: _"Ian' Bosch |
Charles Krueger (Eds.)

Software Reuse:
Methods, Techniques,
and Tools

8th International Conference, ICSR 2004
Madrid, Spain, July 2004
Proceedings

LNCS 3107

@ Springer

Jan Bosch Charles Krueger (Eds.)

Software Reuse:
Methods, Techniques,
and Tools

8th International Conference, ICSR 2004
Madrid, Spain, July 5-9, 2004
Proceedings

@ Springer

Volume Editors

Jan Bosch

University of Groningen, Department of Computing Science
P.O. Box 800, 9700 AV, Groningen, Netherlands

E-mail: Jan.Bosch@cs.rug.nl

Charles Krueger

BigLever Software

10500 Laurel Hill Cove, Austin, TX, 78730, USA
E-mail: ckrueger@biglever.com

Library of Congress Control Number: Applied for

CR Subject Classification (1998): D.2,K.6, D.1,J.1

ISSN 0302-9743
ISBN 3-540-22335-5 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable to prosecution under the German Copyright Law.

Springer-Verlag is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by PTP-Berlin, Protago-TeX-Production GmbH
Printed on acid-free paper SPIN: 11015529 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3107

Preface

After three decades of research and practice, reuse of existing software artefacts remains
the most promising approach to decreasing effort for software development and evolu-
tion, increasing quality of software artefacts and decreasing time to market of software
products. Over time, we have seen impressive improvements, in extra-organizational
reuse, e.g. COTS, as well as in intra-organizational reuse, e.g. software product families.

Despite the successes that we, as a community, have achieved, several challenges
remain to be addressed. The theme for this eighth meeting of the premier international
conference on software reuse is the management of software variability for reusable
software. All reusable software operates in multiple contexts and has to accommodate the
differences between these contexts through variation. In modern software, the number of
variation points may range in the thousands with an even larger number of dependencies
between these points. Topics addressing the theme include the representation, design,
assessment and evolution of software variability.

The proceedings that you are holding as you read this report on the current state-of-
the-art in software reuse. Topics covered in the proceedings include software variability,
testing of reusable software artefacts, feature modeling, aspect-oriented software deve-
lopment, composition of components and services, model-based approaches and several
other aspects of software reuse.

Jan Bosch
Charles Krueger

May 2004

Organizing Committee

General Chair
Program Co-chairs

Tutorial Chair
Workshop Chair
Doctoral Student
Session Chair
Local Chair
Finance and
Registration Chair
Corporate Chair

Publicity Chair

Web Chair
Advisory Committee

Kyo C. Kang, Pohang University of Science and
Technology, Korea

Jan Bosch, University of Groningen, The Netherlands
Charles Krueger, BigLever Software, Inc., U.S.A.
Sergio Bandinelli, European Software Institute, Spain
Klaus Schmid, Fraunhofer IESE, Germany

Sholom Cohen, Software Engineering Institute, USA

Juan Llorens, Universidad Carlos III de Madrid, Spain
Ernesto Guerrieri, GTECH Corporation, USA

Chuck Lillie, The University of North Carolina

at Pembroke, USA

Jaejoon Lee, Pohang University of Science

and Technology, Korea

Eelke Folmer, University of Groningen, The Netherlands
Ted Biggerstaff, Softwaregenerators.com, USA

John Favaro, independent consultant, Italy

Bill Frakes, Virginia Tech, USA

VI Organization

Sponsors

ISASE

Korea IT Industry Promotion Agency
SRA Key Technology Laboratory, Inc.

Consulenza Informatica, Italy

SRA-KTL, Japan
KIPA, Korea

Program Committee

Omar Alonso
Mikio Aoyama
Sidney Bailin
Sergio Bandinelli
Len Bass

Ira Baxter

Luigi Benedicenti
Per Olof Bengtsson
Cornelia Boldyreff
Paul Clements
Sholom Cohen
Jacob Cybulski

Krzysztof Czarnecki

Juan Carlos Duenas
Philip Fong
Cristina Gacek
Birget Geppert
Hassan Gomaa
Stan Jarzabek
Merijn de Jonge
Itoh Kiyoshi

Peter Knauber

Kwanwoo Lee
Julio Cesar Leite
Mike Mannion
Michele Marchesi
Ali Mili

Roland Mittermeir
Maurizio Morisio
Hausi Muller
David Mussser
Dirk Muthig

Oracle, USA

Nanzan University, Japan

Knowledge Evolution, USA

European Software Institute, Spain
Software Engineering Institute, USA
SemanticDesigns, USA

University of Regina, Canada

Ericsson, Sweden

University of Durham, UK

Software Engineering Institute, USA
Software Engineering Institute, USA
University of Melbourne, Australia
University of Waterloo, Canada
Universidad Politécnica de Madrid, Spain
University of Regina, Canada

