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PREFACE

Of the thirty-two papers in this volume, seventeen were presented at the
Symposium on Convexity and the others were submitted later. (Symposium
speakers were Besicovitch, Coxeter, Danzer, Davis, Day, Dvoretzky, Fan,
Gale, Griinbaum, Hammer, Hoffman, Karlin, Klee, Motzkin; Phelps, Ptak,
Schaefer, and Valentine.) The thirty-third “paper” included here is a report
on unsolved problems, based on the Symposium’s session devoted to them, on
informal discussions during the Symposium, and on later communications
from the participants.

The papers are arranged alphabetically by author, since this seems most
convenient for reference purposes. Interrelationships of the various papers,
and their relation to the theory as a whole, are discussed in the Introduction.
Since some of the individual bibliographies were so long and in such a state
of flux, a common list of references did not seem feasible. However, the
Author Index (in conjunction with the individual bibliographies) should be a
fair substitute for such a list, and also makes it easy to learn which of the
thirty-three papers cite the work of a given author. There are also a Subject
Index and an Index of Unsolved Problems.

The editor is indebted to Professors Gale and Griinbaum for their assistance
in planning the Symposium, to Dr. Ptdk and Professors Besicovitch, Coxeter,
Day, Fan, and Motzkin for presiding at Symposium sessions, and to Dr. Danzer
and Professors Besicovitch, Corson, Firey, Griinbaum, McMinn, and Motzkin
for refereeing some of the papers. In particular, the advice and assistance
of Branko Griinbaum have been invaluable.

The details of publication have been capably handled by Miss Ellen Swanson,
Head of the American Mathematical Society’s Editorial Department.

Victor Klee
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INTROPUCTION

The systematic study of convex sets was initiated by H. Brunn and H.
Minkowski. For most of the important notions in the field, at least a germ
can be found in the latter’s collected works (1911). Not only does the theory
of convexity play a central role in Minkows§i’s geometry of numbers, but it
also shares some of the’nontechnical aspects of elementary number theory.
Its basic notions are simple, \natural, and of strong intuitive appeal. The
subject is primarily one \of uieas rather than machinery, and does not lend
itself readily to unified treatment. It abounds in attractive special problems,
and many mathematicians working mainly in other fields have published one
or two papers on convexity. These aspects have accounted for the rapid
but dlsorgamzed growth the theory.

The 1934 su vey by T %onnesen and W. Fenchel was an excellent summary
of a large body of material, and is still a standard source of information in
the field. Though selective in coverage, they cited more than 450 references;
a current survey of the s)xze degree of completeness vgould be a tremendous
undertaking, probably not feasible. More than half of their book emphasized
various quantitative notions such as diametdr, area, volume and mixed volumes.
Since 1934 these same notions have continued to play an important role.
However, more striking (since less predictable) has been the intensive develop-
ment of several qualitative aspects of the theory, including the combinatorial
geometry associated with intersection and covering properties, the refinement
and application (especially in functional analysis and game theory) of such
notions as extremal structure ind separation properties, the study of convexity
in infinite-dimensional spaces, increasing use of convexity as a descriptive
tool, and the evolution of various analogues and generalizations of convexity.

Though several quantitative investigations are included here, the Symposium
was intended primarily to emphasize the more qualitative aspects of the theory.
In particular, the five aspects listed above are all represented in the present
volume. Among the unavoidable omissions, two are especially regretted by
the editor. There is nothing here about the geometry of convex surfaces and
the associated development of metric methods in differential geometry, carried
out by A. D. Aleksandrov and his students in the Soviet Union and in this
country by H. Busemann. Also omitted are the important results on infinite-
dimensional simplexes, boundaries and extremal structure which have been
developed in the past few years by G. Choquet and others.

In addition to the wide range of topics treated here, there is much variety
of approach. Some of the shorter papers treat a single problem in full detail,
while at the other extreme are several long papers which include very few
proofs but survey broad areas in the field of convexity.

* % %k % Xk ¥ % ¥ % % %

Four of the papers are set in the Euclidean plane E%. BESICOVITCH’s first
paper gives a short proof of the known fact that a set of given constant width
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X INTRODUCTION

has minimum area when it is a Reuleaux triangle. His second paper solves
affiirmatively a special case of the following problem: Must a set of constant
width w contain a semicircle of diameter w? DANZER gives a short proof
of the known result that if C is a closed convex curve in E® which does not
contain exactly three vertices of any rectangle, then C is a circle. In his
first paper, DAVIS characterizes rectangles by means of an extremal area
property involving inscribed crosses and also discusses a related conjecture
of Ungar on extremal perimeters.

