Handbook for
Matrix Computations

Thomas E. Coleman
Charles Van Loan

Handbook for
Matrix Computations

Thomas F. Coleman
Charles Van Loan
Cornell University

Sidaim

Philadelphia 1988

All rights reserved. Printed in the United States of America. No part of this book may be
reproduced, stored, or transmitted in any manner without the written permission of the
Publisher. For information, write the Society for Industrial and Applied Mathematics,
3600 University City Science Center, Philadelphia, Pennsylvania 19104-2688.

Library of Congress Catalog Card Number 88-61637.
ISBN 0-89871-227-0

Copyright @1988 by the Society for Industrial and Applied Mathematics.

Second printing July 1989.
Third printing April 1991.

Handbook for
Matrix Computations

Frontiers in Applied Mathematics

Managing Editors
for Practical Computing series
W.M. Coughran, Jr. Eric Grosse
AT&T Bell Laboratories AT&T Bell Laboratories
Murray Hill, New Jersey Murray Hill, New Jersey

Frontiers in Applied Mathematics is a series of monographs that present
new mathematical or computational approaches to significant scientific
problems. Beginning with Volume 4, this series will reflect a change in both
philosophy and format. Each volume will focus on a broad application of
general interest to applied mathematicians as well as engineers and other
scientists.

This unique series will advance the development of applied mathematics
through the rapid publication of short, inexpensive monographs that lie on the
cutting edge of research. The first volume in the new softcover format is in the
Practical Computing series. Future volumes will include

fluid dynamics materials science
solid mechanics control theory
nonlinear dynamical systems mathematical physics.

Potential authors who are now writing or plan to write books within the scope
of the series are encouraged to contact SIAM for additional information.

Publisher
SIAM
3600 University City Science Center
Philadelphia, PA 19104-2688
(215) 382-9800

Contents

vii Preface
1 Chapter 1: A Subset of Fortran 77
3 Section 1.1: Basics
18 Section 1.2: Logical Operations
25 Section 1.3: Loops
32 Section 1.4: Arrays
42 Section 1.5: Subprograms
58 Section 1.6: Arrays and Subprograms
69 Section 1.7: Input and Output
82 Section 1.8: Complex Arithmetic
87 Section 1.9: Programming Tips
101 Appendix: Fortran 77 Built-in Functions
105 Chapter 2: The BLAS
107 Section 2.1: Bookkeeping Operations
112 Sectiom 2.2: Vector Operations
119 Section 2.3: Norm Computations
125 Section 2.4: Givens Rotations
132 Section 2.5: Double Precision and Complex Versions
139 Chapter 3: LINPACK
141 Section 3.1: Triangular Systems
147 Section 3.2: General Systems
152 Section 3.3: Symmetric Systems
161 Section 3.4: Banded Systems
166 Section 3.5: The QR Factorization
175 Section 3.6: The Singular Value Decomposition
180 Section 3.7: Double Precision and Complex Versions

187 Chapter 4: MATLAB
189 Section 4.1: Basics

203 Section4.2: Loops and Conditionals

212 Section 4.3: Working with Submatrices

219 Section 4.4: Built-in Functions

232 Section 4.5: Functions

243 Section 4.6: Factorization

256 Section 4.7: Miscellaneous

261 References

262 Index

vi

Preface

This handbook can be used as a reference by those actively engaged in
scientific computation. It can also serve as a practical companion text in a
numerical methods course that involves a significant amount of linear algebraic
computation. The book has four chapters, each being fairly independent of the
others.

Our treatment of Fortran 77 in Chapter 1 involves a much stronger emphasis
on arrays than is accorded by other authors. We also assume that the reader has
experience with some high-level programming language. This might be in the
form of a recent course in Pascal or a course in Fortran taken many years ago
and now half-forgotten.

The second chapter is about the Basic Linear Algebra Subprograms (BLAS).
The elementary linear algebra that underpins the BLAS makes them a good
vehicle for acquainting the beginning student with modular programming and
the importance of “thinking vector” when organizing a matrix computation.

Chapter 3 is concerned with LINPACK, a highly acclaimed package that is
suitable for many linear equation and least square calculations. The last chapter
is about MATLAB, an interactive system in which it is possible to couch
sophisticated matrix computations at a very high level.

A one-semester course in matrix algebra (or the equivalent) is required to
understand most of the text.

Because the book spans several levels of practical matrix computations, it can
fit into a number of canonically structured numerical methods courses. At
Cornell we use Chapters 1 and 2 in our one-semester introductory numerical
methods course. In this course it is assumed that the students are acquainted
with Pascal. That is why our treatment of Fortran is brisker than what would be
found in a “pure” Fortran text. In our graduate-level numerical analysis courses
we use Chapters 2, 3, and 4 heavily, with Chapter 1 serving as a reference.

The BLAS and LINPACK are in the public domain and are distributed at cost
through Argonne National Laboratory. MATLAB is available from MGA Inc.,
73 Junction Square Dr., Concord, MA 01742.

We are indebted to Nick Higham, Bill Coughran, and Eric Grosse for catch-
ing numerous typographical errors and for making many valuable suggestions.