University of Newcastle upon Tyne, UK
Avaya, USA

George Mason University, USA

National University of Singapore, Singapore
Universiteit Utrecht, The Netherlands
Sophia University, Japan

Mannheim University of Applied Sciences,
Germany

Hansung University, Korea

PUC-RIO, Brazil

Glasgow Caledonian University, UK
University of Cagliari, Italy

New Jersey Institute of Technology, USA
University of Klagenfurt, Austria
Politecnico di Torino, Italy

University of Victoria, Canada
Rensselaer Polytechnic Institute, USA
Fraunhofer IESE, Germany

Jim Neighbors
Jim Ning

Henk Obbink
Sooyong Park
Witold Pedrycz
John Penix

Jeff Poulin
Wolfgang Pree
Rubin Prieto-Diaz
Alexander Romanovsky
William Scherlis
Klaus Schmid
Erwin Schoitsch
Murali Sitaraman
Douglas Smith
Giancarlo Succi
Joost Visser
Steven Wartik
Claudia Werner
Gabi Zodik

Greg Kulczycki

Organization

Bayfront Technologies, USA
Accenture, USA

Philips Research, The Netherlands
Sogang University, Korea
University of Alberta, Canada
NASA, USA

LockheedMartin, USA

University of Salzburg, Austria
James Madison University, USA
University of Newcastle upon Tyne, UK
Carnegie Mellon University, USA
Fraunhofer IESE, Germany
Austrian Research Centers, Austria
Clemson, USA

Kestrel Institute, USA

Free University of Bozen, Italy
Universidade do Minho, Portugal
IDA, USA

University of Rio de Janeiro, Brazil
IBM, Israel

Virginia Tech, USA

VII

Lecture Notes in Computer Science

For information about Vols. 1-3021

please contact your bookseller or Springer-Verlag

Vol. 3125: D. Kozen (Ed.), Mathematics of Program Con-
struction. X, 401 pages. 2004.

Vol. 3123: A. Belz, R. Evans, P. Piwek (Eds.), Natural Lan-
guage Generation. X, 219 pages. 2004. (Subseries LNAI).

Vol. 3120: J. Shawe-Taylor, Y. Singer (Eds.), Learning
Theory. X, 648 pages. 2004. (Subseries LNAI).

Vol. 3118: K. Miesenberger, J. Klaus, W. Zagler, D. Burger
(Eds.), Computer Helping People with Special Needs.
XX, 1191 pages. 2004.

Vol. 3116: C. Rattray, S. Maharaj, C. Shankland (Eds.), Al-
gebraic Methodology and Software Technology. XI, 569
pages. 2004.

Vol. 3114: R. Alur, D.A. Peled (Eds.), Computer Aided
Verification. XII, 536 pages. 2004.

Vol. 3113: J. Karhumiki, H. Maurer, G. Paun, G. Rozen-
berg (Eds.), Theory Is Forever. X, 283 pages. 2004.

Vol. 3112: H. Williams, L. MacKinnon (Eds.), New Hori-
zons in Information Management. XII, 265 pages. 2004.

Vol. 3111: T. Hagerup, J. Katajainen (Eds.), Algorithm
Theory - SWAT 2004. X1, 506 pages. 2004.

Vol. 3109: S.C. Sahinalp, S. Muthukrishnan, U. Dogrusoz
(Eds.), Combinatorial Pattern Matching. XII, 486 pages.
2004.

Vol. 3107: J. Bosch, C. Krueger (Eds.), Software Reuse:
Methods, Techniques and Tools. X1, 339 pages. 2004.
Vol. 3105: S. Gobel, U. Spierling, A. Hoffmann, I. Turgel,
O. Schneider, J. Dechau, A. Feix (Eds.), Technologies for
Interactive Digital Storytelling and Entertainment. XVI,
304 pages. 2004.

Vol. 3104: R. Kralovic, O. Sykora (Eds.), Structural In-

formation and Communication Complexity. X, 303 pages.
2004.

Vol. 3103: K. Deb (Ed.), Genetic and Evolutionary Com-
putation - GECCO 2004. XLIX, 1439 pages. 2004.

Vol. 3102: K. Deb (Ed.), Genetic and Evolutionary Com-
putation - GECCO 2004. L, 1445 pages. 2004.

Vol. 3101: M. Masoodian, S. Jones, B. Rogers (Eds.),
Computer Human Interaction. XIV, 694 pages. 2004.
Vol. 3099: J. Cortadella, W. Reisig (Eds.), Applications
and Theory of Petri Nets 2004. X1, 505 pages. 2004.
Vol. 3098: J. Desel, W. Reisig, G. Rozenberg (Eds.), Lec-
tures on Concurrency and Petri Nets. VIII, 849 pages.
2004.

Vol. 3097: D. Basin, M. Rusinowitch (Eds.), Automated
Reasoning. XII, 493 pages. 2004. (Subseries LNAD).

