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Preface

This is the fourth volume in the series “Tutorials in Mathematical Biosciences.”
These lectures are based on material which was presented in tutorials or
developed by visitors and postdoctoral fellows of the Mathematical Bio-
sciences Institute (MBI), at The Ohio State University. The aim of this series
is to introduce graduate students and researchers with just a little back-
ground in either mathematics or biology to mathematical modeling of biolog-
ical processes. The first volume was devoted to mathematical neuroscience,
which was the focus of the MBI program 2002-2003. The second volume dealt
with mathematical modeling of calcium dynamics in signal transduction, the
focus of the MBI program in the winter of 2004. The third volume dealt with
topics of cell cycle, tumor growth, and cancer therapy; these topics featured
in several workshops held at the MBI in the fall of 2003. The present volume
deals with a variety of topics of evolution and ecology, which were considered
in the MBI during the year 2005 2006. These topics include phylogenetics;
evolution of genes through migration-selection; ecological modeling; and evo-
lution of dispersal and population dynamics. Documentation of the 2005-2006
activities, including streaming videos of the workshops, can be found on the
Web site: http://mbi.osu.edu.

Phylogenetics is the study of the evolutionary relations of genes and or-
ganisms. Phylogenetic trees are represented by graphs in which the leaves
represent observed biological entities. In constructing such graphs, one tries
to trace the evolution of species, traits, or diseases. The first two chapters of
this volume deal with phylogenetics. Chapter 1 is a general survey on estima-
tion of phylogenetic trees with emphasis on likelihood methods. Chapter 2 is
concerned with computational methods of very large trees, exploring other
optimality methods, with application to the study of the evolution of SARS
and influenza.

The next three chapters deal with population genetics and population
dynamics. Chapter 3 introduces reaction—diffusion equations as a mathemat-
ical framework to study ecological models. It then addresses the following
ecological questions: what is the minimal patch size necessary to support a
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population?; when do biological invasions occur?; and what spatial patterns
can form?

Chapter 4 focuses on evolution and genes. The genetic composition of a
population is described by genotypic or allelic frequencies, using either de-
terministic models or stochastic models. The models presented here are both
discrete and continuous. The questions discussed include the loss, or the main-
tenance, of a specified allele, and the stability of completely polymorphic equi-
libria.

The final chapter is concerned with the effects of dispersal and spatial het-
erogeneity on population dynamics, via reaction-advection-diffusion models.
Issues regarding how advection along resource gradients affect the extinction
of species or how invasion of rare species may take place are considered.

It is not uncommon to see the same biological processes benefit by using
different mathematical and statistical approaches. This volume is a good ex-
ample: Although the mathematical and statistical tools developed or reviewed
here are quite varied, the biological themes have a common thread as they all
deal with the evolution of species in an evolving ecological system.

I express my appreciation and thanks to Daniel Janies, Diego Pol, Laura
Salter-Kubatko, Thomas Nagylaki, Yuan Lou, and Chris Cosner for their mar-
velous contributions. I hope this volume will serve as a useful introduction to
those who want to learn about important and exciting problems that arise in
evolution and ecology.
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Inference of Phylogenetic Trees

L.S. Kubatko

Departments of Statistics and Evolution. Ecology. and Organismal Biology,
The Ohio State University, Columbus, OH 43210, USA
email: Ikubatko@stat.osu.edu

Study of the evolutionary relationships among organisms has been of interest
to scientists for over 100 years. The earliest attempts at inferring evolutionary
relatedness relied solely on observable species characteristics. Modern molecu-
lar techniques, however, have made available an abundance of DNA sequence
data, which can be used to study these relationships. Today, it is common to
consider the information contained in both types of data in order to obtain
robust estimates of evolutionary histories.

These evolutionary histories are most commonly represented by a phylo-
genetic tree. which is mathematically described as an acyclic connected graph
(V. E). where V is the set of vertices and E' is the set of edges. Vertices con-
nected through only a single edge are called terminal nodes, while vertices
connected by more than one edge are called internal nodes. In phylogenetic
tree reconstruction, it is common to assume that trees are bifurcating, so
that each internal node is connected through exactly three edges, with the
exception that for a rooted tree the root is connected through two edges.

