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Preface

The main goal of this book is to construct a theory of weights for the log
crystalline cohomologies of families of open smooth varieties in character-
istic p > 0. This is a p-adic analogue of the theory of the mixed Hodge
structure on the cohomologies of open smooth varieties over C developed
by Deligne in [23]. We also prove the fundamental properties of the weight-
filtered log crystalline cohomologies such as the p-adic purity, the functori-
ality, the weight-filtered base change theorem, the weight-filtered Kiinneth
formula, the convergence of the weight filtration, the weight-filtered Poincaré
duality and the F>-degeneration of p-adic weight spectral sequences. One can
regard some of these results as the logarithmic and weight-filtered version of
the corresponding results of Berthelot in [3] and K. Kato in [54].

Following the suggestion of one of the referees, we have decided to state
some theorems on the weight filtration and the slope filtration on the rigid
cohomology of separated schemes of finite type over a perfect field of char-
acteristic p > 0. This is a p-adic analogue of the mixed Hodge structure on
the cohomologies of separated schemes of finite type over C developped by
Deligne in [24]. The detailed proof for them is given in another book [70] by
the first-named author.

We have to assume that the reader is familiar with the basic premises
and properties of log schemes ([54], [55]) and (log) crystalline cohomologies
([3], [11], [54]). We hope that the findings in this book will serve as a role
as a first step to understanding the rich structures which p-adic cohomology
theory should have.

Tokyo Yukiyoshi Nakkajima
January 2008 Atsushi Shiho
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Introduction

Though they are vague, we have the following dreams as in [37], [22] and [25]:

(1) Cohomologies in characteristic 0 of algebro-geometric objects in any
characteristic have remarkable increasing filtrations, which are called weight
filtrations.

(2) They are motivic.

(3) They are constructible sheaves. Sometimes they are, in fact, smooth
sheaves.

(4) They are compatible with canonical operations, e.g., base change,
Kiinneth formula, Poincaré duality.

(5) They are functorial: certain classes of morphisms (e.g., the induced
morphisms by the morphisms of algebro-geometric objects) are strictly com-
patible with them.

In this book, for a family of open smooth varieties in characteristic p > 0,
we discuss the p-adic aspects of (1), (3), (4), (5) and the following new aspect:

(6) In some cases, they grow and they are rigid as Grothendieck said for
crystalline sheaves.

Here we assume that the family is the complement of a relative simple
normal crossing divisor on a family of smooth varieties.

Before explaining our results, we recall Deligne’s result on the weight fil-
tration on the higher direct image of Q by a morphism from a family of open
smooth algebraic varieties with good compactifications to a base scheme over
the complex number field C (23], [25]).

Let U be a smooth variety over C. Let X be a smooth variety over C with
a simple normal crossing divisor D such that U = X \ D. Let j: U S X
be the natural open immersion. Set D(®) := X and, for a positive integer
k, let D) be the disjoint union of all k-fold intersections of the different
irreducible components of D. Let P := {Px}xez be the weight filtration on
the sheaf % sc(log D) (i € N) of the logarithmic differential forms on X which

Y. Nakkajima, A. Shiho, Weight Filtrations on Log Crystalline Cohomologies 1
of Families of Open Smooth Varieties. Lecture Notes in Mathematics 1959,
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2 Introduction

is obtained by counting the number of the logarithmic poles of local sections
of Q}/C(log D). Let a®: D*) — X (k € N) be the natural morphism of
schemes over C. Then we have the following isomorphism of complexes (the
Poincaré residue isomorphism):

(0.0.0.1)  Res: gry, QX/C(log D) = a'* (Q' b /¢ O w®(D/C)(—k)).

Here w®)(D/C) is the orientation sheaf of D®*)/C; w® (D/C)(—k) := €k
in [23]. By using the isomorphism (0.0.0.1), we have the following spectral
sequence

(0.0.0.2)
E7MME=HMH(D®), 03 /¢ @2 @™ (D/C))(~k) = H"(X, Q% c(log D).