Vol. 3096: G. Melnik, H. Holz (Eds.), Advances in Learn-
ing Software Organizations. X, 173 pages. 2004.

Vol. 3094: A. Niimberger, M. Detyniecki (Eds.), Adaptive
Multimedia Retrieval. VIII, 229 pages. 2004.

Vol. 3093: S.K. Katsikas, S. Gritzalis, J. Lopez (Eds.),
Public Key Infrastructure. XIII, 380 pages. 2004.

Vol. 3092: J. Eckstein, H. Baumeister (Eds.), Extreme Pro-
gramming and Agile Processes in Software Engineering.
XVI, 358 pages. 2004.

Vol. 3091: V. van Oostrom (Ed.), Rewriting Techniques
and Applications. X, 313 pages. 2004.

'Vol. 3089: M. Jakobsson, M. Yung, J. Zhou (Eds.), Applied
Cryptography and Network Security. XIV, 510 pages.
2004.

Vol. 3086: M. Odersky (Ed.), ECOOP 2004 — Object-
Oriented Programming. XIII, 611 pages. 2004.

Vol. 3085: S. Berardi, M. Coppo, F. Damiani (Eds.), Types
for Proofs and Programs. X, 409 pages. 2004.

Vol. 3084: A. Persson, J. Stirna (Eds.), Advanced Infor-
mation Systems Engineering. XIV, 596 pages. 2004.

Vol. 3083: W. Emmerich, A.L. Wolf (Eds.), Component
Deployment. X, 249 pages. 2004.

Vol. 3080: J. Desel, B. Pernici, M. Weske (Eds.), Business
Process Management. X, 307 pages. 2004.

Vol. 3079: Z. Mammeri, P. Lorenz (Eds.), High Speed
Networks and Multimedia Communications. XVIII, 1103
pages. 2004.

Vol. 3078: S. Cotin, D.N. Metaxas (Eds.), Medical Simu-
lation. X VI, 296 pages. 2004.

Vol. 3077: F. Roli, J. Kittler, T. Windeatt (Eds.), Multiple
Classifier Systems. XII, 386 pages. 2004.

Vol. 3076: D. Buell (Ed.), Algorithmic Number Theory.
X1, 451 pages. 2004.

Vol. 3074: B. Kuijpers, P. Revesz (Eds.), Constraint
Databases and Applications. XII, 181 pages. 2004.

Vol. 3073: H. Chen, R. Moore, D.D. Zeng, J. Leavitt
(Eds.), Intelligence and Security Informatics. XV, 536
pages. 2004.

Vol. 3072: D. Zhang, A.K. Jain (Eds.), Biometric Authen-
tication. XVII, 800 pages. 2004.

Vol. 3070: L. Rutkowski, J. Siekmann, R. Tadeusiewicz,
L.A. Zadeh (Eds.), Artificial Intelligence and Soft Com-
puting - ICAISC 2004. XXV, 1208 pages. 2004. (Sub-
series LNAI).

Vol. 3068: E. André, L. Dybkjer, W. Minker, P. Heis-
terkamp (Eds.), Affective Dialogue Systems. XII, 324
pages. 2004. (Subseries LNAI).

Vol. 3067: M. Dastani, J. Dix, A. El Fallah-Seghrouchni
(Eds.), Programming Multi-Agent Systems. X, 221 pages.
2004. (Subseries LNAI).

Vol. 3066: S. Tsumoto, R. Slowiriski, J. Komorowski, J.W.

Grzymala-Busse (Eds.), Rough Sets and Current Trends
in Computing. XX, 853 pages. 2004. (Subseries LNAI).

Vol. 3065: A. Lomuscio, D. Nute (Eds.), Deontic Logic in
Computer Science. X, 275 pages. 2004. (Subseries LNAI).

Vol. 3064: D. Bienstock, G. Nemhauser (Eds.), Integer
Programming and Combinatorial Optimization. XI, 445
pages. 2004.

Vol. 3063: A. Llamosi, A. Strohmeier (Eds.), Reliable
Software Technologies - Ada-Europe 2004. XIII, 333
pages. 2004.

Vol. 3062: J.L. Pfaltz, M. Nagl, B. Bohlen (Eds.), Applica-
tions of Graph Transformations with Industrial Relevance.
XV, 500 pages. 2004.

Vol. 3061: F.F. Ramas, H. Unger, V. Larios (Eds.), Ad-
vanced Distributed Systems. VIII, 285 pages. 2004.

Vol. 3060: A.Y. Tawfik, S.D. Goodwin (Eds.), Advances in
Artificial Intelligence. XIII, 582 pages. 2004. (Subseries
LNAD.

Vol. 3059: C.C. Ribeiro, S.L. Martins (Eds.), Experimental
and Efficient Algorithms. X, 586 pages. 2004.

