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Preface

After three decades of research and practice, reuse of existing software artefacts remains
the most promising approach to decreasing effort for software development and evolu-
tion, increasing quality of software artefacts and decreasing time to market of software
products. Over time, we have seen impressive improvements, in extra-organizational
reuse, e.g. COTS, as well as in intra-organizational reuse, e.g. software product families.

Despite the successes that we, as a community, have achieved, several challenges
remain to be addressed. The theme for this eighth meeting of the premier international
conference on software reuse is the management of software variability for reusable
software. All reusable software operates in multiple contexts and has to accommodate the
differences between these contexts through variation. In modern software, the number of
variation points may range in the thousands with an even larger number of dependencies
between these points. Topics addressing the theme include the representation, design,
assessment and evolution of software variability.

The proceedings that you are holding as you read this report on the current state-of-
the-art in software reuse. Topics covered in the proceedings include software variability,
testing of reusable software artefacts, feature modeling, aspect-oriented software deve-
lopment, composition of components and services, model-based approaches and several
other aspects of software reuse.
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Supporting Software Variability by Reusing Generic
Incomplete Models at the Requirements
Specification Stage*

Rebeca P. Diaz Redondo, Martin Lépez Nores, José J. Pazos Arias,
Ana Fernandez Vilas, Jorge Garcia Duque, Alberto Gil Solla,
Belén Barragians Martinez, and Manuel Ramos Cabrer

Department of Telematic Engineering. University of Vigo.
36200, Vigo. Spain. Fax number: +34 986 812116
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Abstract. Selecting components that satisfy a given set of requirements is a key
problem in software reuse, especially in reusing between different domains of
functionality. This concern has been treated in the ARIFS methodology, which
provides an environment to reuse partial and formal requirements specifica-
tions, managing the variability implicit in their incompleteness. In this paper,
we define generic incomplete specifications, to introduce an explicit source of
variability that allows reusing models across different domains, accommodating
them to operate in multiple contexts. An extended formal basis is defined to
deal with these tasks, that entails improvements in the reuse environment.

1 Introduction

Reusability has been widely suggested to be a key to improve software development
productivity and quality, especially if reuse is tackled at early stages of the life cycle.
However, while many references in the literature focus on reusing at late stages (basi-
cally code), there is little evidence to suggest that reusing at early ones is widely
practiced. The ARIFS methodology [1, 2] (Approximate Retrieval of Incomplete and
Formal Specifications) deals precisely with this concern, providing a suitable frame-
work for reusing formal requirements specifications. It combines the well-known ad-
vantages of reusing at the requirements specification stage with the benefits of a for-
mal approach, avoiding ambiguity problems derived from natural language.

In an incremental process, the elements found at intermediate stages are characterized
by their incompleteness. ARIFES is involved with a formal treatment of the variability
inherent to this incompleteness. It covers the prospects of vertical reuse, i.e., reuse
within the same domain of functionality. In this paper, we go one step further, to fully
comply with the usual definition of software variability as “the ability of a software
artifact to be changed or customized to be used in multiple contexts” [12]. Our pro-
posal is to support an explicit form of variability that allows reusing models across
different domains. We do this by defining generic formal requirements specifications
and extending ARIFS’ formal basis to classify and retrieve them.

* Partially supported by PGIDT01PX132203PR project (Xunta de Galicia)

J. Bosch and C. Krueger (Eds.): ICSR 2004, LNCS 3107, pp. 1-10, 2004.
© Springer-Verlag Berlin Heidelberg 2004



2 R.P. Diaz Redondo et al.

The paper is organized as follows. Sections 2 and 3 describe the ARIFS reuse envi-
ronment and the life cycle where it is applied. Section 4 introduces generic compo-
nents and defines the basis for their classification and retrieval. Section 5 includes a
simple example showing the advantages of the new proposal, compared to the original
reuse environment. Section 6 comments other relevant works on the paper's scope and
describes our future lines of work. A brief summary is finally given in Section 7.