HAMMER'’s first paper is set in an arbitrary Minkowski plane where by
the use of outwardly simple line families he is able to give an analytic
representation for all convex curves of constant Minkowski width. He also
summarizes his earlier work on diametral lines and associated convex bodies.

BESICOVITCH’s third paper discusses Coxeter’s problem of finding the
smallest cage (edges of a convex polyhedron) which will hold a unit-sphere
in E® without permitting it to escape. His other two papers give new proofs
of known results concerning smoothness properties of a convex body K in E®
and concerning directions of line segments in the boundary of K. In GALE’s
first paper he uses the Borsuk-Ulam mapping theorem (involving antipodal
points) to prove that if a convex body of width w’ in E™ is obtained from
one of width w by means of a homeomorphism which decreases distances,
then w' < w.

COXETER proposes an exact upper bound for the number of equal non-
overlapping spheres in E" that can touch another of the same size. The dif-
ficulty of this problem is indicated by the following quotation: *--- Can a rigid
material sphere be brought into contact with 13 other such spheres of the same
size? Gregory said ‘Yes’ and Newton said ‘No’, but 180 years were to elapse
before a conclusive answer was given.”” His historical survey of the problem
in E" extends from a paper by Kepler in 1611 to the latest published works.
The problem is treated as the case ¢ = /6 of the problem of packing (n — 2)-
spheres of angular radius ¢ on an (# — 1)-sphere, and the proposed upper
bound is attained when the (n — 2)-spheres are inscribed in the cells of a
regular polytope {p,3,---,3}. Though the bound is not fully established,
much supporting evidence is given. Some related material is also discussed,
such as the growth of the number of spheres as # — o and the known results
for other values of ¢.

PORITSKY treats a system of linear inequalities of the form x,[1(0)+ -+ +
*afa(0) < g(6), where ¢ and the f.’s are real analytic functions of the real
variable # ranging over a bounded or unbounded interval I. He studies the
convex region consisting of all points x = (x,, - -+, x,) € E® which satisfy the
given system of inequalities (for all 8 € I), and is especially concerned with
describing the region’s boundary in terms of the envelope curve C and its
tangent and osculating flats of various dimensions, where C is the set of all
points x such that for some 6 € I,, 3i-,x:f;"(0) = 97 (0) for 0<j<n—1
(" indicating the jth derivative).

DVORETZKY reviews his earlier results on near-sphericity in E™, one of
which asserts that for each e € ]0, 1[ and each positive integer k there exists
N(k, €) such that every convex body of dimension = Mk, ¢) admits a %-dimen-
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sional section which is sphérical to within e. He derives new corollaries, in-
cluding some on orthogonal projections, and discusses some open problems.

Two papers treat the facial structure of convex polyhedra. GALE’s second
paper is concerned with cyclic polytopes in R*", these being convex polyhedra
which are combinatorially equivalent to the convex hull of an #-pointed sub-
set of the moment curve {(¢,¢*, ---,#*™):¢t € R}. They have the remarkable
property of being m-neighborly in the sense that each m vertices determine
a face. He computes the number of (2m — 1)-dimensional faces of such a
polytope and this is conjectured to be the maximum attainable for convex
polyhedra in R®*™ which have n vertices. Certain neighborly polytopes are
proved to be cyclic, and regular cyclic polytopes are constructed in E*®™.
GRUNBAUM AND MOTZKIN call an abstract graph k-polyhedral provided it
is isomorphic with the graph formed by the edges and vertices of a k-dimen-
sional convex polyhedron. They prove that each k-polyhedral graph contains
as subgraph a refinement of Cis,, the complete graph with 2 + 1 nodes. As
Gale’s result shows, the graph C:, is j-polyhedral whenever 4 < j < k; how-
ever, this and other sorts of ambiguity are excluded for graphs which are 2-
polyhedral or 3-polyhedral. L R =

VALENTINE deals mainly with known results on the intersection properties
of convex sets. He obtains refinements and new proofs for many of these,
his aim being to show what can be accomplished by systematic exploitation of
dual cones. His viewpoint is well expressed by the following quotation:
‘... since it is a rare coincidence for the proofs of a theorem and its dual
to be of equal difficulty, there is a double reason to investigate the dual. One
may gain either a simpler proof or a less obvious theorem.’’

