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INTRODUCTION

The international course on '"Topics in Calculus of Variations" was held at
Montecatini, Italy, July 20-28, 1987, organized by the Fondazione CIME.

These proceedings contain the texts of the lectures presented by L. Caffarel-
1i, J. Moser, L. Nirenberg, R. Schoen, A. Tromba. They also contain the lectures
H. Brezis had originally planned and kindly agreed to provide, though he was
prevented from coming.

I wish to express my gratitude to the lecturers and to all participants for
their contribution to the success of the course. I would also like to express my

special thanks to all the authors for undertaking the heavy task of writing the

text of their lectures.

Mariano Giaquinta

Firenze, June 1988



C.I.M.E. Session on "Topics in Calculus of Variations"

List of Participants

L. AMBROSIO, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56100 Pisa

G. ANZELLOTTI, Dipartimento di Matematica, Universita di Trento, 38050 Povo (Trento)
A. AROSIO, Via Cocchi 10, 50131 Firenze

M. ATHANASSENAS, Math. Institut, Beringstrasse 4, D-5300 Bonn

P. AVILES, Department of Mathematics, University of California at San Diego,
La Jolla, CA 92003, USA

M. BADIALE, Via G. Conti 13, 30014 Cavarzere (VE)

G. BARTUZEL, Institute of Mathematics, Technical University of Warsaw,
Plac Jednosci Robotniczej 1, 00661 Warsaw

M.L. BERTOTTI, Dipartimento di Matematica, Universita di Trento, 38050 Povo (Trento)
I. BIRINDELLI, Via dei Coronari 82, 00185 Roma

G. BUSONI, Istituto Matematico Universita, Viale Morgagni 67/A, 50134 Firenze

L. CAFFARELLI, Institute for Advanced Study, Princeton, N.J. 08540, USA

P. CANNARSA, Dipartimento di Matematica, II Universita di Roma, Via O. Raimondo,
NO173 Roma

F. CATANESE, Dipartimento di Matematica, Universita, Via Buonarroti 2, 56100 Pisa
G. CERAMI, Via G. Sciutti 156, 90144 Palermo
L. FU CHEUNG, Mathematisches Institut der Universitat Bonn, Beringstr.4, 5300 Bonn 1

G. CHITI, Dipartimento di Matematica del Politecnico, Corso Duca degli Abruzzi 24,
10129 Torino

E. COMPARINI, Istituto Matematico Universita, Viale Morgagni 67/A, 50134 Firenze

F. DAL FABBRO CROSTA, Dipartimento di Matematica del Politecnico,
Piazza L. da Vinci, 32, 20133 Milano

R. DAL PASSO, IAC-CNR, Viale del Policlinico 137, 00161 Roma
G. DEB RAY, St. Xavier's College, 30 Park Street, 700016 Calcutta, India
F. DEL BUONO, Via Eden 15, 52010 Badia Prataglia (Arezzo)

E. DI BENEDETTO, Facolta di Ingegneria, Universita degli Studi di Tor Vergata,
Via 0. Raimondo, 00173 Roma

B. D'ONOFRIO, Via Veneto 21, 04020 SS. Cosma e Damiano (Latina)

F. DUZAAR, Mathematisches Institut, Universitat Dusseldorf, Universitatsstr. 1,
D-4000 Dusseldorf

J. EELLS, I.C.T.P., Box 586, 34100 Miramare, Trieste

H. EGNELL, Department of Mathematics, Thunbergsvagen 3, 752 38 Uppsala, Sweden



A.
M.

G.

S

viil

ESCOBAR, The University of Chicago, Department of Mathematics, 5734 University Av.
Chicago, Illinois 60637

FASANO, Istituto Matematico Universita, Viale Morgagni 67/A, 50134 Firenze
FERRARIS, Dipartimento di Matematica, Via Ospedale 72, 090100 Cagliari
FIORITO, Via XX Settembre 25, Pal. I, 95017 San Gregorio (Catania)

FUCHS, Mathematisches Institut, Universitat Dusseldorf, Universitatsstr. 1,
D-4000 Dusseldorf

GIAQUINTA, Istituto di Matematica Applicata, Via S. Marta 3, 50139 Firenze
GIRARDI, Via Mercalli 21, 00197 Roma

GIUSTI, Istituto Matematico Universita, Viale Morgagni 67/A, 50134 Firenze
GREGORI, Via Venosa 8, 00178 Roma

GRUTER, Math. Institut, Universitat Bonn, Beringstr. 6, D-5300 Bonn

HELEIN, Ecole Polytechnique, Dept. de Mathematiques, 91128 Palaiseau, France

HILDEBRANDT, Drachenfelsstrasse 23, D-5205 St. Augustin 2, W. Germany

L.A. IBORT, Dpto. de Fisica Teorica, Universidad de Zaragoza, 50009 Zaragoza, Spain

Plam

F.