2 The SCTL-MUS Methodology

SCTL-MUS [7] is a formal and incremental methodology for the development of dis-
tributed reactive systems, whose life cycle (Fig. 1) captures the usual way in which
developers are given the specification of a system: starting from a rough idea of the
desired functionality, this is successively. refined until the specification is complete.
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Fig. 1. The SCTL-MUS life cycle

Specifications are elaborated at the “Initial goals” stage. The requirements stated
up to any given moment (in box “SCTL”) are used to synthesize a model or prototype
(in box “MUS”). When it is ready, a model checker verifies the global objectives
(properties) of the system (“SCTL-MUS verification”) to find if the model satisfies
them; if it cannot satisfy them, neither in the current iteration nor in future ones (in-
consistency); or if it does not satisfy them, but it may in future iterations (incomplete-
ness). In case of inconsistencies, the user is given suggestions to solve them. Then, by
animating the MUS prototype (“User validation”), the user can decide whether the
current specification is already complete or more iterations are needed. Upon com-
pletion, the system enters the (“Implementation”) stage. Here, the prototype is trans-
lated into the LOTOS process algebra [5] to obtain an initial architecture, that is pro-
gressively refined until allowing its semi-automatic translation into code language.

SCTL-MUS combines three formal description techniques. First, the many-valued
logic SCTL (Simple Causal Temporal Logic) is used to express the functional re-
quirements of a system, following the pattern Premise =@ Consequence. Depending
on the temporal operator, the consequence is assessed on the states where the premise
is defined (= or “simultaneously”), their predecessors =Oor “previously’) or their
successors (<O or “next™). Second, the graph formalism MUS (Model of Unspeci-
fied States) is a variation of traditional labeled transitions systems (LTS), used to ob-
tain system prototypes in terms of states and event-triggered transitions. Finally, the
LOTOS process algebra is used to express the architecture of the developed system.

In an incremental specification process, it is essential to differentiate functional
features that have been specified to be false (impossible) from those about which
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nothing has been said yet. SCTL introduces this concept of unspecification by adding
a third value to the logic: an event can be specified to be true (1) or false (0), being

not-yet-specified (%) by default. Analogously, MUS graphs support unspecification in
both states and events, thus being adequate to model incomplete specifications.

Unspecification entails that intermediate models have freedom degrees, so that
they can evolve into potentially many systems. Therefore, unspecification implies
variability. The incremental specification process makes the system under develop-
ment lose unspecification at each iteration, by evolving not-yet-specified elements
into true or false ones, to eventually become the desired system. ARIFS was defined
to take advantage of this implicit form of variability for the purposes of reuse.

3 The ARIFS Reuse Environment

ARIFS provides for the classification, retrieval and adaptation of reusable compo-
nents in SCTL-MUS. Its objectives are twofold: (i) to save specification and synthesis
efforts, by reusing suitable incomplete specifications; and (ii) to reduce the extensive
resources needed to check (at every single iteration) the consistency of medium to
large specifications, by reusing previously obtained formal verification results.

For these purposes, a reusable component is defined by: (a) its functional specifi-
cation, expressed by a set of SCTL requirements and modeled by the corresponding
MUS graph; (b) verification information summarizing the levels of satisfaction of the
properties that have been verified on it; and (c) an interface or profile, used for classi-
fication and retrieval, that is automatically extracted from the functional specification.

Classifying Reusable Components. The idea behind classification is that “the closer
two reusable components are classified, the more functional similarities they have”.
According to this, we have defined four criteria to identify semantic and structural
similarities [2]. This section describes those relevant for this paper: the TC* and NE*®
functions, whose results are included in the profile of the reusable components.

The TC* function offers a semantic viewpoint of reusable components. It associ-
ates with every MUS graph g € G a set TC°(g) that contains sequences of events
linked to its evolution paths. It follows the traditional complete-traces semantics [11],
although it also reflects non-finite evolution paths and considers both true and false
events, to differentiate these from not-yet-specified ones. On the other hand, NE* of-
fers a structural viewpoint: given a MUS graph g € G, it returns a set NE*(g) re-
flecting the number of transitions that the model makes through every evolution path.

For each O € {TC>, NE*°}, an equivalence relation =0 € G X G is defined, such
that g =0 g’ & O (g) = O (g°). This organizes reusable components into equivalence
classes of components indistinguishable using O-observations. There is also a preor-
der relation Co € G x G, given by g E0 g’ < O (g) E O (g”) that establishes a partial
order between equivalence classes, so that (G,Co)isa partially ordered set.

Example 1. The following figure shows the result of applying the TC* and NE*
functions to a MUS graph, g,, that has four different evolution paths: (i) it can evolve
through event b to a final state where d is not possible; (ii) it can reach another final
state through events a and c; (iii) it can enter an endless loop through event a and an
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infinite number of events e; and (iv), it can reach a final state through event a, any
number of events e and then event c.

