

Lecture Notes in
Computer Science

Edited by G. Goos and J. Hartmanis

469

I. Guessarian (Ed.)

5 L #REHH

. R
Semantich of Fstainss
of Concurrent Processes

LITP Spring School on Theoretical Computer Science
La Roche Posay, France, April 23—27, 1990
Proceedings

Berlin Heidelberg New York London
Paris Tokyo Hong Kong Barcelona

» [| SpringerVerlag

Editorial Board
D. Barstow W.Brauer P.Brinch Hansen D. Gries D. Luckham
C.Moler A.Pnueli G, Seegmiller J. Stoer N. Wirth °

Volume Editor

Irdne Guessarian

Université Paris VI

LITP, Tour 4655, 4 place Jussieu
F-75262 Paris Cedex 05, France

CR Subject Classification (1987): F.3—4, D.4,C.1.2,H.2.4

ISBN 3-640-53479-2 Springer-Verlag Berlin Heidelberg New York
'ISBN 0.387-83479-2 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. All rights are resarved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation,
broadcasting, reproduction on microfiims or in other ways, and storage in data banks. Duplication
of this publication or parts thereof is only permitted under the provisions of the German Copyright
Law of September 9, 1985, quwanm.nndleopynohtMMMbopud
vm-mummmmmmuemcomw

© Springer-Verlag Berlin Heidelberg 1990
Printed in Germany

Printing and binding: Druckhaus Beitz, Homabad\IBefgatr
2145/3140-543210 - Printed on acid-free paper

FOREWORD

The present volume contains the proceedings of the 1990 Spring School of Theoret-
ical Computer Science which was devoted this year to the Semantics of Concurrency.
The School was organized jointly by the LITP (Laboratoire d’Informatique Théorique
et Programmation, Paris) and IRIT (Institut pour la Recherche en Informatique de
Toulouse). The talks were divided into two series:

— tutorial talks, which introduced the subject to neophytes;
— advanced talks, which presented a survey of recent achievements in Semantics of
Concurrency. '

The following is a detailed list of the tutorial talks given: Transitions systems
and the semantics of communicating processes (A. Arnold), Process algebra: CCS
and MEIJE (G. Boudol), Mobile processes (R. Milner), Testing equivalences (M.
Hennessy), An introduction to metric semantics (J. W. de Bakker), Parallelism
and computability (Ph. Darondeau), CCS and Petri nets (U. Goltz), Specification
and verification of process properties (J. Sifakis and A. Arnold), Event structures
(I. Castellani), Categories for parallelism (U. Montanari). Most of these talks are
not contained in the present proceedings, or only very briefly covered, with references
to the existing literature, because they are already very well documented in various
papers.

The advanced talks, on the other hand, are contained in the present volume. These
talks center around four main themes:

— Models for concurrent and distributed systems: this area includes pomsets and
metric semantics (J. W. de Bakker, J. H. A. Warmerdam), event structures (G.
Boudol, I. Castellani), causal trees (Ph. Darondeau, P. Degano), partial orders
and languages (B. Rozoy), fixpoints and languages (I. Guessarian), trace monoids
(G. Duchamp, D. Krob, P. Gastin), CCS and Petri nets (U. Goltz), categorical
models (U. Montanari, S. Kasangian, A. Labella, A. Pettorossi).

— Observation and bisimulation equivalences: this part includes observational seman-
tics and abstract data types (E. Astesiano, A. Giovini, G.Reggio), preservation
of equivalences by refinements (R. J. van Glabbeek).

— Logics for concurrency: this area contains computability notions for operational
specifications (Ph. Darondeau), for fairness (L. Priese), bisimulation logics (R.
De Nicola, F. Vaandrager).

— Applications to distributed systems: this part covers the following: parallel lan-
guages for SIMD connection machines (L. Bougé), problems of distributed sys-
tems such as byzantine generals (J. Beauquier), or notions of clock (B. Charron).