A.
M.

G.

A. IVERT, Matematiska Institutionen, Universitetet i Linkoping,
S-581 83 Linkoping, Sweden

JOSELLIS, Institut f. Reine u. Angewandte Mathematik RWTH Aachen,
D-5100 Aachen, W. Germany

KOISO, Max-Planck-Institut fur Mathematik, Gottfried Str. 26,
D-5300 3, W. Germany

KOISsO, Max—Planck~fnstjtut fur Mathematik, Gottfried Str. 26,
D-5300 Bonn 3, W. Germany

KONDERAK, I.C.T.P., P.O. Box 586, Strada Costiera 11, 34100 Miramare, Trieste
KUMLIN, Department of Mathematics CTH, S-412 96 Goteborg, Sweden
LAURENCE, Courant Institute, 251 Mercer Str., New York, N.Y. 10012, USA

LEONETTI, Dipartimento di Matematica pura e applicata, Universita de L'Aquila,
Via Roma, 67100 L'Aquila

LINDBLAD, Matematiska Institutionen, Lunds University, Box 118, 22100 Lund, Sweden
LONGINETTI, IAGA-CNR, Via S. Marta 13/A, 50139 Firenze

MAGNANINI, Istituto Matematico Universita, Viale Morgagni 67/A, 50134 Firenze
MANCINI, Dipartimento di Matematica, Piazza di Porta S.Donato 5, 40127 Bologna

MARCATI, Dipartimento di Matematica pura e applicata, Universita de L'Aquila,
Via Roma, 67100 L'Aquila

MATZEU, Dipartimento di Matematica, Universita ''La.Sapienza', Citta Universitaria,
00185 Roma

MAUGERI, Via Etnea 688, 95128 Catania
MEIER, Mathematisches Institut, Beringstr. 4, D-5300 Bonn 1

MODICA, Istituto di Matematica Applicata, Via S. Marta 3, 50139 Firenze



IX

J. MOSER, ETH-Zentrum, CH-8092 Zurich, Switzerland
M.K.V. MURTHY, Dipartimento di Matematica, Via Buonarroti 2, 56100 Pisa
R. MUSINA, S.I.S.S.A., Strada Costiera, 34014 Grignano, Trieste

L. NIRENBERG, Courant Institute of Mathematical Sciences, 251 Mercer Street,
New York, N.Y. 10012, USA

F. NJOKU, S.I.S.S.A., Strada Costiera 11, 34014 Grignano, Trieste
L. NOTARANTONIO, Viale Tirreno 187, 00141 Roma

A. OLVERA, Depto. de Matematicas Aplicadas y Analisis, Facultad de Matematicas,

Universidad de Barcelona, Gran Via 585, Barcelona 08071, Spain
F. PACELLA, Via Valsolda 111, 00141 Roma
D. PALLARA, Via Vittorio Veneto 3, 73100 Lecce
G. PALMIERI, Dipartimento di Matematica, Via G. Fortunato, 70125 Bari
B. PELLONI, Via Ronciglione 5, 00191 Roma

M.A. POZIO, Dipartimento di Matematica, II Universita di Roma,
Via O. Raimondo, 00173 Roma

C. PUCCI, Istituto Matematico Universita, Viale Morgagni 67/A, 50134 Firenze

R. PUTTER, Mathematisches Institut, Universitat Bonn, Beringstr. 6, D-5300 Bonn

A. RATTO, Via De Amicis 8/17, 17100 Savona

0. REY, Ecole Polytechnique, Departement de Mathématiques, 91128 Palaiseau, France
R. RICCI, Istituto Matematico Universita, Viale Morgagni 67/A, 50134 Firenze

