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Preface

The swift development of analysis in the twentieth century,
beginning with the theory of the Lebesgue integral, has been of tremen-
dous mathematical importance. No mathematician today can afford
to be ignorant of the modern theories of integration, and it is to the
profit of a student of mathematics that he become acquainted with
these ideas early in his graduate studies. On the other hand, most of
the writings on integration are written by mature mathematicians for
mature mathematicians, often in an admirably concise form which is

.not appreciated by a beginner. This book is written with the hope
that it will open a path to the Lebesgue theory which can be travelled
by students of little maturity.

It is for the sake of such readers that details are explicitly presented
which could ordinarily be regarded as obvious. An experienced
mathematician may regard many proofs as verbose. Probably some
of them are unnecessarily wordy, even for the veriest beginners;
equally probably there are details omitted as obvious which will not
be obvious to all readers. In view of the audience to whom this is
addressed, the latter must be considered the graver fault.

The scheme of introducing the Lebesgue and Lebesgue-Stieltjes
integral here adopted is a modification of that of Daniell, the integral
appearing as the result of a two-stage generalization of the Cauchy
(or Stieltjes) integral. Perhaps this manifestation of a connection
between continuous functions and summable functions may help the
beginner to feel at home in the newer theory.

There are few historical remarks on the theorems and methods here
used and there is practically no bibliography. These are not usually
of great interest to a beginner, and a student who wishes to continue
further into the subject will necessarily read treatises—above all, Saks’
Theory of the Integral—which will furnish bibliographical and historical
references.

In only a few features can this book make claims to novelty. An
expert will usually recognize known proofs used in assorted combina-
tions and modifications. One acknowledgement must however be
made. The latter part of the chapter on differential equations owes
much to a mimeographed set of lecture notes on differential equations
by Professor G. A. Bliss.

Part of the material in this book has been used in teaching graduate
classes at the University of Virginia, and in several respects the choice

v
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of subject matter and of forms of proof has been guided by the com-
ments of the students, especially by those of Dr. B. J. Pettis.

Shortly after the manuseript reached the Editors of the Princeton
Mathematical Series I was called to the Aberdeen Proving Ground to
help with the work in exterior ballistics. As a result, I lacked the
time to perform the usual final tasks. I am most grateful to the
Editors for their kindness in taking over duties which properly should
have devolved upon the author, and thereby advancing the date of
publication by many months. In particular, I owe thanks to Dr.
Paco Lagerstrom, who worked long and efficiently over the manuseript.

In the correction of proof I have been greatly assisted by Miss Mary
Jane Cox, who not only read all proof-sheets but pointed out a num-
ber of places in which rewording was needed for the sake of clarity.

Finally, I wish to thank Princeton University Press for its coopera-
tiveness and efficiency.

E. J. McSHANE.

CHARLOTTESVILLE, VIRGINIA,
November 21, 1943.
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CHAPTER I
Some Theorems on Real-valued

Functions

The entire subject-matter of this book rests upon the properties of
real numbers, with which we assume the reader to be familiar. No
appeal is made to geometric intuition. Nevertheless, it is often con-
venient to use the language of geometry, and this is permissible if we
define all our geometric expressions in terms of number.

If ¢ is a positive integer, we shall say that each ordered g¢-tuple
(z®, - - - 2) of real numbers is a “point in ¢-dimensional space,”
or a “point in R, For convenience in notation we prefer to put the
indices ¥, - - - | @ up instead of down; the lower position will be
reserved for subseripts distinguishing different points from each other.
Usually we abbreviate by writing x for (z, -.- - | 29). A standing
notational convention will be the following. If any letter, with or
without affixes, is used to denote a point in g-dimensional space, the
g numbers defining the point will be denoted by the same symbol (with
the same affixes if any) with superscripts ¢, - - - | (@, Thus if we
speak of a point y, in ¢-dimensional space R, we mean the ordered
g-tuple

W, v®, -, Y.
Two points of a space R, are identical if and only if corresponding
numbers in the two g¢-tuples are equal; that is, if z and y are both in
R, the equation z = y has the same meaning as thg ¢ equations

) = y(1)’ fee (D = y(q).

An ordered g¢-tuple and an ordered p-tuple (p = ¢) will never be
regarded as identical.