Estimation of the phylogenetic relationships among a collection of organ-
isms given genetic data for these organisms can be divided into two distinct
problems. The first is to define the particular criterion by which we compare
the fit of a particular phylogenetic hypothesis to the observed data. The second
is to search the space of possible phylogenies for the particular tree or trees
that provide the best fit to the data. In this chapter, we give an overview of
these two problems, with particular emphasis on the maximum parsimony and
maximum likelihood criteria for comparing trees. Techniques for searching the
space of trees for optimal phylogenies under these criteria are also discussed.
Throughout the chapter, we use two data sets to illustrate the main ideas. We
begin by defining some of the commonly used terminology, and by providing
a careful description of the data used in phylogenetic analysis.
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1.1 Introduction and Terminology

1.1.1 Phylogenetic Trees

As described earlier, a phylogenetic tree can be viewed as a graph for which
the terminal nodes represent organisms for which data are observed, called
taxonomic units or taxa, while the internal nodes represent hypothetical an-
cestral organisms. The edges connecting the nodes are generally referred to
as branches and denote ancestry-descent relationships. Often, the lengths of
the branches are taken to represent evolutionary time. In this chapter, the
word topology will be used to refer to the labeled branching pattern of a tree
without regard to branch lengths.

Phylogenetic trees are called rooted when the location of the common
ancestor of all the taxa in the tree is identified, or unrooted when no such
common ancestor is specified. Rooted phylogenetic trees may or may not
satisfy the assumption of a molecular clock. The molecular clock hypothesis
is that the rate of evolution is approximately constant over time. When all of
the sequences in the tree are contemporaneous, this assumption restricts the
lengths of the branches so that the sum of the branch lengths connecting each
taxon to the root is the same for all taxa. Examples of phylogenetic trees are
shown in Fig. 1.1.

As the number of taxa under consideration grows, the number of dis-
tinct topologies increases rapidly. For n taxa, the number of unrooted labeled
bifurcating topologies is

n
[12i-5). (1.1)
=3
An unrooted topology has n — 2 internal nodes and 2n — 3 branches. Because
adding a root to an n-taxon tree amounts to placing it along any of the 2n —3
branches, the number of rooted topologies for n taxa is the found by applying
(1.1) for n + 1. A rooted topology for n taxa contains n — 1 internal nodes
and 2n — 2 branches. Table 1.1 shows the rapid increase in the number of
topologies as a function of the number of taxa.

Table 1.1. Number of topologies, internal nodes, and branch lengths for unrooted
bifurcating topologies as a function of the number of tips in the tree

Number of Number of Number of Number of
tips topologies  internal nodes  branches
5 15 3 7

10 2,027,025 8 17

20 2.2164 x10*° 18 37

50 2.8381 x10™ 48 97
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Table 1.2. DNA sequences for a portion of the LI gene for seven Group A9 human
papillomaviruses

HPVI16 ATGTGGCTGCCTAGTGAGGCCACTGTCTACTTGCCTCCTGTCCAGTATCTAAGGTTG
HPV35h ATGTGGCGGTCTAACGAAGCCACTGTCTACCTGCCTCCAGTTCAGTGTCTAAGGTTG

HPV31 CCTAGCGAGGCTACTGTCTACTTACCACCTGTCCAGTGTCTAAAGTTG
HPV52 'GGOGGCCTAGTGAGGCCACTGTGTACCTGCCTCCTGTCCTGTCTOTAAGGTTG
HPV33 "GGCGGCUTAGTGAGGCCACAGTGTACCTGCCTCCTGTCCTGTATCTAAAGTTG

HPV5HR ATGTGGCGGCCTAGTGAGGCCACTGTGTACCTGCCTCOCTAGTCOCTGTGTCTAAGGTTG
RhPV1 ATGTGGCGGCCTAGTGACTCCAAGGTCTACCTACCACCTGTCCTGTGTCTAAGGTGG

See Sect. 1.1.3 for a description of the data.