Vol. 3058: N. Sebe, M.S. Lew, T.S. Huang (Eds.), Com-
puter Vision in Human-Computer Interaction. X, 233
pages. 2004.

Vol. 3057: B. Jayaraman (Ed.), Practical Aspects of
Declarative Languages. VIII, 255 pages. 2004.

Vol. 3056: H. Dai, R. Srikant, C. Zhang (Eds.), Advances in
Knowledge Discovery and Data Mining. XIX, 713 pages.
2004. (Subseries LNAI).

Vol. 3055: H. Christiansen, M.-S. Hacid, T. Andreasen,
H.L. Larsen (Eds.), Flexible Query Answering Systems.
X, 500 pages. 2004. (Subseries LNAI).

Vol. 3054: 1. Cmkovic, J.A. Stafford, H.W. Schmidt, K.
Wallnau (Eds.), Component-Based Software Engineering.
XI, 311 pages. 2004.

Vol. 3053: C. Bussler, J. Davies, D. Fensel, R. Studer
(Eds.), The Semantic Web: Research and Applications.
XIII, 490 pages. 2004.

Vol. 3052: W. Zimmermann, B. Thalheim (Eds.), Abstract
State Machines 2004. Advances in Theory and Practice.
XII, 235 pages. 2004.

Vol. 3051: R. Berghammer, B. Méller, G. Struth (Eds.),
Relational and Kleene-Algebraic Methods in Computer
Science. X, 279 pages. 2004.

Vol. 3050: J. Domingo-Ferrer, V. Torra (Eds.), Privacy in
Statistical Databases. IX, 367 pages. 2004.

Vol. 3049: M. Bruynooghe, K.-K. Lau (Eds.), Program
Development in Computational Logic. VIII, 539 pages.
2004.

Vol. 3047: F. Oquendo, B. Warboys, R. Morrison (Eds.),
Software Architecture. X, 279 pages. 2004.

Vol. 3046: A. Lagana, M.L. Gavrilova, V. Kumar, Y. Mun,
C.J.K. Tan, O. Gervasi (Eds.), Computational Science and
Its Applications — ICCSA 2004. LIII, 1016 pages. 2004.

Vol. 3045: A. Lagana, M.L. Gavrilova, V. Kumar, Y. Mun,
C.J.K. Tan, O. Gervasi (Eds.), Computational Science and
Its Applications — ICCSA 2004. LIII, 1040 pages. 2004.

Vol. 3044: A. Lagana, M.L. Gavrilova, V. Kumar, Y. Mun,
C.J.K. Tan, O. Gervasi (Eds.), Computational Science and
Its Applications — ICCSA 2004. LI, 1140 pages. 2004.

Vol. 3043: A. Lagan3, M.L. Gavrilova, V. Kumar, Y. Mun,
C.J.K. Tan, O. Gervasi (Eds.), Computational Science and
Its Applications — ICCSA 2004. LIII, 1180 pages. 2004.

Vol. 3042: N. Mitrou, K. Kontovasilis, G.N. Rouskas, 1.
Hiadis, L. Merakos (Eds.), NETWORKING 2004, Net-
working Technologies, Services, and Protocols; Perfor-
mance of Computer and Communication Networks; Mo-
bile and Wireless Communications. XXXIII, 1519 pages.
2004.

Vol. 3040: R. Conejo, M. Urretavizcaya, J.-L. Pérez-de-
la-Cruz (Eds.), Current Topics in Artificial Intelligence.
XIV, 689 pages. 2004. (Subseries LNAI).

Vol. 3039: M. Bubak, G.D.v. Albada, P.M.A. Sloot, J.J.
Dongarra (Eds.), Computational Science - ICCS 2004.
LXVI, 1271 pages. 2004.

Vol. 3038: M. Bubak, G.D.v. Albada, PM.A. Sloot, J.J.
Dongarra (Eds.), Computational Science - ICCS 2004.
LXVI, 1311 pages. 2004.

Vol. 3037: M. Bubak, G.D.v. Albada, PM.A. Sloot, J.J.
Dongarra (Eds.), Computational Science - ICCS 2004.
LXVI, 745 pages. 2004.

Vol. 3036: M. Bubak, G.D.v. Albada, PM.A. Sloot, J.J.
Dongarra (Eds.), Computational Science - ICCS 2004.
LXVI, 713 pages. 2004.

Vol. 3035: M.A. Wimmer (Ed.), Knowledge Management
in Electronic Government. XII, 326 pages. 2004. (Sub-
series LNAI).

Vol. 3034: J. Favela, E. Menasalvas, E. Ch4vez (Eds.), Ad-
vances in Web Intelligence. XIII, 227 pages. 2004. (Sub-
series LNAI).

Vol. 3033: M. Li, X.-H. Sun, Q. Deng, J. Ni (Eds.),
Grid and Cooperative Computing. XXX VIII, 1076 pages.
2004.