TC>(g1) = (b—d, ac,a(e)+,a(e) + ¢)
NE>(g1) = (1,2,(2)+, (3)+)

TC*®(g2) = (ac,b)

!
|
NE=(g:) = (1,2) |
|

All these possibilities are reflected in TC*(g,), where the + notation means that the
sequences of events inside the parenthesis can be repeated any number of times. From
the NE° point of view, for the evolution paths enumerated above, the system makes
one, two, at least two and at least three transitions, respectively. On another hand, it is
easy to see that the MUS graph g, is NE>°- and TC*-included in g,.

The relationships among MUS graphs extrapolate directly to the corresponding re-
usable components. So, they allow organizing a repository of reusable components in
two different lattices: the NE°° lattice, intended for structural similarities (horizontal
reuse) and the TC*°lattice, for semantic ones (vertical reuse).

Retrieving Reusable Components. The variability commented at the end of Sect. 2
allows the retrieval process to be based on functional proximity instead of on
functional equivalence. Taking this into account, ARIFS performs approximate
retrievals. Queries represent functional patterns of the SCTL statements that describe
the system being developed. Actually, they are defined in the same terms as the
profiles of the reusable components (VE* and TC® patterns), so the equivalence and
partial orderings defined above also hold between queries and reusable components.

For efficiency reasons, the retrieval process is split in two steps. In the first phase,
the adjacent components of the query in the NE® and TC® lattices are located. In the
second, the search is refined by quantifying the functional differences between those
components and the query, in order to minimize the adaptation efforts. In the case of
NE®°, differences are measured in terms of a numerical distance. As for TC*, two
functions assess semantic differences: the functional consensus and the functional ad-
aptation. A detailed description of these aspects can be found at [2].

Finally, the user is given the choice between the component closest to the query
according to NE° criterion, and the closest according to 7C®°. This selection cannot
be fully automated because the adaptation cost is expressed differently in each case.

Reusing Verification Information. The idea behind the reuse of verification infor-
mation in ARIFS is that useful information about the system being developed can be
deduced from reusable components that are functionally close to it. With this aim,
each reusable component stores verification results about every property that has been
verified on it. We have proved that, for any two TC™-related components, interesting
verification information can be extracted from one to the other, helping to reduce the
amount of formal verification tasks throughout the specification process. The results
of this work are summarized in [1].
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4 Defining Generic Components

Practical experience with ARIFS has revealed some features that can be improved. As
shown in Fig. 2, an NE®™-based retrieval may return wildly different components,
hard to adapt to the desired functionality despite being NE>°-equivalent to the query.

Fig. 2. Limitations of NE ~ and TC™ criteria

On the other hand, the TC®® criterion can only return components whose transitions
are labeled the same way as the query. Thus, in the situation depicted in Fig. 2, the
TC® search using the pattern {ab, ac} would not find any suitable component. How-
ever, it is easy to notice that one of the components in the repository would be TC®°-
equivalent to the query under the mapping (a — i, b — j, ¢ — k). What is more, any
property R’ verified on that component gives the same verification results as R on the
current specification, where R’ is obtained from R by the same mapping. So, the veri-
fication information linked to that component is potentially useful for the system be-
ing developed. However, it can not be reused with 7C®, because this criterion is too
linked to the domain of functionality of every particular component.

Generic components are introduced to address these problems. They have the same
information as classic components (Section 3), but with the functionality and the veri-
fied properties expressed in terms of meta-events. Meta-events are identifiers such
that different meta-events of a generic component must represent different events. To
deal with them, we introduce a new criterion: M7°°.

MT® associates with every MUS graph g € G a set MT*(g) that contains se-
quences of meta-events linked to its evolution paths. Two graphs g and g’ are MT°-
equivalent (g =MT g’) iff a one-to-one mapping between the actions of g and g’ exists
such that, having done the mapping, g™ =Tc g’. Analogously, a graph g is M7°°-
included in another graph g’ (g EXir g’) iff all the actions of g can be mapped to a dif-
ferent action of g’ in a way that, having done the mapping, g"* ETc g’ (see Fig. 3).

An ordering exists (Eq. (1)) such that, if two components are 7C*-related, they are
MT*- and NE®-related in the same way: C,5Tc C,= C,Efit ¢,= ¢, 5RE C,

NE® < MT® < TC® 1

Our proposal in this paper is to organize the repository in a single lattice of generic
components, using the M7 relations. MT° merges structural and semantic view-
points in a convenient way: it is much less permissive than NE* identifying structural
similarities, and abstracts the domain of functionality by considering generic actions.
This introduces an explicit form of variability in the alphabet of actions of a reusable
component. We also propose MT° to be the only criterion to conduct the retrieval
process, automating the decision of which component to reuse; and the profile of re-
usable components to be formed by the results of the NE> and MT* functions.