1.1.2 Data for Phylogenetic Estimation

The most common type of data used in phylogenetic inference is discrete char-
acter data. These data can be represented by a matrix X in which entry x;;
represents the particular state of the character observed for taxon ¢ at posi-
tion j. Both morphological data and molecular sequence data (DNA, RNA,
amino acid, or protein sequences) are examples of discrete character data.
For data of this type, we assume that each character (column) in the data
matrix is homologous, which means that in each of the taxa the particular
state observed was derived from an ancestral state that was common to all
of the taxa in the data matrix. In practice, assessment of homology can be
difficult, particularly for molecular sequence data.

Development of a data matrix for use in phylogenetic inference for mole-
cular sequence data is a nontrivial task, because the molecular sequences are
derived individually for each taxon and must subsequently be placed into
a data matrix so that the assumption of homology is likely to be satisfied.
The process of constructing the data matrix for a collection of taxa is called
sequence alignment. Table 1.2 shows an example of an aligned portion of the
L1 gene for seven human papillomaviruses. In this chapter, the problem of
sequence alignment will not be discussed, and we will assume that the data
have already been aligned. The interested reader is referred to several refer-
ences on the topic: [54, 64, 71, 82, 83].

1.1.3 Example Data Sets

Throughout this chapter, we will use two data sets to illustrate several tech-
niques for phylogenetic inference. The first is a set of viral sequences for a
particular gene, and the second consists of both morphological and molecu-
lar data on cephalopods. Further details concerning each data set are given
below.

Papillomaviruses

Papillomaviruses are a group of viruses that infect a variety of organisms rang-
ing from birds to mammals, including humans. They are small nonenveloped
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DNA viruses that generally cause benign epithelial lesions, though some types
may cause malignancies. The papillomavirus genome is approximately 8,000
base pairs in length and is divided into an early region (E), which encodes
genes expressed immediately after infection of the host, and a late region (L),
which encodes two capsid proteins. The early region comprises over 50% of
the genome, and contains six open reading frames (E1, E2, E4, E5, E6, and
ET7). The late region comprises approximately 40% of the genome and encodes
two proteins, L1 and L2. The remaining 10% of the genome is a long control
region (LCR) that does not code for proteins but does contain transcription
factor binding sites and the origin of replication.

Papillomaviruses are classified into types, subtypes, and variants based on
the sequence of the L1 gene. They are also grouped based on sequence simi-
larity, host type, and pathogenic characteristics. In this example, we consider
the sequence of the L1 gene for thirty Group A papillomaviruses, 28 of which
infect humans. Notable among this collection of sequences are human papil-
lomavirus (HPV) types 16, 18, and 31, which are found to be associated with
over 95% of cervical cancer cases [87]. The particular sequences studied here,
as well as their genetic subtype and pathology, are listed in Table 1.3. More
information on these particular sequences can be found in Ong et al. (1997),
and information concerning the genetics of papillomaviruses in general can be
found in Zheng and Baker (2006).

For this example, aligned DNA sequences were downloaded from the HPV
Database maintained by Los Alamos National Labs (http: //hpv-web.lanl.gov /).
This alignment was edited by limiting the analysis to only the 30 taxa in
Table 1.3, removing the sequence prior to the start codon in all taxa, and re-
moving all sites for which all of the taxa had an insertion or deletion, resulting
in 1,560 aligned sites.

Cephalopods

Cephalopods (e.g., squids, cuttlefishes, octopi) are a diverse class of molluscs
containing over 800 species. They inhabit a wide range of marine environ-
ments, from coastal to benthic waters, and vary in size from 10 mm to several
meters. Taxonomically, the class is divided into two groups, Nautiloidea and
Coleoidea. Nautiloidea contains only a single genera, while Coleoidea contains
all remaining extant taxa. Three subgroups within Coleoidea are recognized:
Decabrachia (squids and cuttlefishes), Octobrachia (octopi), and Vampyro-
morpha. The placement of Vampyromorpha has been controversial, with some
analyses supporting a sister relationship with Octobrachia and others placing
Vampyromorpha with Decabrachia [6, 8].