Thomas F. Coleman
Charles Van Loan

vii

Chapter 1

A Subset of Fortran 77

Our treatment of Fortran 77 (F77) assumes that the reader is already familiar
with some high-level language, e.g., PASCAL. There are many books devoted
to the presentation of the basics of Fortran 77(see, e.g., Zwass [8]). We do not
attempt to be exhaustive at this level. For example, we say nothing about the
"opening" and "closing" of files, and character manipulation is mentioned only
briefly. Rather, our emphasis is on matrix computations and we have attempted
to be complete in this regard. We pay special attention to arrays since the
implementation of matrix algorithms is an underlying theme of the book.

We believe that it is still important for students with a serious interest in
scientific computation to be familiar with Fortran. This is not to say that we are
advocating that all scientific computing be done in Fortran. On the contrary, the
most appropriate language for a particular application at hand should be used.
The language "C" is an increasingly popular choice. MATLAB is well suited to
dense matrix computations and graphical work. However, we strongly believe
that high-quality subroutines should be used as building blocks whenever
possible. For reasons of portability and standardization, this software is almost
always Fortran software and will probably continue to be so for many years.
Therefore, familiarity with Fortran is essential.

A scientific programmer working in a language other than Fortran can
often use Fortran subroutines directly, provided the language and computer
system support such an interface. Otherwise a direct translation can be used,
provided that extreme care is taken. In either case, Fortran knowledge is
required.

We make two final observations about the use of Fortran. First, Fortran
should seriously be considered when developing general software for a basic
mathematical computation with widespread applicability. Fortran programs that
adhere to professionally set "standards" are easily ported to other computing
systems. This is not true for other languages. Second, it is important to realize
that Fortran is not a "dead" programming language. The "modernization" of
Fortran (and the subsequent updating of the "standards") is an ongoing process.
Fortran 77 is now widely used and accepted (replacing Fortran 66). Fortran 8X
is currently being developed. Each new Fortran basically inherits the old version
as a subset to which the extensions add power and flexibility.

1.1 BASICS

We begin the discussion with a Fortran program that computes the
surface area of a sphere from the formula A = 4nr2:

program area
real r, area

This program reads a real number r and
prints the surface area of a sphere that
has radius r.

O o0aa

read(*,*)r

area = 4.*3,14159%9*r*r
write (*, *)area

stop

end

The purpose of each line in this program is quite evident. Those lines that begin
with a "c" are comments. The read and write statements perform input and
output. The computation of the surface area takes place in the arithmetic
assignment statement "area = ...". The beginning and end of the program are
indicated by the program and the end statements. Execution is terminated by
the stop. The memory locations for the variables used by the program are set
aside by the line "real r, area".

In this section we elaborate on these and a few other elementary
constructs.

Program Organization

A Fortran program generally consists of a main program (or "driver") and
several subprograms (or "procedures"). Typically the main program and a few
of the subprograms are written by the user. Other subprograms may come from
a "library." Subprograms are discussed later.

A main program is structured as follows:

4 FORTRAN 77

program { name)}
{ declarations }
{ other statements }

stop
end

Each line in a Fortran code must conform to certain column position rules.

Column 1 . Blank unless the line is a comment.
Columns 2-5 . Statement label (optional).
Column 6 : Indicates continuation of previous line (optional).
Columns 7-72 : The Fortran statement.
Columns 73-80 : Sequence number (optional).
Comments

A line that begins with a "c" in the first column is a comment. Comments
may appear anywhere in a program and are crucial to program readability.
Comments should be informative, well written, and sufficiently "set off" from
the body of the program. To accomplish the latter begin and end each comment
block with a blank comment as in the surface area program above.

Sequence Numbers

Every line in a program can be numbered in columns 73-80. This used to
be a common practice but in the age of screen editors sequence numbering has
become less useful for debugging.

List-directed "read" and "write"

Until we cover input/output (I/O) in depth in §1.7, we rely upon two
elementary I/O constructs:

1.1BASICS | §

read(*,*) { list-of-variables)

write(*,*) { list-of-variables }
Thus,

read(*,*) x, y, z

reads three items of data and stores them in the variables named x, y, and z.
Similarly,

write(*,*)a, b
prints the contents of the variables named a and b.

Messages (enclosed in quotes) may be interspersed with variable names in
a write statement. Thus, if a and b contain 2 and 3, respectively, then

write(*,*)'a ="', a,'b ="', b
produces the output
a = 2.0000 b = 3.0000

An important detail suppressed in our I/O discussion is where a read
physically obtains its data and where a write physically sends its output. The
"asterisk" notation in a read or a write specifies a default device, e.g., the
keyboard, the terminal screen, etc. How the default devices are set depends
upon the system and it is necessary to obtain local instructions for their use.