E. ROSSET, Via Isonzo 38, Codroipo (Udine)

R. SCHOEN, Department of Mathematics, Stanford University, Stanford, Ca. 94305, USA

P. SMITH, Max-Planck-Institut fur Mathematik, Gottfried-Claren-Str. 26,
D-5300 Bonn 3, W. Germany

K. STEFFEN, Mathematisches Institut, Universitat Dusseldorf, Universitatsstr. 1,
D-4000 Dusseldorf

I. STRATIS, Department of Mathematics, University of Athens-Panepistimiopolis,
GR 15781 Athens, Greece

D. STROTTMAN, Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA
M. STRUWE, Mathematik, ETH Zentrum, CH-8092 Zurich, Switzerland

J. SZTAJNIC, Institute of Mathematics, Lodz University, ul. S.Banacha 22,
80-238 Lodz, Poland

G. TALENTI, Istituto Matematico Universita, Viale Morgagni 67/A, 50134 Firenze
A. TARSIA, Dipartimento di Matematica, Via Buonarroti 2, 56100 Pisa

N.A. TCHOU, Dipartimento di Matematica, Universita '"La Sapienza",
Citta Universitaria, 00815 Roma

B. TERRENI, Piazza Toniolo 10, 56100 Pisa
E. TOMAINI, Via Cimarosa 2, 45100 Rovigo

V.M. TORTORELLI, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56100 Pisa



F.

A.

G.

Rs

TRICERRI, Istituto Matematico Universita, Viale Morgagni 67/A, 50134 Firenze

TROMBA, Max-Planck-Institut fur Mathematik, Gottfried-Claren-Str. 26,
D-5300 Bonn 3, W. Germany

TUBARO, Dipartimento di Matematica, Universitad di Trento, 38050 Povo (Trento)

TURNER, Department of Mathematics, University of Wisconsin, 480 Lincoln Drive,
Madison, WI 53706, USA

UGHI, Dipartimento di Scienze Matematiche, Piazzale Europa 1, 34127 Trieste
VALLI, University of Warwick, Coventry, CV4 7AL, (G.B.)

VESPRI, Dipartimento di Matematica, II Universita di Roma,
Via O. Raimondo, 00173 Roma

WEILL, 23 Avenue Marceau, 75016 Paris, France

WENTE, Department of Mathematics, University of Toledo, Toledo, Ohio 43606, USA

C.M. WOOD, Department of Pure Mathematics, University of Liverpool, P.0.Box 147,

R

F.

Liverpool L69 3BX, England
YE, Mathematisches Institut der Universitat, Beringstr. 4, 5300 Bonn 1, W. Germany

ZIRILLI, Dipartimento di Matematica, Universita "La Sapienza",
Citta Universitaria, 00185 Roma



TABLE OF CONTENTS

H. BREZIS, Sk—valued Maps with Singularities ........icceeceeeiececncccnceanns 1
L.A. CAFFARELLT, Free Boundary Problems. A SUXVEY ... iterrereereonnnnnnsnens 31
J. MOSER, Minimal Foliations ONn @ TOYUS ... veeeeenernnnonnoansonennnsennsans 62
L. NIRENBERG, Variational Methods in Nonlinear Problems ..........ceceueennn 100
R.M. SCHOEN, Variational Theory for the Total Scalar Curvature Functional

for Riemannian Metrics and Related TopiCs .........icuiecunnnnn. 120
A.J. TROMBA, A Classical Variational Approach to Teichmiller Theory ........ 155



Sk — VALUED MAPS WITH SINGULARITIES

Haim Brézis
Département de Math€matiques, Université Paris 6
4, pl. Jussieu, 75252 Paris Cedex 05
and
Rutgers University, New Brunswick, NJ 08903

The purpose of these notes is to present a survey of some recent results and open
problems dealing with the "energy" of Sk — valued maps. The original motivation comes
from the theory of liquid crystals; such materials are composed of rod—like molecules with a
well defined orientation, except at isolated points (the "defects") which are observed by the
physicists. The optic axis ¢ is a vector of unit length (in [Rg) defined in the domain
Qc IR3 (the container of the liquid crystal); so that ¢ is a map from Q into 82.
Associated with a configuration ¢ is a deformation energy which we shall usually take to
be