1\

I would like to thank the members of the program committee of the school, which
consisted of André Arnold, Joffroy Beauquier, Gérard Boudol, Philippe Darondeau,
Iréne Guessarian and Maurice Nivat. Special thanks are due to Maurice Nivat, who
for 20 years has consistently animated and each time given a new spirit to the spring
schools. Special thanks also go to Colette Ravinet and Patrick Sallé who most efficiently
managed all practical problems before and during the conference, for their perfectly
equal and amiable temper throughout all events. Thanks are due also to the City Hall,
the Syndicat d’Initiative of La Roche Posay, and the managers and employees of the
hotel de I’Esplanade.

Thauks are due finally to the Département Sciences Physiques pour 1'Ingénieur
of the CNRS, the PRC Mathématiques et Informatique, and most specially (last but
not least) the GRECO Communication, Concurrence, Coopération, whose financial
support made this school possible. The proceedings of the last five schools have also
been published in the Springer-Verlag LNCS series (Vols. 192, 242, 316, 377 and 386).

Paris, October 1990 Iréne Guessarian

TABLE OF CONTENTS °

Processes as Data Types: Observational Semantics and Logic

E. Astesiano, A. Giovini, G. Reggio.........covvuiiiiniiiiiiiiiiieinaian..
Metric Pomset Semantics for a Concurrent Language with Recursion

J. W. de Bakker, J. H A. Warmerdam.............c.c.cooiiiiiiiiniinnan..
Fault-Tolerant Naming and Mutual Exclusion

s BORUGUIET s, s v wiorn v s g 575 3 55§ S7% § S0 5 3 F50 £ 1 550 & § 57008 061§ 3 620 5 90816 § el & 0% § 0
Flow Event Structures and Flow Nets

Three Equivalent Semantics for CCS .

G. Boudol, I. Castellani............cooiuiiiiiniiiiiiiiinniinan.. A
Towards a Semantic Approach to SIMD Architectures and their La.nguages

L. Bouge, P. Garda ; s s vwos s ssw v 5w e s ws 6 sias s 5260 5 65 08 0 s G556 8 560 8 658 8 3 67 ¢ 950 8 8
Concerning the Size of Clocks ‘ -

B. Charron-Bostottt et e e
Transition Systems with Algebraic Structure as Models of Computations

A. Corradini, G.L. Ferrari, U. Montanari.................ccooovuinn.. R
Concurrency and Computability

Ph: Darondeat : .y sm s s v s 5mia s wma s 5 6 555 5 6510 5 305 6 576 5 8 655 § 9.6 % 509 § 5508 § 5 § S8
Causal Trees: Interleaving + Causality

Ph. Darondeau; P. Deganei. : s« wws s wimssims swome s s wisss @8 o8 s s 50066555 85
Partially Commutative Formal Power Series

G..Duchamp, D. KTOD ¢ . crvs s aiws s s o misrs s vios o 615 6 560 6 ayses s 5765 31608 5 505§ #08 § ojsi £ 5 505 5
Infinite Traces

Equivalences and Refinement

R. J. van Glabbeek, U. GOItzcooueneniiiiiiiiiiiiiiiiiinenenen,
CCS and Petri Nets -

U GOl ettt e
About Fixpoints for Concurrency

L GUESSATIANot
Observers, Experiments and Agents: a Comprehensive Approach to Parallelism

S. Kasangian, A. Labella, A. Pettorossicouuuiiiuiineaneennn...
Action versus State based Logics for Transition Systems

R. De Nicola, F. Vaandrager..........c.cooiiiiiiiiiiiiiiaiiiiiiinninn...
Approaching Fair Computations by Ultra Metrics

Biy PRAGTE s s wosiv s ovn s svmrw s mim g 3 vw 5606 5 0 6o s 65 508 4 6 00 5 8 50 5 6 00 6 6 5 6 08 6 GG 6 3 G0 2.3 576 8
On Distributed Languages and Models for Distributed Computation