Having this system of abbreviation, it is reasonable to proceed a
step further and define sums = + y and products cx, where z and y
are points in R, and ¢ is a real number. The definitions are

T4y = (a0 4y - g0 4 y@)
cx = (exV, - - - ex(d),

We have little use for these symbols until the later chapters.
In order that a collection E of points of R, shall be called a point
set in R, we require only that, given any point 2 of R, it must be

possible to determine whether or not x belongs to the collection E.
1



2 INTEGRATION [Cuap. I

However, there is a great deal of trouble concealed in this statement.
The difficulty lies in giving a precise meaning to the word “determine.”’
Clearly it is not possible to list all the infinitely many points of R,
one by one, marking each as belonging to E or not belonging to E.
Some rule must be given. This leads to a further question. What
is a rule? Now we have begun to enter the domain of foundations of
mathematics; and, without denying the importance of such studies,
we shall turn back again to the narrower study of the points of our
spaces R,. We shall assume that the reader has some reasonably
adequate concept of a rule; if he has doubts of this, as we all may
well have, we can only refer him to the various publications on mathe-
matical logic and the foundations of mathematics.

A simple example of a point-set in R, is R, itself; for, given any «
in R, we know at once that it belongs to R,. The “empty’’ set A,
which contains no points whatever, is also a point-set in R; for, given
any z in R, we know that it does not belong to A. Two point-sets
E., E:in R, are identical if and only if each point z which belongs to
E, belongs also to K, and each point z which belongs to E, belongs to
El.

The set of all z for which the statement S holds will sometimes be
denoted by {z | S}. E.g. {#]|0 = 2 < 1} would be the closed interval
consisting of all real numbers between 0 and 1. (Cf. also §4.)

Given any set E in R, the set of all points of R, which do not
belong to E is called the complement of E, and is denoted by CE. Thus
the complement of the whole space R, is the empty space A, and con-
versely; in symbols, CR, = A and CA = R,. It is easy to see that
for every point-set E in R, the equation C(CE) = E holds. For if
zisin E, it is not in CE, and is therefore in C(CE); and if z is in C(CE),
it is not in CE, and is therefore in E.

If E, and E; are point sets in R, we say that E, is contained in E,
(in symbols, By & Es) or that E; contains E; (in symbols, B, D E,)
in case every point z which belongs to £, also belongs to E,. Thus
in particular £ C E and A C E for every set E. Further, we define
E U E; to be the set of all points z belonging to one or both of E,, Ey;
we define™ £, N E: or E1E; to be the set of all points z belonging to both
E; and E:; and we define £, — E; to be the set of all points 2 which
belong to £ but not to H,. T

* E1 n E. is sometimes called the product, sometimes the intersection of E, and
E,, E\U E: is called the sum or the union of E, and Es.

1 In defining the set theoretical operations we might of course have considered
any collection of elements instead of R,.
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Exampie. In R, put B, = {z|0=2=<2}and B, = {2|1 £z
= 3}. Then E,UE, is the set {z|0 =z =< 3}, E\E; is the set
x|l 22 =2},E,—E:is{z |02z <1},E;— E\is {z |2 <z £3)}.

If {E,} is any (finite or infinite) collection of sets in R, we define
the sum (union) U E. to be the set of all z contained in at least one
of the sets E., and we define the product (intersection) [ E, to be
the set of all z belonging to all the sets E,.*

ExampLE. In one dimensional space Ri, let E, be {z]0 =z
<1/n) (n=1,2,3 ") Then UE,is {z]0 =z <1}, NE,
is the single point 0. If E,is {z]0 < z < 1/n}, then U E, is {z |0
<z <1}, while N E, = A.

. The following relationships areggasily verified:

C(E.UE,) = CE,nCE,, CWUE)=0N(CE,
C(E:nE,) = CE,UCE,, CNE)=U/(CE.),
E\ — E, = E;n CEy,

C(E, — E;) = CE, VU E..

For instance, a point z is in C(U E,) if and only if it is not in U E,,
which is true if and only if it is in no one of the sets E,, which is true
if and only if it is in every set CE, and therefore in M (CE,). Again,
applying this equality to the sets CE., we have

cU CE.) = N (CCE.),

whence by taking complements
UCE. = ¢(N E.).

If {E} is a collection of sets, the sets of the collection {E} are
disjoint if no point x belongs to more than one of the sets of the
collection.

A useful tool in studying properties of point sets E is the character-
istic function.

1.1. The characteristic function Kgz(x) of the set E is that function
whose value ts 1 if x is in E and whose value s 0 f x is not in E.

In the next theorem we assemble some simple properties of char-
acteristic functions. However, it is desirable first to define sums
and products of characteristic functions. This is trivial for finite
sums and products. Given an infinite aggregate of symbols «, and

* Some authors write E1 + E;, E, - E;, ZEq, IE, for E\U E;, E\ N E», U Eq,
N Ea.
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corresponding to each & a number {. which is either 0 or 1, we define
the product of all ¢, to be 0 if any one of them is 0 and to be 1 if all the
t, are 1. The sum of all {, is the number 7 if exactly n of the {, have
the value 1, and is o (>1) if an infinite number of the ¢, have the
value 1. Concerning this symbol % we shall have more to say shortly.