For this example, we consider a subset of the data examined by Lindgren
et al. [46], which includes both molecular and morphological data for 78 mol-
luscs. Fifteen taxa, including representative taxa from the Decabrachia and
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Table 1.3. Group A papillomaviruses, genetic subtypes, risk classification [38], and
host tissue infected for the virus types studied here

Genetic Group Risk Host tissue
subtype classification infected

HPV32 Al Low Oral

HPV42 Al Low Genital

HPV3 A2 Low Cutaneous
HPV10 A2 Low Cutaneous
HPV2a A4 Low Cutaneous, mucousal
HPV27 A4 Low Cutaneous, genital
HPV57 A4 Ambiguous Oral, genital
HPV26 A5 Ambiguous Cutaneous, possibly genital
HPV51 A5 High Genital

HPV30 A6 Low Cutaneous, mucousal
HPV53 A6 Ambiguous Genital

HPV56 A6 High Genital

HPV18 AT High Genital

HPV45 A7 High Genital

HPV39 A7 High Genital

HPV59 A7 High Genital

HPV7 A8 Low Cutaneous, oral
HPV40 A8 Low Genital

HPV16 A9 High Genital

HPV35h A9 High Genital

HPV31 A9 High Genital

HPV52 A9 High Genital

HPV33 A9 High Genital

HPV58 A9 High Genital

RhPV1 A9 Unclassified Genital

HPV6b A10 Low Oral, genital
HPV11 A10 Low Oral, genital
HPV13 A10 Low Oral, genital
PCPV1 A10 Unclassified Oral

HPV34 All Low Oral, genital

Octobrachia as well as Vampyromorpha, are considered here, for both the
morphological data assembled by Lindgren et al. (2004) and for three nuclear
genes, 18S (3,477 sites, of which 808 are parsimony informative), 28S rRNA
(667 sites, of which 238 are parsimony informative), and histone H3 (327 sites,
of which 73 are parsimony informative), that they examined. The taxa selected
for analysis are shown in Table 1.4. This data set will be used to highlight the
differences in analyzing molecular and morphological data in a phylogenetic
context.
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Table 1.4. Cephalopod taxa included in our examples (from Lindgren et al. (2004))

L.S. Kubatko

Group Species name Type of cephalopod
Octobrachia

Stauroteuthis syrtensis Cirrate octopus

Thaumeledone gunther: Benthic octopus
Vampyromorpha

Vampyroteuthis infernalis ~ Vampire quid
Decabrachia

Sepia officinalis
Heteroteuthis hawaiiensis
Spirula spirula

Idvospeius pygmaeus
Loligo pealer

Architeuthis dux
Enoploteuthis leptura
Pyroteuthis margaretifera
Gonatus fabricu
Histioteuthis hoylei
Ommastrephes bartrami
Psychroteuthis sp.

Cuttlefish
Bobtail squid
Ram'’s horn squid
Pygmy squid

Common market squid

Giant squid

Open ocean squid
Open ocean squid
Open ocean squid
Open ocean squid
Open ocean squid
Open ocean squid

1.2 Optimality Criteria

Given a data matrix X consisting of either aligned molecular sequences or
morphological data, it is necessary to develop methods for constructing a
phylogenetic tree that appropriately represents the information concerning
evolutionary relationships contained in X. There are three general classes of
methods for constructing phylogenies from a given data matrix. The first set
of methods are distance methods, in which the original data matrix X is first
converted to a matrix of pairwise distances between taxa, and these distances
are used to construct the phylogeny. Distance methods will not be considered
further here, but see [45, 55, 68, 77] for details.