B ROZOY .« oot ei et e e e e e s

21

50

62

96

*

Processes as Data Types: Observational Semantics and Logic
(Extended Abstract)

Egidio Astesiano Alessandro Giovini Gianna Reggio
Department of Mathematics
University of Genova - Italy

Introduction

We present here an attempt towards a unifying approach for the semantics of concurrency,
abstracting from the particular language used for describing processes. The original moti-
vation of this work was the integration of process specifications into the general schema of
algebraic specifications of abstract data types (see [AR,AGR2] for the general approach).
In this area abstraction from the language is essential. Indeed whenever some data are
processes, in order to keep a reasonable level of abstraction, processes are to be specified
just as special elements in some algebraic structure and moreover their semantics has to
fit into the overall semantics of the specification. Now it is rather well-known that_the
classical notions of semantics for algebraic specifications turn out to be not adequate for
expressing sensible semantics for processes. Qur approach is to learn and abstract from
the fundamental studies on calculi like CCS some basic ideas, showing how they can
be lifted to a treatment not depending on the language and accomodating a variety of
semantics.

Proocesses are here abstractly viewed as clements of observable sort in an algebraic
structure (in secion 1 we briefly introduce some examples of this approach, viewing pro-
cesses as algebraic transition systems; but note that this view is not essential for the
following theory). In order to define a semantics we embody in the algebraic structure an
observational viewpoint, obtaining what we call an observational structure (section 2).

Essentially an observational structure consists of an algebra equipped with

e ezperiments: possibly infinitary first order contexts for observable elements;

e a similarity law for experiments: a function which, given a (similarity) relation on
the elements of the algebra, generates a similarity relation on experiments;

® apropagation law for relations: a function which propagates a (similarity) relation
on the observable elements to a (similarity) relation on elements of the other sorts.

*Work partially funded by COMPASS-Esprit Basic Research Group No. 3264 and by CNR-PF-Sistemi
Informatici e Calcolo Parallelo.

With each observational structure an observational equivalence is associated, which is an
abstract version of the well-known bisimulation equivalence of [P] for transition systems.
In order to explore further this correspondence, we introduce the notion of representable
observational structure: essentially a structure where the similarity law for experiments is
representable by families of patterns of experiments. The main result of the paper shows
how to associate with a representable observational structure a set of modal observational
logic formulas (section 3), such that an abstract version of the Hennessy-Milner theorem
holds: two observable elements are observationally equivalent iff they satisfy the same set
of such formulas.

It is shown that interesting examples (not only strong and weak, but also distributed
and branching bisimulation) can be seen as instances of representable observational struc-
tures, and so we get a corresponding modal observational logic. Throughout the paper
we use variations of CCS to illustrate ideas, definitions and applications.

The problem of a sensible generalization of the notion of bisimulation has been first
tackled in [AW], where a lattice of simulation relations is defined, whose greatest element
can be seen as a possible generalization of Park and Milner’s notion of bisimulation in an
algebraic framework; in [AGR1] a different generalization closer to the original definition is
proposed; in [GR] it is shown that this generalization is indeed quite natural, and are given
also sufficient conditions for the maximum observational relation to be a congruence and
generate a model. Applications of the notion of generalized bisimulation to concurrency
can be found in [AR] (where a family of parametric concurrent calculi integrating pro-
cesses, functions and abstract data types is defined and its properties are studied) and in
[AGR2] (where several examples of processes used as data types are given); while applica-
tions to the semantics of abstract data types can be found in [AGR1]. Our work, together
~with generalizing the Hennessy-Milner work (see [M2]) to general algebraic structures,
is clearly much related to the work by De Nicola and Hennessy on testing equivalences
(see [DH]), and the relationship will be partly clarified in the paper. We also feel that
in the framework of observational structures it is possible to formalize and deal with the
hierarchies of semantics for concurrent processes presented by Abramsky in [A]; this will
be the subject of further work.