Moreover we have the following isomorphisms in the filtered derived category
of bounded below filtered complexes of Cx,, -modules:

(0.0.0.3) (Q%.. /c(10g Dan), P) ~ (Q%.. /c(10g Dan), 7) Sadt

(jan*(Q;jan C):T) —— (Rjan* (CUM),T) = (Rjan*(ZUan) Xz CvT)a
/

where 7 := {7x}kez is the canonical filtration. By using the exponential
sequence on U,, and the cup product, we have the purity isomorphism

(0.0.0.4) RE jane(Zy,,) < alih (@®) (Dan/C))(—k) (k€ N)

(cf. [58, (1.5.1)]). By the same calculation as that in [69, (3.3)], the following
morphism

(0.0.0.5) ag;)*(c(pan)(k) ®z @ (Dan/C))(—k)
(0.0.0.4)®C
— Rkjan* (CUa.n)
(0.0.0.3) .
= gry, Qx+k/c(log Din)

Res
~ =~ (k) e
= agn*(Q(Dan)(k)/C ®Zw (Dan/C))(—k)

= alh(C(p,, )0 82 @*)(Dan/C))(—

is equal to the multiplication by (—1)*. Hence we use the following isomor-
phism

(0.0.0.6)
(0.0.0.4) (—1)'c
R jane(Zu,,) — alh(@®(Dan/C))(=k) == alk(w® (Dan/C))(—k)
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instead of (0.0.0.4). The isomorphism (0.0.0.6) is equal to the isomorphism
in [23, (3.1.9)]. Using the Leray spectral sequence for two functors j,n. and
I'(Xan,?), using the isomorphism (0.0.0.6) and renumbering E %h+k .=

Ef +1k **we have the following spectral sequence

(0.0.0.7) E7*MF = H'#((Don)®, @®) (Dan /C))(—k) => H(Uan, Z).

If X is proper, one obtains the weight filtration on H"(U,,, Z) by the spectral
sequence (0.0.0.7); if X is proper, (0.0.0.2) is equal to (0.0.0.7)®zC by GAGA
and the Poincaré lemma.

In fact, the existence of the weight filtration above modulo torsion has been
generalized to the case of a family in characteristic 0 by Deligne as follows.
Let f: X — S be a proper smooth morphism of schemes of finite type
over C. Let D be a relative simple normal crossing divisor on X over S. Set
U := X\ D, and let f also denote the structural morphism f: U — S. Then
R" fans(Qu.,, ) is a local system ([21, II (6.14)]), and there exists a filtration P
on R" fans(Qu,,) by sub local systems such that the induced filtration Py on
the stalk R"forne(Qu.,)s = H"(Uan)s, Q) (s € San) ([loc. cit.]) is obtained
from the spectral sequence (0.0.0.7) ([25]).

Now let us turn to the case of characteristic p > 0.

Let (S,Z,7v) be a PD-scheme with a quasi-coherent ideal sheaf Z. Set
Sp = MS(OS/I). Assume that p is locally nilpotent on S. Let f: X — Sy
be a smooth scheme with a relative simple normal crossing divisor D on X
over Sy (by abuse of notation, we denote by the same symbol f the composite

morphism X = By s 8 ). Then the pair (X, D) of Sp-schemes defines an
fs(=fine and saturated) log scheme (X, M (D)) over Sy (§2.1 below, cf. [54])
in the sense of Fontaine-Illusie-Kato and (X, D)/S defines a log crystalline

topos ((X, A//I(\D/)) /S)le_ ([54], cf. [29]). By abuse of notation, we often denote

crys
(X, M(D)) by (X, D). Once we obtain the topos ((X, D)/S)°8_ we can use

crys?

powerful techniques of [42] and | many techniques of 3] (cf. [54]). Let O(x,p)/s
be the structure sheaf in ((X, D) /S)log and Opw) /g the structure sheaf

©Jerys

in the classical crystalline topos (D(k)/S)c,ys. (See (2.2.13.2) and (2.2.15)
below for the precise definition of D*) for a nonnegative integer k.) Let

—_—~—

fix.pyss: (X, D)/S)S8; — Spar and fpoa/s: (D®)/S)erys — Syar be the
natural morphisms of topoi. Then one of our main results in this book is to
show the existence of the following functorial spectral sequence:

(0.0.0.8) ETME = Rk £k 16:(Opir s ®2 @) (D/S))(—k)
= R"f(x.p)/5+(O(x,D)/5)-

—_——

Here wc,ys(D/ S) is the crystalline orientation sheaf of D/S in (D()/ S) crys
which will be defined in §2.2. If Sy is of characteristic p > 0, then the relative
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Frobenius morphism F: (X,D) — (X’,D’) over Sy induces the relative
Frobenius morphism F(*): D®) — p'k) = D®)' Let a®): D®) — X
and a®’: D®) — X' be the natural morphisms. We define the relative
Frobenius action

o) : 0l (D'/8) — Feysnalexw®(D/S)
as the identity under the natural identification

@{e(D'/8) = Fyeuw®)s(D/5).
Then (0.0.0.8) is compatible with the Frobenius action. We call (0.0.0.8) the
preweight spectral sequence of (X, D)/(S,Z,7). Here, as noted in [68], we use
the terminology “preweight” instead of the terminology “weight” since Og
is a sheaf of torsion modules (and hence R"f(x p)/s«(O(x,p)/s) is also). If
Sp is the spectrum of a perfect field x of characteristic p > 0 and if S is the
spectrum of the Witt ring W,, of finite length n > 0 of &, then (0.0.0.8) is
canonically isomorphic to the following preweight spectral sequence

BRI = HY R (D®) [ W )erys, Opwo jw, @2 @ 50s(D/Wa)) (=)

- Hl’(l:ag—crys((Xv D)/Wn)a

essentially constructed in [65] and [68].

Let V be a complete discrete valuation ring of mixed characteristics with
perfect residue field of characteristic p > 0. Then we can also construct the
spectral sequence (0.0.0.8) when S is a p-adic formal V-scheme in the sense
of [74]. In this case, we call (0.0.0.8) the p-adic weight spectral sequence of
(X,D)/S and the induced filtration on Rhf(x,D)/S*(O(X,D)/S) by (0.0.0.8)
the weight filtration on Rhf(X,D)/S*(O(X,D)/S)-

Let us return to the case where (S,Z,v) is a PD-scheme as above;
especially, a prime number p is locally nilpotent on S. Let Ox,s be

the structure sheaf in the classical crystalline topos (X/S)crys. Let
U(X,D)/S: (()(,l))/S)IOg = Xzar (I‘eSp. U'X/S: (X/S)Crys — Xzar)

crys

be the natural (resp. classical) projection. Then uyx,s induces a mor-
phism ux/s: ((X/S)ecrys, Ox/s) — (Xzar, f~1(Og)) of ringed topoi. Let
Upk) /s (D®)/8)erys —> D®),, be also the classical projection. Let

ex,p)/s: (X,D)/S)E, — (ﬂg)crys be the forgetting log morphism
induced by the morphism (X, M(D)) — (X,0%) of log schemes. Then
ux/s © €x,p)/s = Wx,p)/s- Let Qx;s: (X/S)Rerys — (X/S)erys be a
morphism of topoi defined in [3, IV (2.1.1)]. Then we have a morphism
QX/S: ((X/S)RcrySaQ*X/s(OX/S)) - ((X/S)crys,OX/S) of ringed topoi.

Set Ux/g = Ux/s O Qx/sl ((%)RcrysaQ;(/S(OX/S)) — ()?zar, f_l(OS))
as in [3].
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To construct (0.0.0.8) and to prove the functoriality of it, we define two
filtered complexes

(0.0.0.9) _
(EcryS(O(X,D)/S)vP) = (EcryS(O(X,D)/S)a {PkEcryS(O(X,D)/S)}kGZ)
€ D*F(Oxys),

(0.0.0.10)
(Ezar(O(x,p)/5)s P) := (Ezar(O(x,0)/5)s { Pt Ezar (O(x,D)/5) }rez)
e DYF(f~1(0s))

and construct two other filtered complexes

(0.0.0.11)
(CRerys(O(x,D)/5)s P) := (CRerys(O(x,0)/8) A P CRerys(O(x,D)/5) } kez)
€ D*F(Q%/5(0x/s)),

(0.0.0.12)
(Crar(O(x,0y/8), P) = (Crar(O(x,0)/8)s { PxCrar(O(x,D)/5) }kez)
€ D*F(f~1(Os)).