The second two methods, parsimony and maximum likelihood, are based
on the definition of a criterion for comparing alternative trees. The problem
of constructing a phylogeny from a data matrix is then reduced to two smaller
problems. The first is the evaluation of the selected optimality criterion for
any particular tree, and the second is the search over the large space of trees
for the particular tree that optimizes the selected criterion. In this section, the
parsimony and likelihood criteria are discussed, and methods for computing
the scores of individual trees are described. The problem of searching for
optimal trees will be considered in the next section.
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1.2.1 Parsimony

Parsimony, one of the most common methods for inferring phylogenies, is also
one of the oldest, dating back to its introduction by Edwards and Cavalli-
Sforza [11] in 1964 (see Chap. 10 in Felsenstein [20] for a nice account of the
history of the field of phylogenetics). The parsimony method in phylogenetics
is based on the general principle that simpler hypotheses should be preferred
over more complex ones, where “simplicity” in the phylogenetic context is
translated to mean the least amount of evolutionary change. Thus, trees that
minimize the total amount of evolutionary change for a given data set are pre-
ferred, and the tree requiring the minimum number of evolutionary changes to
explain the given data is called the most parsimonious or maximum parsimony
(MP) tree.

Because the parsimony criterion is concerned with minimizing the amount
of postulated evolutionary change, it can be applied to a variety of genetic
data — essentially all that is required is a mechanism for quantifying “evo-
lutionary change” in the observed data. The criterion can then be evaluated
for any given tree by computing the amount of change required by that tree
for the observed characters. To be more precise, consider a particular char-
acter, say x, and let J:fl be the state of character h at node i in the tree,
1 <4 < 2n — 2, where nodes 1 through n are external nodes corresponding to
the tips of a rooted tree for which the character states are observed, and nodes
n+1 through 2n—2 are internal nodes whose character states must be inferred.
Define C(.rf’,.zr?) to be the cost of changing from the state for character h at
node i to the state for character h at node j over the branch connecting nodes
i and j. Note that it does not have to be the case that C(z, ;r;-") = C(.I,‘;-", zl),
though equality is commonly assumed. The parsimony score of a tree, 7, under
this criterion is then given by

N B
S(r) =Y C(ap,.xp,), (1.2)

where N is the number of characters in the data set, B is the number of
branches in the tree, and b; and by are the nodes at the ends of branch b, for
which either the character state has been observed, or an optimal character
state has been assigned. From (1.2), we see that the length of a tree is com-
puted by summing lengths over all branches for a particular character in the
data matrix, and then summing over all characters in the data matrix. Per-
forming the calculation in this way necessarily assumes that changes among
states on the branches occur independently once the states at all nodes are
known, and also that changes across characters are independent. A weight,
wy, can be added in front of the cost term in (1.2) to allow for differential
weighting of the characters in a data matrix.
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The most commonly used cost function is one in which C(mfl..r;") is 1 if
:1?? = z" and 0 otherwise. This cost function counts the number of changes
between character states in the tree and weights each type of change equally,
i.e., any differences in state at the two ends of a branch increase the score of
the tree by one, regardless of what those states are. This cost function can
be applied to unordered multistate data, which can include molecular data
(nucleotide and amino acid) as well as morphological data. This is generally
referred to as Fitch parsimony. However, many variations of this cost function
are possible. For example, for nucleotide data, it may be sensible to assign
a lower cost to transitions than transversions, while for amino acid data, we
might assign different costs for synonymous vs. nonsynonymous changes. For
morphological data, we might specify an ordering in the data. For example, it
is unlikely for beak size to change from “small” to “large” without first being
“medium,” and so an observed change from “small” to “large” might incur
a cost equal to the sum of the costs of changing from “small” to “medium”
and “medium” to “large.” This is an example of what is known as Wagner
parsimony [41, 18], for which costs are assigned to ordered multistate data in
such a way that a change from one state to another incurs the sum of the
costs of any intervening states.