Five of the papers are expository surveys of a sort which should be valuable
in any field, dnd especially in the field of convexity where so many results
have been rediscovered so many times and where there are so many ele-
mentary unsolved problems. Though including few proofs or none at all,
they give rather complete descriptions of known results and existing literature
in their respective areas. Some of them include new results as well, and most
of them discuss many unsolved problems. Since the papers are themselves
summaries, it is hardly feasible to summarize them here, but it may be
helpfg_l to list their section headings.

GRUNBAUM, Borsuk’'s problem and related questions— reductions of the
problem; partial solutions; universal covers; other results on partitions; cover-
ings !qy translates; finite sets; related problems.

GRUNBAUM, Measures of symmetry for convex sets— distance-functions
for spaces of convex sets; invariant points and sets; a property of some
measures of symmetry; general methods for geometric definitions of measures
of symmetry; known results on special measures of symmetry; some extremal
problems which possibly lead to measures of symmetry; an interesting func-
tional; some generalizations.

DANZER, GRUNBAUM AND KLEE, Helly’s theorem and its relatives —
proofs of Helly’s theorem; applications of Helly’s theorem; the theorems of
Carathéodory and Radon; generalizations of Helly’s theorems; common trans-
versals; some covering problems; intersection theorems for special families;
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other intersection theorems; generalized convexity. (The last section makes
little contact with the others. It contains a rather complete survey of ex-
isting generalizations of the notion of convex set.)

KLEE, Infinite-dimensional intersection theorems— intersection theorems for
infinite families (also in R™); intersection theorems involving the weak topology;
intersection properties of metric cells.

CUDIA, Rotundity —rotundity and smoothness properties; comparison of
properties; product spaces, quotient spaces, and subspaces; duality; geometry
and reflexivity.

Like those of Cudia and Klee, the papers by BISHOP AND PHELPS and
by PHELPS are concerned with the geometry of infinite-dimensional convex
sets. The principal result of Bishop and Phelps is that if C is a closed convex
subset of @ Banach space, then the support points of C are dense in the
boundary of C. They show also that for each bounded closed convex subset
C of a Banach space E, the members of the conjugate space E* which attain
their maximum on C are dense in E* (norm topology). Several other inter-
esting results are obtained by the same methods. The paper by Phelps treats
some of the more technical points which arise when the space is not normable.
In particular, he uses supporting cones to give a new proof of the existence
of relative extreme points, where a convex cone K with vertex x is said to
support the convex set C provided C N K = {x}.

CORSON AND KLEE show that the topological classification problem for
closed convex bodies in a normed linear space E can be reduced to that for
E’s unit cell and its closed linear subspaces of finite deficiency. For all }R.-
dimensional spaces as well as for a wide variety of infinite-dimensional Banach
spaces, the problem is solved by proving that all closed convex bodies in E
are homeomorphic with E itself. The main tool is the fact that certain spaces
are homeomorphic with their positive cones. Also obtained are some results
on uniformly continuous transformations of convex sets.

The remaining papers are not so directly concerned with convex sets as
“such, though in each case some sort of convexity is essential either in the
‘paper itself or for its motivation. Both Karlin and Davis deal with convex
functions. For real intervals X and Y, KARLIN considers the functional
transformation 7" carrying a real function f on Y into the function g = Tf
on X given by the formula ¢gx = §y K(x, ) f(¥)dy, the kernel K being a bound-
ed measurable function on the rectangle X X Y. He is especcially inter-
ested in conditions on K which insure that ¢ is convex whenever f is bounded
and convex; a similar problem for monotone functions is also considered.
The conditions obtained involve the total positivity or sign-regularity of K,
where K is said to be sign-regular of order » provided there exists a sequence
“of numbers (en), each either +1 or —1, such that whenever x; < x: < +++ < Xm,
Y <Y< <Ymxi€X,y;€Y,and1 S m <7, then enK(x1, -+, Xm; Y1, =+, Ym) = 0,
where the expression K(---;---) is the determinant of the matrix which has
K(x:,v;) in the ith row and the jth column; K is totally positive of order r
provided this condition holds with all the e,’s equal to +1. Inter-relation-
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ships among various classes of kernels are studied, and many examples are
given.

