cannot have a rich
structure, which could be exploited by an MIMD machine. In addition, the
small amount of data per PE often indicates that the processing to be per-
formed is intrinsically synchronous. Of course, SIMD control requires every
processor to execute the same program, but this is a fairly common charac-
teristic among numerical analysis and physics computations in which the
PEs carry out a parallel algorithm cooperatively. In fact, even in some shared
memory MIMD computers, an SPMD (single-program, multiple-data) para-
digm has been proposed.®” In this paradigm, a powerful coarse-grain MIMD
architecture allows data-dependent processing to be performed efficiently.

By studying many examples from different application domains, it is seen
that problems for which SIMD computing has been successfully used assign
only a small number of data items to each PE. Specifically, the quantum-
chromodynamics simulations carried out in the GF11 computer involve a
few lattice points per processor;'® in image processing operations,'3® each

2.7. Selection of a Parallel Architecture 11

PE handles a few image pixels;' in circuit simulations and layout optimiza-
tion problems,?®:26¢ each processor handles a few devices, nets, or compo-
nents; in parallel Fast Fourier Transform (FFT) algorithms,'®3 each proces-
sor contains a sample of the signal; in sorting problems,?32 each PE typically
holds one key.

Finally, the selection of a clocking scheme is very dependent on the other
architecural decisions that have been made. For example, if SIMD control
has been selected, then a single global clock is almost required. A single
global clock may also be preferred because it provides a deterministic opera-
tion. On the other hand, the randomness caused by an asynchronous com-
munication network could actually be desirable for performance reasons.!3*

' However, from a theoretical viewpoint, the product of the elapsed time and the
number of processors may be improved significantly for some problems by using
fewer processors.® In fact, in some cases, the elapsed time actually decreases when
fewer processors are used.!®!

CHAPTER 3
High-Level Models

In this chapter, some of the different high-level models of parallel computers
that have been proposed will be examined. A high-level model of a computer
has two main purposes. First, it should simplify programming and algorithm
design by providing a set of powerful, easy-to-compose, basic operations.
Second, it should aid portability, so that a program or algorithm designed for
one machine may be used on other machines. However, to be useful, it should
accurately reflect the costs of the basic operations. This is essential because
the wrong algorithm could be chosen if the costs of different algorithms
cannot be accurately judged. The subject of high-level parallel models has
been examined by other authors.!!7-155.230

High-level parallel models have been defined to capture the important
features of both shared memory and distributed memory architectures. Al-
though these high-level models are abstractions of particular architectures, it
is important to realize that they are separate from the architectures. For
example, it is possible to program a distributed memory architecture using a
shared memory model. All that is required is systems software that imple-
ments the shared memory abstraction on the distributed memory hardware.
This systems software is analogous to virtual memory support in a sequential
machine, since in both cases, the software supports a model of the machine
that is different from the underlying hardware. Similarly, it is possible to
implement an SIMD model on MIMD hardware.!*°

3.1 Shared vs. Distributed Memory Models

3.1.1 Shared Memory Models

In a shared memory model,'?® there is a single global memory that all of the
processors can access (write to or read from) in unit time. In addition to the
global shared memory, each processor has a local private memory in which
data and pointers to the global memory may be stored.

12