Arnold and Dicky [AD] and Ferrari and Montanari [FM] work in a similar direction to
ours, aiming at a general framework for the semantics of concurrency. Their approaches
are however different; they define classes of models (®-algebras in [AD], the H CCS cate-
gory in [FM]) and of morphisms (quasi-saturating homomorhpisms in [AD], abstraction
homomorphisms in [FM], a notion introduced in [C]) and get the notion of maximum
observational equivalence via terminality. A deeper analysis of the relationship between
our and their work would probably be of interest. Also, it is a research topic to be exam-
ined whether with each observational structure can be associated a category such that the
observational equivalence (or, the maximum congruence contained in it) can be obtained
via terminality; some preliminary investigations can be found in [GR).

In this paper we do not deal with the application of the theory of observational struc-
tures to algebraic specifications in general; for this we refer to a full paper which includes
also the proofs of all the results (see [AGR3]).

1 Processes as Data Types

In this section we briefly show how processes can be formally described as data types in an
algebraic style, adopting the view of CCS that processes are labelled transition systems;
however this viewpoint is not essential to the following theory, where processes are just
modelled by algebras. The examples, centered around CCS, will be used throughout the

paper.

1.1 The algebraic framework

We briefly summarize our formal framework, which is that of total algebras with predicates.
The basic definitions and results can be found in [GM]; here we repeat just the essential
notions.

A signature T consists of a set of sorts (S), a family of operation symbols (F =
{F.,.s}ueseses) and a family of predicate symbols (P = {P,}ues+); moreover we indicate
by

e fis1 X -+ X 8, — 8 the fact that f € F,, . .,;
® p:8; X -+ X 8, the fact that p € Py, ,.;

e Tx(X) the term algebra on ¥ and the S-sorted family of variables X = {X,},es
and we write 2: s for t € (Tx(X)),;

e FOFx(X) the set of the first order formulas (with possibly infinitary conjunctions)
on ¥ and X if ¢ € FOFz(X), then fv(4) denotes the set of the free variables of ¢.

A T-algebra A is a triple ({A,}ses, {f*}ser, {P*}pep) such that for all s € S, A4, is
aset,forall fis; x---xs, =3, fA1A, x---x A, — A, is a total function and for all
P8y X - XSp, pA C A, x---xA,,. f ¢ € FOFg(X) and A is a -algebra, we indicate
as usual A |= ¢ the fact that ¢ holds in A.

A Z-algebra is said term generated iff each element of a carrier is the interpretation of
a ground term. ¢

1.2 Some Examples

Here we give some examples adopting the well-known and accepted technique of viewing
a process as a labelled transition system (see [M1]). A labelled transition system is a
triple TS = (S,L, —) where S is a set of states, L is a set of labels (or flags) and
— C S x L xS is the transition relation; as usual we write s —— s’ for (s,,sY € —.

Labelled transition systems can be seen as algebras on a signature having the sorts
state, label and a predicate — : state x label x state; we call them algebraic transition
systems (shortly, ats).

As a first example we rephrase the well-known (finite) CCS calculus of [M1] as an ats.

Example CCS0: Finite CCS
The signature of CCS0 is the following, where we use the “—"-notation for defining mixfix

operations:

sig Lecso =
sorts be, act
opns

nil: = be \
— . —:act x be —» be
—+—-:bexbe—\’be
— | —:be x be — be
{a: — act | a € ACT}
“:act — act

preds
— — —: be x act x be

where ACT is a set of operation symbols for actions such that 7 € ACT.

The “usual” operational model for CCSO0 is just the term-generated algebra over the
signature X ocso such that all and only the identifications which can be inferred from the
equalities @ = a for all a: act, and ¥ = 7 hold, and such that the interpretation of the
predicate — is given by the following inductive rules (where a: act and b, ¥, §", by, b}: be):

a-b=4b
b= [N
b+ ¥ 2 V4Ll
b2 b2t
Y = TN

bbb, W20
o Sobill
In the sequel we indicate this model simply by CCSO0. End of Example

Thus in an ats processes are just a data type and so it is possible to formally describe
systems where processere are exchanged as values, where there are functions taking as
parameters and/or returning (values containing) processes and so on (see [AGR2]); as an
example we give a simple variation of CCS.