Vol. 3032: M. Li, X.-H. Sun, Q. Deng, J. Ni (Eds.), Grid
and Cooperative Computing. XXXVII, 1112 pages. 2004.

Vol. 3031: A. Butz, A. Kriiger, P. Olivier (Eds.), Smart
Graphics. X, 165 pages. 2004.

Vol. 3030: P. Giorgini, B. Henderson-Sellers, M. Winikoff
(Eds.), Agent-Oriented Information Systems. XIV, 207
pages. 2004. (Subseries LNAI).

Vol. 3029: B. Orchard, C. Yang, M. Ali (Eds.), Innovations
in Applied Artificial Intelligence. XXI, 1272 pages. 2004.
(Subseries LNAI).

Vol. 3028: D. Neuenschwander, Probabilistic and Statis-
tical Methods in Cryptology. X, 158 pages. 2004.

Vol. 3027: C. Cachin, J. Camenisch (Eds.), Advances in
Cryptology - EUROCRYPT 2004. XI, 628 pages. 2004.

Vol. 3026: C.V. Ramamoorthy, R. Lee, K.W. Lee (Eds.),
Software Engineering Research and Applications. XV,
377 pages. 2004.

Vol. 3025: G.A. Vouros, T. Panayiotopoulos (Eds.), Meth-
ods and Applications of Artificial Intelligence. XV, 546
pages. 2004. (Subseries LNAI).

Vol. 3024: T. Pajdla, J. Matas (Eds.), Computer Vision -
ECCV 2004. XXVIII, 621 pages. 2004.

Vol. 3023: T. Pajdla, J. Matas (Eds.), Computer Vision -
ECCV 2004. XXVIII, 611 pages. 2004.

Vol. 3022: T. Pajdla, J. Matas (Eds.), Computer Vision -
ECCV 2004. XXVIII, 621 pages. 2004.

Table of Contents

Software Variability: Requirements

Supporting Software Variability by Reusing Generic Incomplete

Models at the Requirements Specification Stage 1
Rebeca P. Diaz Redondo, Martin Lépez Nores, José J. Pazos Arias,
Ana Ferndndez Vilas, Jorge Garcia Duque, Alberto Gil Solla,
Belén Barragdns Martinez, Manuel Ramos Cabrer

Business Users and Program Variability: Bridgingthe Gap 11
Isabelle Rouvellou, Lou Degenaro, Judah Diament, Achille Fokoue,
Sam Weber

An Approach to Develop Requirement as a Core Asset
inProductLine e 23
Mikyeong Moon, Keunhyuk Yeom

Testing Reusable Software

Towards Generating Acceptance Tests for Product Lines 35
Birgit Geppert, Jenny Li, Frank Rofler, David M. Weiss

TTCN-3 Language Characteristics
in Producing Reusable Test Software oo, 49
Pekka Ruuska, Matti Karki

Software Reuse and the Test Development Process:
A Combined Approachcivscevnsieivinssoineisamssnesoiosasess 59
Mikko Karinsalo, Pekka Abrahamsson

Feature Modelling

Feature Dependency Analysis for Product Line Component Design 69
Kwanwoo Lee, Kyo C. Kang

Enhancements — Enabling Flexible Feature
and Implementation Selection. i 86
John M. Hunt, Murali Sitaraman

XML-Based Feature Modelling, 101
V. Cechticky, A. Pasetti, O. Rohlik, W. Schaufelberger

X Table of Contents

Aspect-Oriented Software Development

Aspects for Synthesizing Applications by Refinement 115
David Lesaint, George Papamargaritis

Framed Aspects: Supporting Variability and Configurability
TOFAOP o:s s sminmems sms@e s asms 60 a0 Re e BeEs:es §8i0s0sEeENsEEEnss 127
Neil Loughran, Awais Rashid

An Evaluation of Aspect-Oriented Programming
as a Product Line Implementation Technology 141
Michalis Anastasopoulos, Dirk Muthig

Component and Service Composition

Variability and Component Compositionouiuniininnennnn... 157
Tijs van der Storm

Concern-Based Composition and Reuse of Distributed Systems 167
Andrey Nechypurenko, Tao Lu, Gan Deng, Emre Turkay,
Douglas C. Schmidt, Aniruddha Gokhale

Reusable Web Services e 185
Peter Henderson, Jingtao Yang

Code Level Reuse

Quantifying COTS Component Functional Adaptation 195
Alejandra Cechich, Mario Piattini

Reuse Variables: Reusing Code and State in Timor 205
J. Leslie Keedy, Christian Heinlein, Gisela Menger

Decoupling Source Trees into Build-Level Components 215
Merijn de Jonge

Libraries, Classification, and Retrieval

Attribute Ranking: An Entropy-Based Approach
to Accelerating Browsing-Based Component Retrieval 232
Ge Li, Ying Pan, Lu Zhang, Bing Xie, Weizhong Shao