1.2. (a) For any collection {E.} of sets, Kne, (¥) = NKg (7).

(b) For any collection {E.} of sets, Kys,(x) ts the smaller of the
numbers 1 and ZKg (z).

(¢) The sets Eq are disjoint if and only if ZKg (x) = 1.

(d) If the sets E. are disjoint, then Kys, = ZKg,.

(f) If E, C E,, then Kx,(z) £ Kz, ().

To prove (a), we observe that if the left member has the value 1,
then z is in M E., so it is in every E,, so Kz (2) = 1 for every «, and
the product of the characteristic functions is 1. Otherwise the left
member has the value zero, z is not in N E., it is therefore lacking
from some E,; for this E, we have Kz _(z) = 0, and the product of the
characteristic functions is 0.

To prove (b), if z is in U E. it is in at least one E., so at least one
term of the sum =Kz (z) is 1. Hence Kys,(z) = 1, and the smaller

of 1 and 2Ky (z) is also 1. If z is not in U E , then Kyg,(z) is 0 and
so is every term of the sum ZKyg, (). So the sum is 0, which is the
smaller of 0 and 1.

In (c¢), if the sets E. are disjoint, each z belongs to at most one set
E., so at most one term in the sum is 1, the others all being 0. So the
sum is 0 or 1. Conversely, if the sum is never more than 1, there is no
z for which two or more of the characteristic functions have the
value 1. That is, no x belongs to more than one of the sets E., and
the E, are disjoint.

Statement (d) follows at once from (b) and (¢). Or we can prove
it directly. If xis in U E., it is in exactly one of the sets E.,, so both
members of the equation have the value 1. If z is not in U E,, it is
not in any E,, so both members of the equation have the value 0.

If z is in CE, it is not in E, so Kg(x) =0 and 1 = K¢g(z) = 1
— Kx(z). If zis not in CE it isin E, so Kg(x) = 1 and 0 = Kcx(x)
=1 — Kg(z). This proves (¢).

For (f) we observe that if z is not in E;, then

0 = KEl(x) é KEz(x);
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while if x is in K, it is also in E, so

2. Next we proceed to investigate some properties of sets in R,
which depend, at least in part, on the concept of distance. If z is a
point in R, (or, as an alternative name, a vector in R,) we define its
distance from the origin (or, alternatively, the length of the vector)
to be the quantity | | z | | defined by the equation

a|| = [;::1 (xu)):z]%‘

If z and y are points of R,, we define their distance | | z, y | | by the
equation

ol =1ls =yl =[2 @ -]

We now establish the four fundamental properties of this distance,
which are the following.

(1) For all points z, y of E,,

1z, y[| 2 0.
(2) If z and y are points of Ry, | |2, y || = 0if and only if 2 = y.
(3) For all points z, y of R,
[z, yll=1lyzl].

(4) For all points z, y, 2 of R,
||x,y||+|ly,z||§||x,2|l

Properties (1) and (3) are evident from the definition. Also,
||z, y|| =0 if and only if each difference ¥ — y® has the value
zero, which establishes (2). - Property (4) is called the ‘“‘triangle
inequality’’; in geometric language, it states that the sum of two sides
of a triangle is at least equal to the third side. In order to prove it, it
is convenient first to establish the highly useful Cauchy inequality.

Ifai, -+ -, aq by, * = -, by are real numbers, then
q 3 q 3 q
} b?| = i
[i;1 ¢ ] [i§1 ] \1'=El ¢
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It is evident that
q
Y, lab; — ap]® 2 0;
Q=1
that is,
q g q
Y at — 2 Y, ababi+ Y, ab? 2 0.

=1 ii=1 ij=1
In the first double sum we first collect all the terms containing a, then
those containing as, and so on. We find

g

Y, aib?

7,i=1

Il

GO+ B O

+ a2 4 -+ bY)
@t A aB A+ )

= (3 (%)

A similar process can be applied to each of the other two double sums;
we thus find

(1:21 a?) (igx b?) 7 (iil aibi) (12::1 aibi) T (121 a?) (1'21 bf) =0

If we transpose the middle term and divide by 2, we obtain

(;; “) (i ) 2 (él abs)

The left member of the Cauchy inequality is non-negative. If the
right member is also non-negative, the Cauchy inequality follows from
the preceding inequality by taking the square roots of both members; if
the right member is negative, the inequality is evidently satisfied.

