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PREFACE

The ultimate objective of the profession of chemical engineering is the
manufacture of chemicals and products that improve societal and economic
conditions. Achieving this goal often requires that chemical engineers un-
derstand and exploit many physical, chemical, and biological phenomena.
In recent years, chemical engineers have increasingly been involved in the
design, synthesis, and manufacture of high-value-added products and chem-
icals. These technologies often demand that product properties and process-
ing methods be controlled with precision. Similar issues arise in research
aimed toward developing more efficient processing of petroleum products
and developing catalysts for synthesis of alternative fuels. In some cases,
product properties must be precisely controlled at the macroscopic level,
and in other cases, the properties that we seek are on much smaller scales
(nanometers to micrometers). One way to confront this challenge with both
classes of systems is to learn how to manipulate system characteristics at
the molecular and/or mesoscopic scales so that we obtain the desired prop-
erties. Learning how molecular constitution and mesoscopic characteristics
influence the properties of a system of interacting components can only be
addressed by synergistic experimental and theoretical research. The per-
tinent experimental and theoretical methods must be able to interrogate
systems on a wide range of length and time scales. Chemical engineers are
playing an important role in the development and application of a num-
ber of such experimental and theoretical tools. These research efforts are
taking steps toward developing the knowledge base required to relate struc-
tures to properties for both synthetic and biological systems. This volume of
Advances in Chemical Engineering focuses on theoretical and computational
efforts at the frontiers of a number of different application areas that benefit
from such research.

The bedrocks of the theoretical and computational methods that allow
study of relationships between molecular and mesoscopic scale events and
system properties are quantum and statistical mechanics. Thus, this volume
comprises chapters that describe the development and application of quan-
tum and statistical mechanical methods to various problems of technological
relevance. The application areas include catalysis and reaction engineering,
processing of materials for microelectronic applications, polymer science and
engineering, fluid phase equilibrium, and combinatorial methods for mate-
rials discovery. The theoretical methods that are discussed in the various
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Xiv PREFACE

chapters include electronic structure calculations, ab initio molecular dynam-
ics simulations, Monte-Carlo simulation methods, field-theoretic methods,
and various theories of the liquid state. The diversity of application areas rep-
resented in this volume reflects the fact that methods based on quantum and
statistical mechanics now play an important role in research that is relevant
to a variety of technologies. The diversity of methods discussed in this vol-
ume reflects the fact that for complex problems no single method can serve
as a panacea. In other words, studying properties influenced by phenomena
at different length and time scales requires a hierarchy of methods.

This collection of articles is not a comprehensive compendium of the
interesting work being done to study complex systems using quantum and
statistical mechanical methods. It is hoped, however, that this representative
sampling of work being carried out by chemical engineers in this broad area
will provide the beginning graduate student and the experienced practitioner
with a sense of the current state of the art and the challenges that need to be
confronted in the future. My personal opinion is that future volumes dedi-
cated to this broad topic will witness a greater emphasis on nonequilibrium
phenomena, the coupling of quantum and statistical mechanical approaches,
and more applications focused on biomedical problems.

My fellow editors of Advances in Chemical Engineering, the staff at
Academic Press, and I thank the authors for taking time out of their busy
schedules to contribute to this volume. The effort involved in writing good
review articles is a selfless service to the profession and is truly appreciated.
A personal note of thanks is also extended to the authors for their patience
during the review and production process.

ARUP K. CHAKRABORTY
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This review discusses a newly proposed class of tempering Monte
Carlo methods and their application to the study of complex fluids.
The methods are based on a combination of the expanded grand
canonical ensemble formalism (or simple tempering) and the multi-
dimensional parallel tempering technique. We first introduce the
method in the framework of a general ensemble. We then discuss
a few implementations for specific systems, including primitive mod-
els of electrolytes, vapor-liquid and liquid-liquid phase behavior for
homopolymers, copolymers, and blends of flexible and semiflexible
polymers. © 2001 Academic Press.

l. Introduction

Complex fluids such as electrolyte solutions, polymer solutions, and
biological macromolecule solutions pose significant obstacles to molecular

1
Copyright © 2001 by Academic Press.
All rights of reproduction in any form reserved.
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2 QILIANG YAN AND JUAN J. DE PABLO

simulation, particularly at low temperatures and elevated densities. Con-
ventional molecular dynamics methods are unable to generate trajectories
that are long enough to cover the inherently long characteristic relaxation
times that characterize polymeric fluids, and naive Monte Carlo techniques
are unable to sample their configuration space efficiently. All of these sys-
tems, however, are of engineering importance. Unfortunately, these are also
systems for which our theoretical understanding is far from complete. Pre-
dictive models for the equilibrium thermodynamic and structural properties
of such fluids are required to design chemical and separation processes; to
formulate new models, it would be useful to have access to the results of
simulations.

When only the equilibrium properties of a complex fluid are of interest, it
is possible to devise “nonphysical” simulation techniques that are sometimes
able to circumvent the sampling problems that are usually associated with
complex fluids. Examples of such techniques include configurational bias
Monte Carlo methods, multicanonical ensemble simulations, J-walking, 1/k
sampling, simulated tempering, and parallel tempering [1-14]. In this review
we discuss some of our recent experiences with parallel tempering. This
method has a number of useful features, which make it attractive for the
study of complex fluids. Interestingly, while the idea of parallel tempering
is not new [8, 9], its application to the study of many-body fluids has been
limited. We therefore present results for a variety of systems, and in each
case we try to emphasize the advantages provided by tempering over more
conventional techniques.