Software Reuse as Ontology Negotiationieninveninaen... 242
Sidney C. Bailin

Component-Extraction-Based Search System
for Object-Oriented Programs. 254
Hironori Washizaki, Yoshiaki Fukazawa

Table of Contents

Model-Based Approaches

A Metamodel-Based Approach for the Dynamic Reconfiguration

of Component-Based Software i

Abdelmadjid Ketfi, Noureddine Belkhatir

A Multiple-View Meta-modeling Approach

for Variability Management in Software Product Lines

Hassan Gomaa, Michael E. Shin

Validating Quality of Service for Reusable Software

Via Model-Integrated Distributed Continuous Quality Assurance

Arvind S. Krishna, Douglas C. Schmidt, Atif Memon, Adam Porter,
Diego Sevilla

Transformation and Generation

Implementing Tag-Driven Transformers with Tango

Vasian Cepa

Developing Active Help for Framework Instantiation

Through Case-Based Reasoning i,

Carlos J. Ferndndez-Conde, Pedro A. Gonzdlez-Calero
Requirements

Requirements-Reuse Using GOPCSD:
Component-Based Development of Process Control Systems
Islam A.M. El-Maddah, Tom S.E. Maibaum

Reuse, Standardization, and Transformation of Requirements.

Miguel A. Laguna, Oscar Lopez, Yania Crespo

Author Index

XI

Supporting Software Variability by Reusing Generic
Incomplete Models at the Requirements
Specification Stage*

Rebeca P. Diaz Redondo, Martin Lépez Nores, José J. Pazos Arias,
Ana Fernandez Vilas, Jorge Garcia Duque, Alberto Gil Solla,
Belén Barragians Martinez, and Manuel Ramos Cabrer

Department of Telematic Engineering. University of Vigo.
36200, Vigo. Spain. Fax number: +34 986 812116
{rebeca, mlnores, jose, avilas, jgd, agil, belen,
mramos}@det.uvigo.es

Abstract. Selecting components that satisfy a given set of requirements is a key
problem in software reuse, especially in reusing between different domains of
functionality. This concern has been treated in the ARIFS methodology, which
provides an environment to reuse partial and formal requirements specifica-
tions, managing the variability implicit in their incompleteness. In this paper,
we define generic incomplete specifications, to introduce an explicit source of
variability that allows reusing models across different domains, accommodating
them to operate in multiple contexts. An extended formal basis is defined to
deal with these tasks, that entails improvements in the reuse environment.

1 Introduction

Reusability has been widely suggested to be a key to improve software development
productivity and quality, especially if reuse is tackled at early stages of the life cycle.
However, while many references in the literature focus on reusing at late stages (basi-
cally code), there is little evidence to suggest that reusing at early ones is widely
practiced. The ARIFS methodology [1, 2] (Approximate Retrieval of Incomplete and
Formal Specifications) deals precisely with this concern, providing a suitable frame-
work for reusing formal requirements specifications. It combines the well-known ad-
vantages of reusing at the requirements specification stage with the benefits of a for-
mal approach, avoiding ambiguity problems derived from natural language.

In an incremental process, the elements found at intermediate stages are characterized
by their incompleteness. ARIFES is involved with a formal treatment of the variability
inherent to this incompleteness. It covers the prospects of vertical reuse, i.e., reuse
within the same domain of functionality. In this paper, we go one step further, to fully
comply with the usual definition of software variability as “the ability of a software
artifact to be changed or customized to be used in multiple contexts” [12]. Our pro-
posal is to support an explicit form of variability that allows reusing models across
different domains. We do this by defining generic formal requirements specifications
and extending ARIFS’ formal basis to classify and retrieve them.

* Partially supported by PGIDT01PX132203PR project (Xunta de Galicia)

J. Bosch and C. Krueger (Eds.): ICSR 2004, LNCS 3107, pp. 1-10, 2004.
© Springer-Verlag Berlin Heidelberg 2004

2 R.P. Diaz Redondo et al.

The paper is organized as follows. Sections 2 and 3 describe the ARIFS reuse envi-
ronment and the life cycle where it is applied. Section 4 introduces generic compo-
nents and defines the basis for their classification and retrieval. Section 5 includes a
simple example showing the advantages of the new proposal, compared to the original
reuse environment. Section 6 comments other relevant works on the paper's scope and
describes our future lines of work. A brief summary is finally given in Section 7.

2 The SCTL-MUS Methodology

SCTL-MUS [7] is a formal and incremental methodology for the development of dis-
tributed reactive systems, whose life cycle (Fig. 1) captures the usual way in which
developers are given the specification of a system: starting from a rough idea of the
desired functionality, this is successively. refined until the specification is complete.

| |

Maintenance e SCTL MUS .