In his second paper, DAVIS studies various classes of real-valued convex
functions (of one or several real variables) where for each class the defining
condition involves the class H, of n X n (real) symmetric matrices. For ex-
ample, if f is a function of one real variable and the matrix A € H, has
spectral representation A = 31 4;P;, it is customary to write f(A) = X1 f(4)F..
In this way f can be regarded as a function on H, to H,. The function /
is called matrix-convex provided f(1 —2)A +2B)= (1 — A f(A) + 2f(B) fo
all 2€ [0,1] and A, Be H,, where the ordering is that induced in H, by agree-
ing that a member of H, is non-negative if and only if it is positive semidef-
inite. The matrix-conyex functions form a proper subclass of the ordinary
convex functions and are closely related to the matrix-monotone functions of
Loewner. The paper is devoted to an exposition of Loewner’s theory along
with related ideas for several variables due to Koranyi, Sherman, and Davis
himself.

In addition to the paper of Poritsky mentioned earlier, two other papers
are included here because of the close connections between convex sets and
linear inequalities. BELLMAN AND FAN study systems of linear inequalities
in which the variables are Hermitian matrices and the ordering is defined as
in the paper of Davis just mentioned. They find consistency conditions for
various systems of inequalities, the conditions being quite analogous to those
in the classical situation except that in each case the consistency of an auxiliary
system must be assumed. Also included are several interesting examples, as
well as results on the minimum and maximum of the traces of certain matrices
related to the systems in question.

HOFFMAN supplies a unified approach to some linear programming problems
which are amenable to ‘‘obvious’ solutions. His guide is the observation by
Monge that if unit quantities are to be transported from points X and Y to
points Z and W (not necessarily respectively) so as to minimize the total
distance traveled, then the two routes cannot intersect. He defines a Monge
sequence to be an ordering of the set {(7,7):1<i<m,1 <j <#xn} and intro-
duces the notion of such a sequence being consonant with a given m X # matrix.
An algorithm is given whereby a solution for the transportation problem
associated with a given matrix can be derived from a Monge sequence con-
sonant with the matrix. The warehouse problem of Cahn is transformed into
one to which this algorithm is applied and many other problems are mentioned
to which the same idea is applicable.

The many new notions in MOTZKIN’s paper are treated in 79 theorems
distributed among 50 sections. The paper is concisely written and can hardly
be summarized here, but we shall describe its basic idea. Let R be a (not
necessarily commutative) ring with unit 1 and let V be a left module over
R. Let R be the set of all finite sequences 2 = (4, - -+, 4) of members of R.
When S cV, the vector 1 is said to be an endovector of S, or S is said to be
endo-2, provided S includes the point 3%, 2;s; for every choice of s,, ---,s.€ S.
For AC R, S is said to be endo-4 provided S is endo-2 for each 2 € 4. Since
the family of all endo-4 sets in V is intersectional, the A-hull of S is defined
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as the smallest endo-4 set which contains S. The set 4 is said to be complete
provided for some S, 4 is the set of all endovectors of S. These and related
notions are studied in some detail, where of course the most important cases
are those in which R is the real field and the condition (2, ---, &) € 4 is
equivalent to one of the following: (i) 2 € R; (ii) 2f4; = 1; (iii) 4 = 0; (iv)
>%2; =1and 4; = 0. The corresponding endo-A sets are the linear subspaces
(O-flats), the affine subspaces (flats), the positive cones (convex cones with
vertex O), and the convex sets. ‘

MOTZKIN AND STRAUS are concerned with representing the points of a
set as linear combinations of boundary points. Their principal result asserts
that if a; + -+ +a, =1 and Xixjlai| = |a;| for 1 =7 < #n, then for very
general sets S it is true that each point of S can be represented in the form
p = X¥asx; for points x; of the outer boundary of S.

PTAK presents a unified treatment of several important results on weak
compactness, all of which are shown to follow from a combinatorial lemma
which gives conditions for the existence of certain convex means. For an
infinite set S, let M(S) denote the set of all functions 2 on S to [0, o[ for
which the set N(2) is finite and l.es(s) =1, where N(A) = {s € S: i(s) > 0}.
Let %7  be a family of subsets of S, and for ¢ > 0 and Hc S let M(H, % ¢)
denote the set of all 2 € M(S) such that NA) c H and Suewi(w) < e for all
We % . The lemma asserts the equivalence of the following two conditions:
(1) M(H, 9#; ) = @ for some infinite H CS and some & > 0; (2) there exists a
sequence (s,) of distinct points of S and a sequence (W,) of members of v/
such that {s, -+, s»} € W, for all n. With the'aid of this lemma he proves
that if A is a subset of a complete convex space E and A satisfies a certain
double limit condition, then the closed convex hull of A is weakly compact.
This includes the well-known theorems of Krein and Eberlein on weak com-
pactness. The same lemma is employed to yield an extensive series of results
on weak convergence and weak compactness in locally convex spaces and es-
pecially in spaces of continuous functions.