Example CCS*: a Higher Order CCS

We extend CCS0 by allowing handshaking communication with exchange of behaviours
(see [AR,T]); formally we add to the signature of CCS0 an operation SEND: be — act; a
behaviour b can hence perform a SEND(V') action, where ¥ is another behaviour, and the
intuitive meaning is that ¥ is being sent as a value which can be received by some other
process performing a corresponding SEND(¥) action. End of Example

fora# .

In this framework it is also possible to handle concurrent systems, i.e., a particular
kind of transition systems in which a state has an internal structure built starting from
another transitition system representing the (basic) active components of the state. As
an example, here we build a concurrent system whose basic components are just CCS0
behaviours.

Example net-CCS: A net of CCS Behaviours
We add to the signature X ccse:

e a new sort net, whose elements model nets of CCS0 behaviours (inductively defined
as a single behaviour or a parallel composition n,||n; of two networks) and whose
activities proceed in a free parallel way, except when restricted by the “/” operation;

e a new sort lab, whose elements are used to label the network transitions; network
labels can be composed in parallel, and we assume to this end a binary operation
on labels “*”;

e a new transition relation = :net x lab x net on nets.
“net- CCS™ is just the term-generated algebra over the enriched signature such that:

e all and only identifications on the new elements are due to the fact that: “||” and
“” are commutative and associative, 7 is an identity for “+” and @ is the inverse of
a wr.t. “x”;

o the interpretation of the predicate = is given by means of the following inductive
rules:
b=V

=¥

! 1
ny =>ny ny ==>ny

7 7
n1||nz == ni|in, n||ny => ny||nj

ny = n) =2 n) n=1n' oy
ny|[g 228 0} || ny nfll s nflr .

End of Example

2 Observational Structures

In sections 2.1 and 2.2 we motivate the formal definitions given in section 2.3 by means
of the examples of section 1.

2.1 Similarity of experiments

Strong Bisimulation for CCS0 Consider the ats CCS(l given in section 1.2 formally

defining CCS.

It is well-known that the above model is not satisfactory as a semantic model for CCS,
since it distinguishes too much (for example, ¥ + b" is different from ¥’ + ¥'); in this sense
one is looking for better semantics for CCSO0.

In general a semantics of an algebra A is given by means of a congruence on A;
a congruence can be seen as an A-family satisfying additional constraints, where an
A-family is couple ({R,}.cs, {Ry}pcp), such that for all s € S, R, C A? and for all
P8y X .- X 8, € P, Ry C A, x---xA,,. In particular, if R is a congruence on A, then
A/R is the algebra modelling the semantics given by R (the semantic model).

Hence, in this framework, a semantics for CCS0 is a couple R= ((Raet, Ric), R —.),

where R,.; and R, are binary relations on CCS0,,., and CCS0,;, respectively, and R__ C
__,ccso

The strong bisimulation semantics corresponds to the idea that two CCS0 behaviours
should be identified if and only if they behave in the same way if we can only observe the
actions which label their transitions. As it is well known this semantics is given taking
the quotient CCS0/~, where ~ is the so-called marimum strong bisimulation relation.

A CCS0-family R is a (strong) bisimulation relation (see [P,M1]) iff

i) ¥ Ry, b” implies
— forall a: act, b: be, if ' — b} then there exists b]: be s.t. ¥ —— &/ and ¥ R, b{;
— for all a: act, b}: be, if ¥ — b] then there exists b}: be s.t. ¥ — b, and ¥ R, U;

ii) R, is the identity relation;
iii) R, C —» €050,

The mazimum strong bisimulation ~ does exist and is the union of all the strong bisim-

ulations.
Now let us call z —= b, where z is a variable, an ezperiment for CCS0, for every a: act

and every b: be; note that £ — b is a first order formula, since — is a predicate symbol.
Then we can rephrase the definition of bisimulation replacing clause i) with the following:

i) ¥ Ry, b” implies
— for all experiments ¢’ if b’ passes €', then there exists a similar experiment ¢”,
such that b” passes e” .
— for all experiments e” if ” passes €”, then there exists a similar experiment ¢/,

such that ¥ passes €'.