E(p) = JQIVso|2 dx. (0.1)

Physicists consider more general energies, such as,
E(p) = ijl(divgo)2 + k2(¢p-curlgo)2 + kg <,o,\curlt,ol2 + a[tr(ch)Q-(divcp)Q]dx

(0.2)
where kl’ k2, k3 and «a are positive constants. In the special case where
k1 = k2 = k3 = o =1, then it is easy to see that E = E. While much progress has been
achieved for the energy E, little is known so far for E. Stable equilibrium configurations
correspond to minima of E (or E) and therefore it is essential to study the properties of
minimizers. For a detailed discussion of the physical background we refer e.g. to [9], [10],
(13], [16], [17], [18] and [33]. However we feel that the mathematical questions involved in
this field are of great interest for their own sake, an interest which goes much beyond the
original motivation. In fact, it is remarkable that progress has been achieved through the
joint efforts of experts in Nonlinear Partial Differential Equations, Functional Analysis,

Differential Geometry, Geometric Measure Theory, Topology, Numerical Analysis, Graph

Theory, etc.



The plan is the following:
I. The problem of prescribed singularities.
I.1. Point singularities in RS,
1.2. Various generalizations:
1) A domain QC R® with constant boundary condition.
2) Holes in RS,
3) An example related to minimal surfaces.
1.3. Some open problems.
II. The problem of free singularities.
II.1. x/|x| is a minimizer.
I1.2. The analysis of point singularities.
I1.3. Energy estimates for maps which are odd on the boundary.
I1.4. The gap phenomenon. Density and nondensity of smooth maps between
manifolds. Traces.

II.5. Some open problems.

L. The problem of prescribed singularities.

1.1 Point singularities in [R3;

We start with a simple question (originally raised by J. Ericksen). Let Ay, Ag,edy
be N points given in R (the desired location of the singularities). Define the class of

admissible maps & to be
158 1 2 2
& = {peC" (R \‘Ul{ai}; 5% IIR3|V¢| <w and deg(pa;) =d, Vi}
1=

(1.1)
where the d,'s are given integers, d;eZ with d; # 0. Here deg(y,a;) denotes the Brouwer
degree of ¢ restricted to any small sphere around a. [Stable singularities observed by
the physicists have always degree 1 and the reason why this is so will be given in
Section I1.2. However it makes sense to formulate the mathematical question with general

degrees).



The problem is to study the quantity

E = Inf | 4|Vp|%dx (1.2)
ped R
i.e. the least deformation energy needed to produce singularities at a given location with a

given degree. Such a question may seem unrealistic because the container  is all of R
and also because one cannot prescribe physically the location of the singularities.
Nevertheless this model problem has interesting features; it has led to the development of
new tools which are useful in more realistic questions.
Surprisingly, there is a simple formula for E:
Theorem 1 ([8]). We have
E = 8rL (1.3)

where L is the length of a minimal connection (in a sense to be defined below).

So far, we have made no restriction about the di's. However, we must assume that
N
L d=0 (1.4)
i=1
because of the following:
Lemma 1. & is nonempty if and only if (1.4) holds.

Sketch of the proof. Suppose first that & is nonempty and let pe&. We claim that ¢

restricted to a large sphere SR of radius R has degree zero. Intuitively, this is clear

because j[R3]V<p|2 < w implies that, roughly speaking, ¢ goes to a constant at infinity.
More precisely, we recall (see e.g. [36]) that if S is a closed two dimensional surface in R
and ¥ isa gl map from S into % then
_1

deg w_HJSdeg (1.5)

where J'/) denotes the Jacobian determinant of . A useful way to write Jw is
Ty= ¥ Yady (L6)

where (x,y) are normal coordinates on S. This follows from the fact that

Yo = w-;/)y =0, and thus wx/\z/zy = (Jt/)) ¥. We deduce from (1.5) and (1.6) that

|degy| sé;JSIVTwlzdﬁ



where [VT'IJ)IZ = wa|2 + |¢y|2-

We now return to ¢ and choose R1 large enough so that BR contains all the
1
singularities a,. By continuity, deg(cp|g ) is constant for r > R;. We have for any
“r
Ry >Ry,

R )
J [Vl =] erS |Vl dﬁzbﬂldegwlsrl(liz—fil)-

Ry <|x|<R, R, S,

Letting R‘Zﬁ o we see that deg galg =0 for r > Rl'
“r

From the additivity of the degree we conclude that (1.4) holds. The converse is more

delicate and follows from an explicit construction sketched in the proof of Theorem 1.