ExercisE. Let us say that the g¢-tuples (ai, - - -, a,) and
(by, * + -, by) are proportional if there are numbers h, k not both zero
such that ha; = kb;,i =1, - - - ,q. Show that the absolute values of

the two members of the Cauchy inequality are equal if and only if the
g-tuples are proportional. (If they are proportional and, say, h # 0,
we can substitute kb;/h for a; and verify equality. If equality holds,
show that it also holds in the first inequality in the proof. From this
deduce proportionality of the g-tuples.)

Returning to the proof of the triangle inequality, we first observe
that by the Cauchy inequality
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& S T A - - _
[2 (2 — y"")2] [2 (g — z(z))?] = Y (2 — y@)(ye — z0),
i1 i=1 =1

We add the same quantity to both members of this inequality to
obtain

(x® — y)2 4 [zq: (z) — yu))z]% [i (y — z(i))z]“‘
i=1 1=1

(y(i) — z(i))2

Mm

1
2
i=1

Mn

+3

=1

w |l

q g
24 Y @0 —yO) 4 Y @0 — g - 20) +3 N @ — 20,
i=1 =1 1

z 1=1

¥ {[i (0 — yu))z]% + [é‘(l (y» — z(i))z]%}Z
" [gq;l [(&® — y®) + (3o — z(i))]:a].

v

Multiplying both members by 2 and changing notation, we find
Oz, yll+ 11y 2122|223

whence the triangle inequality follows at once.

If z is any point of the space R,, and e is any positive number, we
define the e-neighborhood N (z,) of the pointzgtobe {z | | |z, zo | | < €}.
Thus in space of one dimension the e-neighborhood of z, consists of
{x |2 — e <z <z +e}; in three-space, N.(z,) consists of the
points inside of the sphere of radius e with center at .

Exercise. If zisin R, and % and k are both in N.(z), so is every
number y between h and k. ‘

ExEercise. Given two points z;, 22 of B,, we say that a point z is
on the line-segment joining z; and z, if there is a number ¢ between 0
and 1 such that z® = 2 4+ (1 — f)x§’. Show that if z; and z, are
both in N.(y), so is every point on the line-segment joining z; and xs.
(Use the equation | [cz || = |c|-||z]|| and the triangle inequality.)

A point z is interior to a set E if it is possible to find a neighborhood *
N.(z) every point of which belongs to E. A point-set E is open if
every point x which belongs to E is interior to E. For example,

*In such a case as this, in which we merely wish to state that there is some
neighborhood N¢(z) with a given property, and the size of eis of no importance, we
shall sometimes write merely N (z) instead of N(z).
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let us give the name “open interval” to a point set consisting of
(z]a® < 2® <bW, - - - al@ < 2@ < b@} where the a® and b®
are finite constants for which a® < b®. Then every open interval is
an open set. For if z belongs to the interval, each of the numbers
20 — g® and b® — z® is positive. Denote by 2¢ the smallest of
them, and consider the neighborhood N e(x). If xo1s in this neighbor-
hood, then

a® < g — e < W — ||, xo|l§x(”—‘x(”—x§f’|_S_xff’
<20 4 g — 2z | 20 4+ ||z, 20| | < 2P 4+ <DV,

so o is also in the open interval. Hence every open interval is an
open set.

If we give the name ‘“closed interval” to {z]a® £ 2@ £ bD},
where the a® and b® are finite constants such that a® < b®, we see
that a closed interval is not an open set. For the point a belongs to
the closed interval; but every neighborhood of a contains points g
with 2 < a®, so that zo can not belong to the closed interval.

A point z is called an accumulation point of a set E if every neigh-
borhood of z contains infinitely many points of E. The point z itself
may or may not belong to E. For example, every point of an open
interval is an accumulation point of the interval. If in one-space we
take E to be the set of points 1,3, %, - - -, 1/n, - - -, then 0 is an
accumulation point of E; and in fact we easily verify that it is the only
accumulation point of E.

The set of all points 2 which are accumulation points of a set K is
called the derived set of E, and is denoted by E’. The set EU E' is
the closure of E, and is denoted by E.

A set E is closed in case every accumulation point of E is itself a
point of E; in symbols, if E' C E. Thus the open interval

{z]a® < z® < b®)

is not a closed set; for the point a is an accumulation point of the
interval, but does not belong to the interval. The closed interval
{z]a® £ z® £ b?} isa closed set. For suppose that a point z is not in
the interval. Then the above inequalities do not all hold. Suppose,
to be specific, that z® < a®. Define ¢ = $(a'® — zM). For every
point z, in N(z) we have zf’ <z + | ) — 20| <z® 4 e <a?,
S0 2, is not in the interval. Hence x can not be an accumulation point
of the interval; and since no point outside of the interval is an accumula-
tion point of the interval, the interval is a closed set.