Clearly, if e = £ — b, “Y’ passes e” can be formally stated as “e[t'] holds in CCS0”,
where e[b/] = e[b//z] = ¥ = b, since ¥’ — b is a first order formula. In this case we
define z =+ ¥ to be similar to all and only the experiments of the form z — " with

¥ R b". Notice that the similarity relation between experiments depends on R; heance
we introduce a function C, that we call simidarity law, associating with each R a binary
relation C(R) on experiments; in this case C is defined by: 2 ¥ C(R) z - b"iff ¥’ R "

Weak Bisimulation If we decide that some actions, let us say 7 actions, should not be
observable, then we need a semantic equivalence which is less fine than strong bisimulation,
since two behaviours whose activity differ only in the nonobservable actions performed
should be made equivalent. This is achieved by defining the well-known weak bisimula-
tion, which is obtained by introducing a new predicate == : be x act x be defined by the

following inductive rules:
b-150 V=" b==3b" b -—b"
b==b b== b b= b
This predicate introduces a different kind of experiments having form z == b. Weak
bisimulation is defined using the same definition schema of strong bisimulation by just

changing the set of experiments and by using a similiarity relation analogous to the one
used for strong bisimulation.

Divergence Sensitive Weak Bisimulation Let us extend CCS0 to include also some
infinite behaviours (for example, either by means of a fixpoint combinator, or directly by
means of recursive equations, as 7 = 7 - 7¥). It is well-known that weak bisimulation
does not distinguish properly between terminating and nonterminating behaviours (for
example, 7 is weakly equivalent to nil); to get a finer semantic equivalence we introduce
a new kind of experiment, Stop, defined by the following infinitary first order formula:

Stop = A{bi, ai Yicw-(bo =) A (A b =5 biya)
iEw

where the b;’s and a;’s are variables of sort be and act respectively. Stop succeeds on all
and only the terminating behaviours. To be equivalent we require now that not only two
behaviours have to exhibit the same visible actions, but they also have to agree w.r.t.
termination. The definition schema of bisimulation rephrased using the concept of exper-
iment handles already this case by taking as experiments {z — b | a: act, b: be} U {Stop}
(and clearly Stop is only similar to itself), since clause i) is quantified on all experiments;
the maximum bisimulation relation exists and identifies in this case all behaviours which
behave similarly w.r.t. all of these experiments.

Observing Multilevel Parallelism It is useful to slightly generalize the definition
schema by allowing several observed sorts, to be able to handle, for example, “net- CCS”
(see section 1.2). In this case both the arrows — and =, representing the transitions of
behaviours and of nets, can be used to build experiments for observing behaviours and
nets, hence we have experiments of the form z;, — b and of the form 2, =4 n; we want
that the semantic identifications are made on behaviours and on nets accordingly to these

experiments. It is easy to extend the definition of bisimulation by quantifying clause i)
over all observed sorts. Let O = {be,net} be the set of observed sorts,

Ezp = {z4, — b, 2:";, =n | a: act, b: be, I: lab, n: net}
the set of ezperiments, and for all R lef C(R) be the following similarity relation:
Tpe —u—f b’ C(R) Tpe —ab b" iff b’ R;, b”
and
Tnet =1’ C(R) Tne =>n" iff n' Rpet n".
A net-CCS-family is a multilevel bisimulation iff
i) for all 0 € O, t' R, t” implies for all ¢’ € Ezp with free variable of sort o

— if €’[t'] holds, then there exists'e” € Ezp such that e”[t"] holds and e’ C(R) ¢”;
— if €/[t"] holds, then there exists e” € Ezp such that e”[t’] holds and ¢” C(R) ¢';

it) for all s € O R, is the identity relation;
iii) for all p € P, R,C p*.