1 = . . I

I * e 1

R —] . !
] 3,

i [Architectural |1 | User +{ SCTL-MUS i

: refinements \ : validation verification :

I
! Implementation 1 ! Initial goals |

|
____________ 4 o e e o o) e e e e e e e

Fig. 1. The SCTL-MUS life cycle

Specifications are elaborated at the “Initial goals” stage. The requirements stated
up to any given moment (in box “SCTL”) are used to synthesize a model or prototype
(in box “MUS”). When it is ready, a model checker verifies the global objectives
(properties) of the system (“SCTL-MUS verification”) to find if the model satisfies
them; if it cannot satisfy them, neither in the current iteration nor in future ones (in-
consistency); or if it does not satisfy them, but it may in future iterations (incomplete-
ness). In case of inconsistencies, the user is given suggestions to solve them. Then, by
animating the MUS prototype (“User validation”), the user can decide whether the
current specification is already complete or more iterations are needed. Upon com-
pletion, the system enters the (“Implementation”) stage. Here, the prototype is trans-
lated into the LOTOS process algebra [5] to obtain an initial architecture, that is pro-
gressively refined until allowing its semi-automatic translation into code language.

SCTL-MUS combines three formal description techniques. First, the many-valued
logic SCTL (Simple Causal Temporal Logic) is used to express the functional re-
quirements of a system, following the pattern Premise =@ Consequence. Depending
on the temporal operator, the consequence is assessed on the states where the premise
is defined (= or “simultaneously”), their predecessors =Oor “previously’) or their
successors (<O or “next™). Second, the graph formalism MUS (Model of Unspeci-
fied States) is a variation of traditional labeled transitions systems (LTS), used to ob-
tain system prototypes in terms of states and event-triggered transitions. Finally, the
LOTOS process algebra is used to express the architecture of the developed system.

In an incremental specification process, it is essential to differentiate functional
features that have been specified to be false (impossible) from those about which

Supporting Software Variability by Reusing Generic Incomplete Models 3

nothing has been said yet. SCTL introduces this concept of unspecification by adding
a third value to the logic: an event can be specified to be true (1) or false (0), being

not-yet-specified (%) by default. Analogously, MUS graphs support unspecification in
both states and events, thus being adequate to model incomplete specifications.

Unspecification entails that intermediate models have freedom degrees, so that
they can evolve into potentially many systems. Therefore, unspecification implies
variability. The incremental specification process makes the system under develop-
ment lose unspecification at each iteration, by evolving not-yet-specified elements
into true or false ones, to eventually become the desired system. ARIFS was defined
to take advantage of this implicit form of variability for the purposes of reuse.

3 The ARIFS Reuse Environment

ARIFS provides for the classification, retrieval and adaptation of reusable compo-
nents in SCTL-MUS. Its objectives are twofold: (i) to save specification and synthesis
efforts, by reusing suitable incomplete specifications; and (ii) to reduce the extensive
resources needed to check (at every single iteration) the consistency of medium to
large specifications, by reusing previously obtained formal verification results.

For these purposes, a reusable component is defined by: (a) its functional specifi-
cation, expressed by a set of SCTL requirements and modeled by the corresponding
MUS graph; (b) verification information summarizing the levels of satisfaction of the
properties that have been verified on it; and (c) an interface or profile, used for classi-
fication and retrieval, that is automatically extracted from the functional specification.

Classifying Reusable Components. The idea behind classification is that “the closer
two reusable components are classified, the more functional similarities they have”.
According to this, we have defined four criteria to identify semantic and structural
similarities [2]. This section describes those relevant for this paper: the TC* and NE*®
functions, whose results are included in the profile of the reusable components.

The TC* function offers a semantic viewpoint of reusable components. It associ-
ates with every MUS graph g € G a set TC°(g) that contains sequences of events
linked to its evolution paths. It follows the traditional complete-traces semantics [11],
although it also reflects non-finite evolution paths and considers both true and false
events, to differentiate these from not-yet-specified ones. On the other hand, NE* of-
fers a structural viewpoint: given a MUS graph g € G, it returns a set NE*(g) re-
flecting the number of transitions that the model makes through every evolution path.

For each O € {TC>, NE*°}, an equivalence relation =0 € G X G is defined, such
that g =0 g’ & O (g) = O (g°). This organizes reusable components into equivalence
classes of components indistinguishable using O-observations. There is also a preor-
der relation Co € G x G, given by g E0 g’ < O (g) E O (g”) that establishes a partial
order between equivalence classes, so that (G,Co)isa partially ordered set.

Example 1. The following figure shows the result of applying the TC* and NE*
functions to a MUS graph, g,, that has four different evolution paths: (i) it can evolve
through event b to a final state where d is not possible; (ii) it can reach another final
state through events a and c; (iii) it can enter an endless loop through event a and an

4 R.P. Diaz Redondo et al.

infinite number of events e; and (iv), it can reach a final state through event a, any
number of events e and then event c.