Definition of L. the length of a minimal counection.

It is convenient to start with simple cases:
Case 1: There are only two singularities, a, with degree +1 and a, with degree —1.
We shall call this a dipole. Here
L=la) —a,]
is the (Euclidean) distance between the two points. Note that it was easy to guess, from
dimensional analysis, that I is proportional to a length.
Case 2: All the degrees di are equal *1. Because of (1.5) there are as many + signs as -
signs. We rename the points (ai) as positive points Py Por-Py and negative points

Ny, Doyl Then

k
L=Min ¥ .—n . ;
én = Ip no(l)l (1.7)

where the minimum is taken over all permutations o of the integers 1 to k.
Case 3: In the general case, proceed as above except that in the list (pi, ni) points are
repeated according to their multiplicity |d,].

Sketch of the proof of Theorem 1. The proof consists of two independent steps:

A) E <81l
B) E > 8nL.

Step A. The main ingredient is the following basic dipole construction:



Lemma 2. Let (al, ay) be a dipole. Givenany € >0 thereisamap ¢ which is smooth
on !R3, except at (al, a2), such that
deg(pg, ay) = +1, deg(yg, a5) = -1, (1.8)
J1V0 ) < 8nla —ay| +, (1.9)
and moreover
¢ is constant outside an €—neighborhood of the line segment [al, a2].
(1.10)
In fact, given any positive integer d there is a map e which is smooth on [R3,
except at (aj, a,), such that
deg(g, a;) = d, deg(yp, ag) = -1, (1.87)
J190c 1% ¢ 8rlaa,| d +€, (1.97)
and (1.10) holds. Such a map is constructed explicitly in 8] (see also [7]). Putting
together these basic dipoles over a minimal connection it is easy to prove that E < 87L.
Clearly, this construction also shows that & is nonempty when (1.4) holds.
Step B. There are two different methods for proving the lower bound E > 87L. Each one
has its own flavor and I will describe both of them.

Proof of (B) via the D—field approach. This is the original method introduced in [8].

To every map ¢ we associate the vector field D defined as follows

D= (0 9y npy ¢ APy 0 ounPy) (1.11)
where P cpy, o, denote partial derivatives of ¢ with respect to x, y, z. A more
intrinsic way to define D is to say that D is the pull-back under ¢ of the canonical

2—form on S2. The main properties of D are the following:

1o (2 o o3 N
D < [Vl® on R\ U {a)} (1.12)
1=
and
N ;3
divD=4r ¥ d, 6, in I (R%). (1.13)
i=1 i
Proof of (1.12). Changing coordinates at a given point we may always assume that
v=1(0,0,1).

Since |¢,a|2 =1 wehave p-¢p = ga-npy =¢p, =0 and thus we may write



o, = (a;, by, 0), 0, = (ag, by, 0) and g = (ag, by, 0).
We see that
D=axb
with a = (a;, ag, 33) and b = (b}, by, bg).
It follows that
D] < [a]b] < (12l + |b]%) = Vel %

N
Proof of (1.13). On IR3\ U {a;} we have
i=1

divD =3 gox'cpy,\(,oz =0

since Yo c,oy and p, are in the same plane (perpendicular to ¢). In view of a celebrated

Theorem of L. Schwartz we find
divD= ¢ 0%, in @ R
,i @
On the other hand, since DcLl([R3), we must have

N .
divD= % ¢f, in & ®). (1.14)
i=1" %
Integrating (1.14) over a small ball B around a, we see that
J Don=c
S

where S = 0B and n is the outward normal to S. On the other hand, it follows from the

definition of D that D-n = J(p where ¢ is considered as a map restricted to S and J‘p

denotes its 2x2 Jacobian determinant. Applying (1.5) we find that ¢ =4m deg(cp,ai).
The proof of (B) then proceeds as follows. Let (: R3-R be any function such that

141y, Sop LS <,

so that ||V¢]| o $ 1. We have
L
9 N
[IVol“22[|D|>-2 |D-V(=2 ¥ 47rdi((ai). (1.15)
i=1

Relabelling the points (a;) as positive and negative points (p;, n;) and taking into

account their multiplicity we have

k
¢py) = = (ny).
1 1=1

The conclusion of Step B is a direct consequence of the following:

1

Il
I 9=

N
iildi«ai)



Lemma 3. Let M be a metric space and let P> Poy Py and Ny, Ng,- -1y be 2k

points in M. Then

k k
Max {Z C(pi) _iEIC(ni)} =L

ﬁ: M-R i=1
TMe!
k

where [|¢]lp ;= )S#? %-}M and L = M(ifn iEld(pi,na(i)).