Since C is monotonic, then there exists the maximum multilevel bisimulation, which is
also the maximum fixed point of an appropriate function.

2.2 Propagating Identities

In the examples introduced in the previous section, the semantics of the objects of the
nonobserved sorts act and lab is fixed: the semantic identifications made on behaviours
(and on nets) do not introduce new identifications on actions and labels. Clearly, this
is not always the case, and we explain this point by considering the case of CCS* (see
section 1.2).

_In this case we want that, given b’ and 4", if b’ is semantically equivalent to 4” then also
the action SEND(¥) should be semantically equivalent to SEND(¥’). The propagation
of the semantic identifications to other sorts is represented by means of a propagation
function P, for all s € S, P(R), is the propagation of R to the elements of sort s (we
require P(R),=R, for all o € O). In this case we have that given R, if ¥ R ¥, then -
SEND(¥') P(R) SEND(Y"), so the propagation law P is defined for all R as follows:

P(R)oy = {(a,0),(3,3)|a € ACT}U
{(SEND(¥), SEND(b")), (SEND¥), SEND(¥")) | ' Ruc b"}.

To complete the example, we have to define the similarity relation between exper-
iments: it seems reasonable to consider a generic experiment z — b to be equivalent

to all the experiments of the form z =, ¥ with a P(R) @’ and b R V. In particular if
a = SEND(b,), then

. SEND
g EPM) s similarto =z END)y

for all b R ¥, by R b,. Hence the similarity law C can be defined in this case in terms of

P as follows: for all R ,
z-3bC(R)z -V

for all a,a’,b,¥ such that a P(R) ', bR V.

2.3 .Observational Structures and their Semantics

The discussions, definitions and examples of the previous sections are collected in the
notion of observational structure and of (mazximum) observational relation, which are a
general framework for observational semantics which is not only restricted to concurrency
(see [AGR1]), even though all the applications shown in this paper are to concurrency.

In this section A denotes a X-algebra on a signature ¥ = (S, F, P), and O C S denotes
the set of the observed sorts. A semantics on A is represented by an A-family which is
defined as follows.

Def. 2.1 For S’ C S, an (A, S')-family is an S'-indezed family R = {R,},es s.t. for all
s€S R, C A%

A couple (Rs, {R,},ep), where Rs is an (A, S)-family and R, C A,, X --- X A,, for
all p:8; X -+ X 8, € P, 1s called A-family.

If R is an A-family and §' C S, then Rls: indicates the (A, S’)-family {R,}.es.

A family R is reflexive iff for all s R, is reflexive; similarly for symmetric, transitive
and an equivalence. o

Def. 2.2 The set of experiments in ¥ on O, indicated with Exp(X,0), is defined as
follows:

Exp(Z,0) = {¢ € FOFs(X) | card(fv(9)) = 1 A fo(¢) C | {z.}}-

0€0
If fu(e) = {z,} we write e:0. O

Given an experiment e € Exp(Z, O) such that e:0, an element a € A, and a valuation
v s.t. v(z,) = a, we write A |= e[a] to indicate that e holds in A under the valuation v.
Usually we do not insist in specifying the sort of an experiment whenever this is clear
from the context.

-

Def. 2.3 (Similarity Laws)
S-law(A, O) indicates the set of all monotonic functions from A-families into the set of
binary relations on Exp(X, 0) respecting the sorts of the experiments. : 0

10

Def. 2.4 (Propagation Laws)
P-law(A, O) indicates the set of all monotonic functions P from (A, O)-families into
A-families s.t. P(R),= R, for all 0 € O. - a’

The fact that similarity and propagation laws are monotonic is needed to prove prop. 2.8.
In section 3.4 we use the notation P4 to indicate the propagation law s.t.:

o Pa(R), = {(a,a) |a € A,} for all s € § — O;
o Pa(R), =p* forallpe P.