TC>(g1) = (b—d, ac,a(e)+,a(e) + ¢)
NE>(g1) = (1,2,(2)+, (3)+)

TC*®(g2) = (ac,b)

!
|
NE=(g:) = (1,2) |
|

All these possibilities are reflected in TC*(g,), where the + notation means that the
sequences of events inside the parenthesis can be repeated any number of times. From
the NE° point of view, for the evolution paths enumerated above, the system makes
one, two, at least two and at least three transitions, respectively. On another hand, it is
easy to see that the MUS graph g, is NE>°- and TC*-included in g,.

The relationships among MUS graphs extrapolate directly to the corresponding re-
usable components. So, they allow organizing a repository of reusable components in
two different lattices: the NE°° lattice, intended for structural similarities (horizontal
reuse) and the TC*°lattice, for semantic ones (vertical reuse).

Retrieving Reusable Components. The variability commented at the end of Sect. 2
allows the retrieval process to be based on functional proximity instead of on
functional equivalence. Taking this into account, ARIFS performs approximate
retrievals. Queries represent functional patterns of the SCTL statements that describe
the system being developed. Actually, they are defined in the same terms as the
profiles of the reusable components (VE* and TC® patterns), so the equivalence and
partial orderings defined above also hold between queries and reusable components.

For efficiency reasons, the retrieval process is split in two steps. In the first phase,
the adjacent components of the query in the NE® and TC® lattices are located. In the
second, the search is refined by quantifying the functional differences between those
components and the query, in order to minimize the adaptation efforts. In the case of
NE®°, differences are measured in terms of a numerical distance. As for TC*, two
functions assess semantic differences: the functional consensus and the functional ad-
aptation. A detailed description of these aspects can be found at [2].

Finally, the user is given the choice between the component closest to the query
according to NE° criterion, and the closest according to 7C®°. This selection cannot
be fully automated because the adaptation cost is expressed differently in each case.

Reusing Verification Information. The idea behind the reuse of verification infor-
mation in ARIFS is that useful information about the system being developed can be
deduced from reusable components that are functionally close to it. With this aim,
each reusable component stores verification results about every property that has been
verified on it. We have proved that, for any two TC™-related components, interesting
verification information can be extracted from one to the other, helping to reduce the
amount of formal verification tasks throughout the specification process. The results
of this work are summarized in [1].

Supporting Software Variability by Reusing Generic Incomplete Models 5

4 Defining Generic Components

Practical experience with ARIFS has revealed some features that can be improved. As
shown in Fig. 2, an NE®™-based retrieval may return wildly different components,
hard to adapt to the desired functionality despite being NE>°-equivalent to the query.

Fig. 2. Limitations of NE ~ and TC™ criteria

On the other hand, the TC®® criterion can only return components whose transitions
are labeled the same way as the query. Thus, in the situation depicted in Fig. 2, the
TC® search using the pattern {ab, ac} would not find any suitable component. How-
ever, it is easy to notice that one of the components in the repository would be TC®°-
equivalent to the query under the mapping (a — i, b — j, ¢ — k). What is more, any
property R’ verified on that component gives the same verification results as R on the
current specification, where R’ is obtained from R by the same mapping. So, the veri-
fication information linked to that component is potentially useful for the system be-
ing developed. However, it can not be reused with 7C®, because this criterion is too
linked to the domain of functionality of every particular component.

Generic components are introduced to address these problems. They have the same
information as classic components (Section 3), but with the functionality and the veri-
fied properties expressed in terms of meta-events. Meta-events are identifiers such
that different meta-events of a generic component must represent different events. To
deal with them, we introduce a new criterion: M7°°.

MT® associates with every MUS graph g € G a set MT*(g) that contains se-
quences of meta-events linked to its evolution paths. Two graphs g and g’ are MT°-
equivalent (g =MT g’) iff a one-to-one mapping between the actions of g and g’ exists
such that, having done the mapping, g™ =Tc g’. Analogously, a graph g is M7°°-
included in another graph g’ (g EXir g’) iff all the actions of g can be mapped to a dif-
ferent action of g’ in a way that, having done the mapping, g"* ETc g’ (see Fig. 3).

An ordering exists (Eq. (1)) such that, if two components are 7C*-related, they are
MT*- and NE®-related in the same way: C,5Tc C,= C,Efit ¢,= ¢, 5RE C,

NE® < MT® < TC® 1

Our proposal in this paper is to organize the repository in a single lattice of generic
components, using the M7 relations. MT° merges structural and semantic view-
points in a convenient way: it is much less permissive than NE* identifying structural
similarities, and abstracts the domain of functionality by considering generic actions.
This introduces an explicit form of variability in the alphabet of actions of a reusable
component. We also propose MT° to be the only criterion to conduct the retrieval
process, automating the decision of which component to reuse; and the profile of re-
usable components to be formed by the results of the NE> and MT* functions.