The basic idea of parallel tempering consists of simulating several copies
of a system in parallel; each copy or “replica” is constructed to represent the
same system in a different thermodynamic state. Conventional Monte Carlo
methods are employed to sample the configuration of each distinct replica
under the relevant thermodynamic conditions. In addition to the trial moves
involved in such methods, however, attempts are made to interchange the
configurations corresponding to any two replicas of the system. Such trial
“swaps” are accepted according to probability criteria that ensure the ap-
propriate ensembles are sampled. The benefit of swapping is that if one of
the replicas relaxes much faster than the others (e.g., a replica at a high tem-
perature), the fast-evolving configurations in that replica can be artificially
“propagated” to other boxes via exchanges, thereby effectively accelerating
the relaxation of all other copies of the system.

Depending on the system and the ensemble of choice, the thermody-
namic state of a replica can be specified through the number of molecules
of each species, the volume, the temperature, the pressure, and the chemical
potential. Our experience (and that of others [15, 16]) suggests that, from
the point of view of improving sampling, open ensembles offer a number
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of advantages over closed systems. In open ensembles, molecules can be
completely removed from a system and reinserted at a later point in com-
pletely different positions and configurations, thereby circumventing diffu-
sional bottlenecks. Furthermore, for difficult systems, such as polymers, dele-
tions, and insertions can be facilitated significantly by resorting to expanded
ensemble methods [17, 18]. Most of the implementations of hyperparallel
tempering Monte Carlo (HPTMC) reported here are carried out in open en-
sembles, and whenever possible we also capitalize on the benefits provided
by configurational bias and expanded ensemble techniques. As discussed
in this review, it turns out that in some cases HPTMC can provide striking
efficiency increases over traditional methods for the simulation of complex
fluids with minimal changes to existing simulation algorithms and codes.

Il. Methodology

Formally, we consider a generalized ensemble whose partition function is.
given by

Z(f) =) Q@x)w(x,f), 1)

where f denotes a set of specified generalized forces or potentials, which
determine the thermodynamic state of the system. In Eq. (1), x is used to
denote a microscopic state or an instantaneous configuration of the system,
Q(x) is the density of states, and w(x, f) is an arbitrary weighting function
for state x, at the given set of generalized potentials f. The grand canonical
ensemble is recovered by writing

f={T,n},  w(x,f)=exp(-BU(x) + N(x)Bu), )

where 8 =1/kgT, T is the temperature, kg is Boltzmann’s constant, yu is the
specified chemical potential, U(x) is the potential energy corresponding to
configuration x, and N(x) is the number of particles in configuration x.

Hyperparallel tempering simulations are conducted on a composite en-
semble, which consists of M, noninteracting replicas of the above-mentioned
generalized ensemble. Each replica can have a different set of generalized
potentials. The complete state of the composite ensemble is specified through
X = (x1, x2, ..., x» )7, where x; denotes the state of the ith replica. The parti-
tion function Z of the composite ensemble is given by

Z, = (fl,fz,---,fM):HZ(f,-). (3)
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The unnormalized probability density of the complete state x is proportional
to :

p(x) 1_[ Q(x)w(x;, £). “4)
i=1

In expanded grand canonical ensemble simulations [18] (also called sim-
ple tempering simulations), the system can jump along a set of expanded
states, in addition to the conventional (N, U) phase-space variables of a
grand canonical ensemble. For the particular implementation to polymeric
fluids, chain molecules are inserted or removed gradually, i.e., several seg-
ments at a time. In other words, a simulation box contains several “regular”
chain molecules and a tagged chain, whose length n, fluctuates during the
simulation; n, therefore serves as the expanded state variable. A preweight-
ing factor exp(W(y)) is assigned to each expanded state y. In the language
of Eq. (1), the weighting function for the expanded grand canonical
ensemble is

f={T,0, ¥},  w(x,f)=exp[-BU(x)+Nx)Bu+¥()]. (5
If we assume that the segmental chemical potential is independent of
chain length, we can set the preweighting function to be

w0) = 2pw =2 pu-m (7)), ©)
n n Vv
where N, = N + n,/n; n, is the length of the tagged chain and n is the length
of a full polymer chain. In Eq. (6), u” denotes the residual chemical potential
of a polymer chain.

Figure 1 illustrates schematically the implementation of HPTMC. Each
box in the figure represents a replica of the simulation system; each replica
has a different value of T, u, and n,. To implement a hyperparallel tempering
algorithm, three types of trial moves are necessary. (1) Conventional canon-
ical Monte Carlo moves are used to sample configurations in each replica of
the system. These moves include translational or rotational displacements
and configurational-bias or reptation moves for polymers. (2) Trial shrinking
or growing moves are proposed to change the length of a tagged chain in each
replica, thereby implementing the underlying expanded grand canonical for-
malism. (3) Configuration swaps or exchanges are attempted between any
two randomly chosen replicas. The arrows in Fig. 1 correspond to different
types of moves.

The acceptance criteria corresponding to trials moves of type 1 or 2 are
fairly standard and have been reported in a number of texts and articles.
We therefore limit the remainder of this section to a brief discussion of
the acceptance criteria for trial swap moves. Consider a swap between two
replicas, i and j. After the swap, the new state of replica i will be the current