To illustrate the computation of the parsimony length of a tree, consider
the morphological data for the cephalopod example. We consider two trees rep-
resenting alternative hypotheses concerning the placement of Vampyromorpha
as described in Lindgren et al. (2004). These trees are shown in Fig. 1.1, and
the observed states for character 38 in the data matrix are given at the tips
of the trees (the complete data set is given in Lindgren et al. (2004)). Note
that for this character, all species of Decabrachia have state 1, and thus the
length of the clade containing the Decabrachia is 0. Thus, the Decabrachia
clade has been collapsed into a single node in the trees in Fig. 1.1. To calculate
the length of the trees, consider first the tree in Fig.1.1a, and consider the
node ancestral to S. syrtensis and T. guntheri. Since both S. syrtensis and T.
guntheri have state 0, this ancestral node can also be assigned state 0, and this
assignment requires no changes along the branches descending from it. Next,
consider the node ancestral to V. infernalis and the ancestor of S. syrtensis
and T. guntheri. Looking at this node’s two descendants, we see that one of
them (V. infernalis) has state 1 and the other (the ancestor of S. syrtensis
and T. guntheri) has state 0. In this case, we could assign either state as a
possible ancestral state. Note that selection of either state as the ancestral
state will lead to one change along the tree, and thus we increase the length
of the tree by one. Moving to the next most ancestral node, we see that the
Decabrachia have state 1 and thus an assignment of state 1 to the ancestor of
the Decabrachia and the clade containing V. infernalis, S. syrtensis, and T.
guntheri is most parsimonious, and does not increase the length of the tree.
Finally, the node at the root of the tree can be assigned state 1 without in-
creasing the length of the tree. The overall length of this tree for this character
is then 1.
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—— T. guntheri 0 T. guntheri
{0}
LS. syrtensis 0 S. syrtensis {0}
{0.1}
{0,1}
1 V. infernalis 1 V.infernalis
{1} 0,1}
1 Decabrachia 1 Decabrachia
N. pompilius 1 N. pompilius
(a) (b)

Fig. 1.1. Trees representing distinct hypothesized relationships among cephalopods,
taken from Lindgren et al. (2004). The tree in (a) is the consensus of the nine MP
topologies for the morphological data (each MP tree has length 107; the consensus
tree has length 109). The tree in (b) is supported by the molecular data. Sets at the
internal nodes of the tree are used to compute the score of the tree under the Fitch
algorithm (see text for details)

This algorithm for computing the length of a tree, called the Fitch algo-
rithm [26], can be expressed in more mathematical terms as follows. For each
node in the tree, a set of character states will be assigned. The set at the tips
of the tree contains a single state, the observed state at that tip. Then, for
any node for which a character state set has been assigned for its two immedi-
ate descendants, the state set assigned to that node is the intersection of the
state sets of its two immediate descendants if that intersection is nonempty;
otherwise, it is the union of the state sets of the two immediate descendants.
Whenever a union of state sets is required, the length of the tree is increased
by one. The Fitch algorithm was developed specifically for unordered mul-
tistate characters, such as nucleotide and protein data, for which any state
can change directly to any other state. Since changes in either direction are
weighted equally under this method, a tree can be arbitrarily rooted with no
change to its length, which allows one to root the tree at the most convenient
location.

Comparing the trees in Fig. 1.1a,b, we see that for this character, the tree
in Fig. 1.1a has length 1 and the tree in Fig.1.1b has length 2, and so the
tree in Fig.1.1a is preferred for this character. Of the 45 parsimony infor-
mative characters in this data set, nine are informative for selecting between
these two trees. Of these nine, eight favor tree (a) (characters 10, 38, 40, 45,
49, 57, 59, and 60) and one (character 6) favors tree (b). The result is that
analysis of the morphological data favors placement of Vampyromorpha with
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the Octobrachia rather than the Decabrachia, which conflicts with the results
obtained from the molecular data, as we will see in later sections. Figure 1.1a
shows the consensus tree obtained from the nine MP trees (each MP tree has
length 107; the consensus tree has length 109).