Here D*F(Ox/s), D+F(Q;{/S(Ox/5)) and D*F(f~1(Og)) are the filtered de-
rived categories of the bounded below filtered Oy, s-modules, Q% / s(Ox/s)-

modules and f~1(Og)-modules, respectively.
The definitions of (Ecrys(O(x,p)/s), P) and (Ear(O(x,p)/s), P) are as fol-
lows:
(Ecrys(O(x,p)/s), P) := (Re(x,p)/sx(O(x,py/s), T),

(Ezar(O(x,D)/5), P) := Rux/s«(Eecrys(O(x,p)/5): P)-

(Here 7 denotes the canonical filtration (§2.7).) Note that they are functorial
with respect to (X, D).«(This is not the case for (Crerys(O(x,p)/s), P)-)

In a simple case we soon give the definition of (Crerys(O(x,p)/s), P) in
(0.0.0.14) below. In the general case we give it in the text. The filtered
complex (Czar(O(X,D)/S)’P) is, by deﬁnitionv RﬂX/St(CRcrys(o(X,D)/S)a P)
We call (Eerys(O(x,py/s), P) and call (E,..(O(x, p)/s), P) the preweight-
filtered vanishing cycle crystalline complex and the preweight-filtered van-
ishing cycle zariskian complex of (X, D)/(S,Z,~), respectively. We also call
(CRerys(O(x,Dy/s), P) the preweight-filtered restricted crystalline complex of
(X,D)/(S,Z,v) and call (C,ar(O(x,p)/s), P) the preweight-filtered zariskian
complez of (X, D)/(S,Z,~), respectively. The main theme of this book is to
investigate fundamental properties of (Ecrys(O(x,py/s)s P), (Ezar(O(x,p)/s),
pP), (CRcrys(O(X,D)/S)a P) and (Czar(O(X,D)/S)7 P). They enjoy the following
properties:
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(00013) (CRcrys(O(X,D)/S))P) “— Q}/s(Ecrys(O(X,D)/S)a P); {PkEcrys(O
(x,D)/S) }kez is an “increasing filtration” on Ecrys(O(x py/s) which is finite
locally on X such that P—lEcrys(O(X;D)/S) =10, Q;(/SPOEcrys(O(X,D)/S) —
Q%x/5(0x/s) and Crerys(O(x,p)/5) «— Q% sRe(x,0)/5+(O(x,0)/5)-

(0.0.0.14): Let A := {Dx}xea be a decomposition of D by smooth compo-

nents of D: D = U,\eA Dy and each Dy is smooth over Sy. If (X, D) has

an admissible immersion (X, D) — (X, D) over S with respect to A (see

(2.1.10) below for the definition of the admissible immersion), then

(Crerys(O(x,p)/5), P) =~ (Q%/sLx/s5(2% s (log D)),
{Q%/sLx/s(Pi% 5(10g D)) }rez),

where Lx/g is the classical linearization functor for Ox-modules ([3, IV 3],
[11, §6]).

(0.0.0.15)2 (Czar(O(X,D)/S)aP) ; (Ezar(O(X,D)/S)»P)-

(Hence (Cpar(O(x,py/s), P) is functorial with respect to (X, D).) In particu-
lar,

(0.0.0.16): {PrCrar(Ox,py/s)}kez is an “increasing filtration” on Cpar(O
(x,py/s) Wwhich is finite locally on X such that P_,C.:(O(x,py/s) = 0,
PyCyar(O(x,p)/s) —— Rux/ss(Ox/s), and Crar(O(x,py/s) «— Ru(x,p)/s+
(Ox,p)/s), and

(0.0.0.17): If (X, D) has an admissible immersion (X, D) - (X, D) over S
with respect to A = {D)}xen,

(Crar(O(x,0)/5), P) ~ (Op ®0, Ny /5(log D), {Op ®0o, P2y /5(10g D) }rez),

where D is the PD-envelope of the immersion X ~= X over (S,Z,7).

(0.0.0.18): grf (Crerys(O(x,p)/s)) = Q*X/sat(:l:))/s*(oD(k)/S ®2 wis(D/9))
{—k}, where {—k} is the shift which will be defined in the Convention (1)
below (note that we do not consider the Tate twist (—k) on the right hand
side of (0.0.0.18) because the functor Q% /s appears on the right hand side

(In [3, IV (2.5)] Berthelot has noted that the restricted crystalline topos does
not have the functoriality in general).).