Def. 2.5 (Observational Structures)
An observational structure is a 6-uple (X, A,O, Ezp,C,P) where

Y = (S, F, P) is a signature;

A is a L-algebra (the structure on which we want to define a semantics);

e O C S is a set of sorts (observed sorts, the sorts of the objects on which we perform
some ezperiments);

Ezp C Exp(X,0);
e C € S-law(A4, 0);
e P e P-law(A4,0). |

In the following we use OS to indicate a generic observational structure (£, A, O, Fzp,C, P).
Def. 2.6 An A-family R is an observational relation for OS (shortly, an o-relation) iff
i) Yo€ O,Vd',a" € A, d' R, a” implies
* Ye' € Ezp, A |= €[] implies 3¢ € Ezp s.t. ¢ C(R) €” and A | €"[a"];
** Ve” € Ezp, A |= ¢”(a"] implies 3¢’ € Ezp s.t. ¢ C(R) ¢” and A [€[d'];
11) Vs € S - O; ng P(R |O)ay’
ii) Vpe P, RyC P(R |o),- O

As for the case of strong bisimulation, for each OS there is a monotonic function Fog
on A-families, which can be used to characterize the observational relations and whose
maximnum fixed point (which does always exist) is the maximum observational relation.

Def. 2.7 For all A-families Rt.
Fos(R) = P({{(d,d") | «'.a" € A,, * and *x hold}},ec0). 0

Prop. 2.8 The following facts hold:
1. an A-family R is an o-relation ff RC Fos(R);

2. Fos is monotonic over the complete luttice of A-families, ordered by inclusion;

11

3. the (arbitrary) union of o-relations is an o-relation;

4. ~05=aef U{RIRQ fos(R)} is an o-relation and ~ops= maxfix Fops. m]
Sometimes we indicate ~gg simply by ~ and call it the mazimum o-relation of OS.

Notice that a’ ~ a” iff there exists an o-relation R s.t. ¢’ R a”; moreover (ay,...,a,) € ~,
iff there exists an o-relation R s.t (a1,...,a,) ER,.

In general we cannot ensure the maximum o-relation to he either reflexive, or transi-
tive, or symmetric; to this end additional requirements on P and C can be made; we show

just an example.

Prop. 2.9 If for all A-families R ve have that C(R*) =C(R)" and if for all equivalences
R we have that P(R) is an equivalence, then ~ is an equivalence, where R* indicates the

smallest equivalence containing R. O

If C and P are as in prop. 2.9, then we say that C reflects equivalences and P propagates
equivalences.

Even when ~ is an equivalence, it may be that it is not a congruence (for example,
the case of weak bisimulation). Sufficient conditions ensuring ~ to be a congruence can
be found for the case of transition systems in [GV] and for the algebraic case in [GR].

In the cases when ~ is not a congruence, one can also proceed in a similar way to
what has been done by Milner in [M2] for the case of weak bisimulation, and take the
greatest congruence contained in ~; in our framework this corresponds to replacing each
experiment e: o by the set of experiments e[c[z./]] for all contexts c[z./]: o, for all o’ € O.

Example The observational structure implicitely used in section 1.2 to define strong
bisimulation semantics for CCS0 is

(CCS0, be, {z == b | a: act, b: be }, Ceeso, Pocso)

where z -5 b Ceeso(R) ¢ —=b" iff ¥ R V. ,
End of Example

2.3.1 Testing Structures

Testing structures are a very simple but important class of observational structures used
in section 3 to state and prove the generalized version of Hennessy-Milner theorem. They
generalize the framework of testing semantics for processes introduced in [DH] and are
essentially observational structures where two experiments are similar iff they are the
same experiment.

Def. 2.10 A testing structure is an observational structure (L, A, O, Exp,ID,P), where
ID is the similarity law defined by TD(R) = {(¢/,e") | ¢’.¢"” € Ezp logically equivalent},
for all R.]