A quick proof of Lemma 3 relies on the Kantorovich min—max principle (see [32] or
[37]) and the Birkhoff Theorem which asserts that the extreme points of the doubly
stochastic matrices are the permutation matrices (see [8] for details). Another self
contained proof of Lemma 3 is given in [7].

Proof of (B) via the coarea formula. This new proof discovered by F. Almgren —

W. Browder — E. Lieb (see [2]) relies heavily on Federer's coarea formula (see [20], [24] or
[41]), which we recall for the convenience of the reader. Suppose ¢ is a cl map from a
domain 9 ¢ R" into a manifold N of dimension p < n. (Think, for example, of N as
being a sphere). The differential of ¢, Dy, is a (pxn) matrix. Set
I,p =1 det(Dy: (Dy)")

where det denotes the determinant of the pxp matrix De- (D(p)t; Jpgg is called the
p—Jacobian of . We have

J Jppde= FPeTHE) de (1.16)

QP N

where %" P isthe (n—p)—dimensional Hausdorff measure in R™. In the special case
where N =R", then J, ¢ is the usual Jacobian determinant of ¢ and (1.16) becomes
card(p L(€)) de. (1.17)

Jgle &= Iv)(Q)

In the case of interest to us we take @e&, 2 = IRB\ U {a;} and N = $2. Therefore we
i=1
find
1, —1
ng‘]gvdx = ISQJf (v () d& (1.18)

First, we claim that

1 2
Iy < 510012 (1.19)



With the same notations as in the proof of (1.12) we have

Jgo =+ 1a1*b]"~a-b)* = |anbl = D] <51Vel%

Next, we claim that, for a.e. 5682,

#'(¢1(€) 2 L. (1.20)
This will complete the proof of (B) via the coarea formula.
Proof of (1.20). By Sard's Theorem we know that a.e. 5682 is a regular value of .
When ¢ is regular value, the Implicit Function Theorm implies that Lp_l (€) isa
collection of curves which either connect the points (a;), or go to infinity, or are ciosed
loops. Here a'{l(w_l(g)) is the total length of these curves. In view of (1.18), (1.19) and
since [|Ve| 2.2 w, the total length is finite and hence there is no curve going to infinity.
Furthermore, we shall disregard the closed loops (since they only increase the total length).
We are left with a finite collection of curves connecting the points (ai). Since
deg(p,a;) = d;# 0, at least one curve emanates from each a;, but there could be more
than one. The simplest situation is the case where each positive point p; is connected by
one of the curves to a negative point na(i)’ for some permutation . Then, clearly
Jfl(w_l(f)) > L. Unfortunately, the general situation could be more complicated. For
example, a bad configuration would be if we have 4 points p;, p,, ny, 0y and gp_l(ﬁ)
consists only of two curves: one joining Py to py and the other n; to n,. We could
not conclude, because |p;—p,| + |n;—n,| might be smaller than L! We shall see that
such a configuration is excluded. For this purpose it is convenient to introduce an arrow
(i.e. an orientation) on each curve C.

Let x be any point on C and let (el, €q» e3) be a direct basis with e, tangent
to C at x. Consider ¢ restricted to the plane (e, e3) and its (2x2) Jacobian
determinant J Sﬁ(x)' Note that J (p(x) #0 since ¢ is aregular value. If J w(x) > 0 the
orientation of C is given by e;, and if J(p(x) < 0 take the orientation opposite to e

With this convention, and using the properties of the degree, one can see that at
every point a;, one has the basic relation:
di=deg(<p,ai)=(#outgoing arrows)—(##incoming arrows). (1.21)

For example, an admissible configuration is given by the following figure