(0.0.0.19): grkP(Czar(O(X,D)/S)> = ag;z‘*(RuD(k)/S*(OD(k)/S) Rz w;:Z(D/SO))
(=k){—k}, where wéﬁZ(D/SO) is the zariskian orientation sheaf of D/S,
which will be defined in §2.2. Here, see §2.9 for the meaning of the Tate
twist (—k). ‘

(0.0.0.20): (Crerys(O(x,0)/5),T) — (Crerys(O(x,p)/s), P), where T is the
canonical filtration.
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(0.0.0.21): If Sy is the spectrum of a perfect field x of characteristic p and if
S = Spec(Wr(x)) (n > 0), then (Czar(O(x,py/s), P) is canonically isomorphic
to the filtered complex (W,Q% (log D), P) := (W,Q% (log D), { P.W,% (log
D)}keZ) in [65].

Thus we obtain the following translation which let us recall Grothendieck’s
project to unify algebra, geometry and analysis ([37]):

(0.0.0.22)
C crystal
Uana (Xana Dan)log
((Xan, Dan))e® ([51]) (X, D)/S)%E,
Xan, 5{:1 (X/S)crys
an: Uan — Xan
€top * (Xam Dan)log — Xan
an: ((Xan, Dan))if — Xan €x,0)/5: (X, D)/S)98, — (X/S)cryq
Rjan* (Z) = REtOP* (Z) ([58])v
Reétopx (Z/n) = Reans(Z/n) Q% sRex,0)/5+(O(x,p)/s)
(nez) (72) .
Xan — X ux/s: (X/S)crys — Xzar
2 X an, Dan)'o®
(Z/7) (X pn, Dan)tes s (Z/n)((,{;,‘g‘;n))ggo(x,o)/s
(n€Z)
X an
(Z/n)x,. (n €Z) Ox/s
(02%.../c(l0g Dan), 7) (CRerys(O(x,D)/5)sT)
= (Q:Ym/c(l()g Dan)»P) = (CRcrys(O(X,D)/S)a P)
(2% /c(log D), P) (Crar(O(x,p)/5), P)

Here (Xan, Dan)'°8 is the real blow up of (Xan, Dan) defined in [58] and
€top 1S the natural morphism of topological spaces which is denoted by 7 in
[loc. cit.], and j_(:, is the topos defined by the local isomorphisms to X,, and
€an 18 the natural morphism forgetting the log structure.

To construct (Crerys(O(x,p)/s), P) and (Crar(O(x,p)/s), P), we use local
admissible immersions of (X, D) over S, which are local exact closed immer-
sions. On the other hand, in the case where Sy is the spectrum of a perfect
field k of characteristic p > 0 and where S = Spec(W,(x)), Mokrane has
used local lifts of (X, D) over S in [64] and [65] in order to construct the
filtered log de Rham-Witt complex (W,,Q% (log D), P). Our guiding principle
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is: if we can do something by using local lifts, we can do something analogous
and more by using admissible immersions. Since a standard exactification
of the product of two local lifts of (X, D) is not a local lift of (X, D) at
all, the notion “local lift” is not flexible for the construction of the spectral
sequence (0.0.0.8). Moreover, because we do not take a local lift of (X, D),
we can give a simple proof of the independence of (Crerys(O(x,py/s), P) and
(Car(O(x,p)/s), P) of the choice of the open covering of (X, D) and that of
the admissible immersion of each open log scheme: we do not need a concrete
(slightly) laboring key calculation in [47]; in a future paper we shall develop
analogous theory for a family of simple normal crossing log varieties over log
points, and we shall show that a concrete key calculation in [48] and [64] is not
necessary. Furthermore, we come to know that the filtered log de Rham-Witt
complex of an open variety is not a necessary ingredient for the construction
of (0.0.0.8) (in the special case S = Spec(W,(k))). We are sure that it is
natural to capture something producing (0.0.0.8) as an object in a filtered
derived category; to capture it as a real filtered complex is not flexible. How-
ever, because it is anyway possible to capture it as a real filtered complex in
the case above, it gives us something deep in a special case. Indeed, in [70],
we use the simplicial version of the filtered log de Rham-Witt complex above
for the proof of a variant of the Serre-Grothendieck formula on the virtual
Betti numbers of a separated scheme of finite type over x, which has been
conjectured in [37].