Names in Fortran

Names in Fortran must involve no more than six characters chosen from
the alphanumeric set

ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789

The name must begin with a letter. In our examples we do not distinguish

6 FORTRAN 77

between upper and lower case. However, it should be noted that a few F77
compilers accept only uppercase input.
Types and Declarations

Every variable in a Fortran program should be defined in a declaration.
This establishes the variable's type. There are several possibilities:

integer { list-of-variables)

real { list-of-variables }

double precision { list-of-variables }
complex { list-of-variables }

logical { list-of-variables }
character { list-of-variables)

Thus, a program may begin with the following declarations:
double precision a, b, c
integer n
complex zl, z2
double precision length, width
logical test

character*20 name

There are a few rules to follow regarding the naming and typing of variables.

e Variable names must begin with a letter and must be no more than six
alphanumeric characters in length.

e Each variable should be declared exactly once. Automatic typing
occurs otherwise. This means that variables whose names begin
with letters i through n are integers and all others are real.

1.1 BASICS | 7

e Itis legal to have more than one declaration per type in a program.

e Declarations must be placed at the beginning of a program, before
any executable statement. This is because their purpose is to set
aside memory locations for the variables used by the program.

We discuss the integer, real, double precision, and character types now. Logical
and complex variables are discussed in §1.2 and §1.8, respectively.

Integer Variables

Numbers stored in integer variables are represented in fixed point style.
In a typical computer 32 bits, by, by,..., b31, might be allocated for each
integer variable x with the convention that x has the value

x = (-1)231x (baobag...b1bg)s bie { 0,1} .
The notation (-), is amply illustrated by the example

(01101), = 1x20 + 0x21 + 1x22 + 1x23+ 0x2¢ = 13

Note that because of the finiteness of an integer "word" there is an upper bound
on the size of the integers that can be represented. In the 32-bit example, only
integers in the interval [-m ,m], where m = 231-1 = 2 x 109, can be
represented.

Floating Point Variables

Numbers that are stored in real or double precision variables are
represented in floating point style. The floating point word is partitioned into a
mantissa part, m, and an exponent part, e, with the convention that the value of
the variable is specified by m 2€ . The length of a floating point word and how
it is partitioned into the exponent and mantissa parts depends upon the computer
used. A typical 32-bit floating point number x might have a 24-bit mantissa m
and an 8-bit exponent e, with the convention that

8 FORTRAN 77

m = (-1)P23 x (boby - b22),

and
e =(-1)531 x (b3o -+ baa)2

with the convention that x = m2é. Stipulating that bg# 0 makes the
representation of a given floating point number unique. (An exception to this
rule is required when x=0.)

Double precision variables represent numbers in the same fashion as do
real variables, but more space is allocated per variable. For example, if 32-bit
words are used for real variables then typically 64-bit words would be used for
double precision variables. This leaves more bits for mantissa specification,
e.g., 56 bits instead of 24 .

Regardless of precision, there are finitely many floating point numbers,
and rounding errors generally arise with every arithmetic operation. Moreover,
an arithmetic operation (such as a divide by a very small number) may lead to a
number that is "too big" to represent in the floating point system. Overflow
results, a situation that usually leads to program termination. Some of the
hazards of floating point computation are discussed in §1.9.

Arithmetic Assignment
An arithmetic assignment statement has the form
{ variable name } = { expression }
The expression on the right-hand side is evaluated according to precise rules and
the result is stored in the memory location corresponding to the variable on the
left-hand side. The values of the variables on the right-hand side do not change
as a consequence of the assignment. For example,
A = pi*r**2
would compute the area of the circle and store the result in the variable A,

assuming that pi and r are appropriately initialized. An asterisk denotes
multiplication, whereas a double asterisk specifies exponentiation.

1.1BASICS | 9

A more complicated assignment statement is
root = -b + sqgrt(b*b - 4.*a*c)/2.*a

The expression to the right of the "=" involves one of Fortran's numerous
"built-in" (or intrinsic) functions, the square root. We introduce various built-in
functions throughout the text. A complete list is given in Appendix 1.

Readers familiar with solving quadratic equations will recognize that the
above assignment statement does not compute a zero of ax2 + bx + ¢ =0.
The order in which the operations are to be performed is not correctly specified.
Indeed, the above assignment statement is equivalent to

root = -b + ((sgrt(b*b - 4.*a*c)/2.)*a)

The problem is one of precedence. Unless overridden by parentheses, an
exponentiation (**) has a higher precedence than a multiplicative operation
such as "/" or "*" which in turn has a higher precedence than an additive
operation such as "+" or "-". Thus

I

w =X + y/z**2 = w x + (y/(z**2))

If a choice has to be made between two multiplicative operations or two additive
operations, then the leftmost operation in the expression is performed first. On
the other hand, repeated exponentiations are processed from right to left. These
examples should clarify the possibilities:

w=x+y + z = = (x +vy) + z
w = x/y*z = = (x/y)*z
W = Xkkykkg PN = x** (y*x*z)

Parentheses should be used to prescribe the correct order of computation to both
the compiler and the reader in ambiguous cases. Thus,

root = (-b + sgrt(b*b - 4.*a*c))/ (2.*a)

correctly assigns a zero of ax2 + bx + ¢ =0 to the variable root, provided
the argument passed to the square root function is nonnegative at the time of
execution.