A second algorithm for computing the score of a tree under parsimony is
the Sankoff algorithm. This algorithm works by assigning a function to each
node of the tree which records, for each possible state, the minimum score
for the subtree rooted by that node. We denote this function by S’ (z), and
define it to be the minimum score for the subtree rooted by node i assuming
that node i has state 2 for character h. This value can be computed for any
node for which this function has already been computed for its two immediate
descendants using the following relationship

Sh(z) = 111}111{0(.)’7?,.177) + Sf (r',')} + nl}n{C(zf’If) + Sz}, (1.3)

where j and k are the two nodes directly descending from node i. This equation
is very intuitive. For example, consider the first term. This term corresponds
to the branch descending from node i to node j. This branch contributes
to the length of the subtree descending from node ¢ in two ways: first, it
contributes a length along the branch connecting nodes i and j; second, it
contributes a length due to the subtree descending from j, as recorded by the
S function for node j. There is then a similar contribution from the other
branch descending from node i, denoted by k here. Taking the minimum over
all possible assignments of states to the nodes j and k will give the minimum
at node ¢, given that it has state x.

This algorithm is applied successively to the nodes of the tree in a pos-
torder traversal (see Felsenstein ([20], p. 587)). The value of the S function
at the tips of the tree is determined by setting S” () = 0 if tip m has state

m

x for character h, and S’ (r) = oo otherwise. The minimum length of the
entire tree is then found by selecting the minimum value of the S function at
the root of the tree. Denoting the root node by r, the parsimony score of the

tree is

N
S(r)=>_ min Sh(x). (1.4)

h=1
Figure 1.2 gives an example of the computation for the morphological data
for the cephalopod example, with both the simple cost matrix used in the
explanation of the Fitch algorithm, and a modified cost matrix that results
in a different conclusion concerning which tree (of the two) is the most parsi-
monious.

We note that both the Fitch and Sankoff algorithms are dynamic pro-
gramming algorithms, since they reduce the problem of computing the score
to subproblems, which can be optimally solved in such a way that it can be
proved that they lead to the overall optimal solution. Felsenstein ([20]; p. 16)
discusses the connection between the two methods. The Sankoff algorithm is



1 Inference of Phylogenetic Trees 11

T. guntheri T. guntheri

A, S. syrtensis S. syrtensis——
e 1.2
[21] V. infernalis V. infernalis 12
22 A3 22
23"
B.1 Decabrachia Decabrachia ——
18.2
N. pompilius N. pompilius
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Fig. 1.2. Trees representing distinct hypothesized relationships among cephalopods,
taken from Lindgren et al. (2004). The tree in (a) is the consensus of the nine
MP topologies for the morphological data. The tree in (b) is supported by the
molecular data. The colored boxes at the nodes of the tree represent the S() function
used to compute the length of tree under the Sankoff algorithm for two different
cost functions. The upper (blue) boxes at each node correspond to the same cost
function as was used to illustrate the Fitch algorithm: C'(0,0) = C(1,1) = 0; and
C(0,1) = C(1,0) = 1. The lower boxes (yellow) correspond to a cost function that
penalizes more for one particular change: C'(0,0) = C(1,1) = 0;C(0,1) = 1; and
C'(1,0) = 2. For the first cost function, the tree in (a) is preferred, while for the
second cost function, the scores of the two trees are equivalent

more general, in that it allows the use of any cost function, while the Fitch
algorithm is confined to the setting where all changes are weighted equally.
We also note that while both algorithms specify a sum over characters to
compute the total score for the tree, the computation can be simplified for
both algorithms by computing the scores for only unique sites. For example,
any character for which all taxa have the same state will require no changes
on every tree. Additionally, under Fitch parsimony, any character for which
all taxa except one have the same state will require exactly one change on
any tree. Characters of this nature are generally said to not be phylogenet-
ically informative, since they do not prefer any tree over any other in the
parsimony setting. Therefore, no computations need be performed on these
character patterns. However, these character patterns do contribute to esti-
mation in other settings, as will be seen for likelihood in the following section.
For a particular cost function, there may also be other classes of characters
for which the score will be identical, and therefore needs to be computed only
once and then multiplied by the number of characters observed in that class.
An example will be given below.