From the filtered object (C.ar(O(x,p)/s), P), we immediately obtain the
spectral sequence (0.0.0.8) by (0.0.0.19). If one wishes to obtain only (0.0.0.8),
the object (C,ar(O(x,py/s), P) is enough; however, it is an important fact that
something producing (0.0.0.8) exists not only in D*F(f~1(Os)) but also in
a “higher stage” D+F(Q}/S((’)x/5)).

By (0.0.0.17), it is well-known that the canonical filtration 7 and the
preweight filtration P on C,a(O(x, p)/s) do not coincide in general; how-
ever, impressively, 7 and P on CRrerys(O(x,p)/s) coincide ((0.0.0.20)). The
equality (0.0.0.20) follows from the following p-adic purity

(0.0.0.23) Q%/sR*¢(x.0)/5:(O(x.p)/5)
= Q%/5a495:(Opwi s ®z wE)(D/S))(=k) (k€ N),

which will be proved in §2.7. The reason why we obtain the equality (0.0.0.20)
is that (CRerys(O(x,p)/s), P) exists in the world of the classical restricted
crystalline topos; we can consider divided powers “al™ = a™/n!” (n € N) in
the restricted crystalline topos and we can use a Poincaré lemma in it. By
(0.0.0.23) and the Poincaré lemma for Re(x p);s«(O(x,p);s) which will be
proved in the text, we obtain (0.0.0.13) and then an important property of
(Czar(O(x,py/s), P): it is functorial, that is, for another smooth scheme X’
with a relative simple normal crossing divisor D’ over Sy and for a morphism
g: (X,D) — (X', D’) of log schemes over Sy in the sense of Fontaine-Illusie-
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Kato, we have a natural morphism

9*3 (Czar(O(X’,D’)/S)7P) B Rg*(Cza.r(O(X,D)/S)vp)-

Finally in this rough explanation of the book, we remark that the following
naive p-adic purity

R*e(x,p)/5«(O(x,p)/s) = aﬁgs*(opw/s ®z wik)(D/S))(—k) (k€ N)

does mot hold in general, which will be proved in Remark 2.7.11. For this
reason, we have to consider the undesirable functor Q% /s

Now we outline the contents of this book.

In Chapter 1, we prove preliminary results which we use in later chapters.

From §1.1 to §1.4, we show some facts on filtered modules in a ringed
topos which are necessary for later sections. Many key notions and many
results are due to P. Berthelot. Especially, the notions ( co)special modules and
strictly injective resolutions are due to him. The notion strictly flat resolutions
is also due to him. The filtered adjunction formula, which is also due to
him, is a key ingredient for the proof of the filtered base change theorem of
(Ecrys(O(X,D)/S)7 P)

In §1.5 and §1.6 we review general facts on diagrams of topoi for this book
and future papers.

In Chapter 2, which is the main body of this book, we construct the theory
of the weight filtration of the log crystalline cohmologies of families of open
smooth varieties.

In §2.1 we give the definition of a relative simple normal crossing divisor
and a key notion admissible immersion and give a local description of the
admissible immersion.

In §2.2 we recall a (log) linearization functor and we calculate the graded
pieces of Q% g Lx/s(02%,5(log D)).

In §2.3 we prove a crystalline Poincaré lemma for Reyg,(E) for a mor-
phism g: Y — S of fine log schemes which can be embedded into a fine log

smooth scheme ) /S whose underlying scheme Y/S is also smooth and for a
crystal E of Oy, s-modules.

In §2.4 we construct (CRrerys(O(x,p)/s), P) and (Czar(O(x,p)/s), P) for an
open covering of X and an admissible immersion of each open log subscheme
of (X, D). In §2.5 we prove the independence of (Crerys(O(x,p)/s), P) and
(Czar(O(x,p)/s), P) of the choice of the open covering of X and that of the
admissible immersion of each open log subscheme of (X, D).

In §2.6 we prove (0.0.0.18) and (0.0.0.19). In §2.7 we calculate the re-
striction of the vanishing cycle sheaves QB(/Ska(X.D)/S*(O(X,D)/S) (kez)
and we prove the p-adic purity (0.0.0.23). Then we prove (0.0.0.13) and
(0.0.0.20); as a corollary, we immediately see that (Crerys(O(x,p)/s), P) and