SCHAEFER is concerned with spectral properties in an ordered locally
convex algebra A, where this is a locally convex algebra (usually over the
complex field) with unit e and with an associated positive cone K 3 e such
that K is closed, proper, includes the product of any commuting pair of its
elements, and is normal in the sense that there is a family of pseudonorms
p on E which generate the topology and are such that p(x + y) = p(x) for all
x,y€ K. The principal motivating example of such an A is the algebra of
all continuous endomorphisms of a Hilbert space, where K is the cone of
positive Hermitian operators and the topology is that of either bounded or
pointwise convergence. (There are other important examples also.) The
paper contains much interesting material on such algebras A, its principal
results showing that the spectral behavior of certain members of K is quite
analogous to that in the finite-dimensional case. In particular, the members
of K whose spectrum is bounded have spectral behavior like that of positive
matrices, while those in the unit interval of K (i.e., those a € A for which
0 < a < e—diagonal positive matrices in the classical case) behave spectral-
ly like positive Hermitian operators.
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FAN’s paper is motivated by the Krein-Milman extreme point theorem.
He establishes a general lemma which is purely set-theoretical in character,
involving neither topological nor vector space concepts, from which the Krein-
Milman theorem follows. (Another lemma, in a sense dual to the first, is
shown to imply theorems on filters due to Wallman and Stone.) He then
considers a set @ of real-valued functions on a set S, calling a set Xc S
convex provided X is an intersection of sets of the form {x € S: f(x) = a}.
Since the family of @-convex sets is intersectional, the ®@-hull can be defined
in the natural way. The notion of ®-betweenness is defined for points of
S and in terms of this the O-extreme points of subsets of X are defined.
These notions appear in several theorems which generalize known results on
extreme points and are related to the abstract minimum principal of Bauer.

HAMMER’s second paper is motivated by his notion of a semispace at a
point p in a linear space L, this being a maximal convex subset of I, ~ {p}.
He reviews some of the known results on semispaces, including their connec-
tion with extreme points and the fact that the semispaces form a minimal
intersection base for the convex subsets of L. He then describes his system
of extended topology which arose from an attempt to consider certain processes
and concepts associated with convexity (and especially with semispaces) as
topological in character. Many new notions are introduced, complications
arising mainly from the fact that in place of the usual topological closure
operation he considers an arbitrary expansive function g—1i.e., one associ-
ating with each set some superset thereof. After discussing the extended
topology, he interprets the various notions in terms of convexity, where ¢X
is the union of X with all the line segments determined by points of X.
Several unsolved problems are mentioned.

V.K.
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ON SYSTEMS OF LINEAR INEQUALITIES
IN HERMITIAN MATRIX VARIABLES

BY
RICHARD BELLMAN AND KY FAN!

1. Introduction. This paper isconcerned with systems of linear inequalities,
in which the variables are Hermitian matrices. The inequalities between
Hermitian matrices dre to be understood in the sense of positive semidefinite-
ness or positive definiteness. More precisely, for two Hermitian matrices H
and K of same order, we write H = K to signify that H — K is positive
semi-definite. Similarly, the strict inequality H > K means that H — K is
positive definite. Consider the system (2) of linear inequalities, where A;; are
arbitrary square complex matrices, B; and C; are Hermitian matrices (all of
same order), and ¢ is a real numher. Theorem 1 gives a necessary and suffi-
cient condition for the system (2) to be consistent, i.e., for the existence of
Hermitian matrices X; satisfying (2). Consistency conditions for more special
systems (10), (14), (18) and (22) are also explicitly stated. Then we derive
two theorems on minimum and maximum (Theorems 2,3). Theorem 2 asserts
that the minimum of the trace of 33-1C;X;, when {X;} varies over all solutions
of the system (14), is equal to the maximum of the trace of >7- B:Y:, when
{Y:} varies over all solutions of the system (18), provided that the systems
(14'), (18') of strict inequalities are consistent.

These results are analogous to the well-known theorems on systems of
linear inequalities in real variables (see [2; 3]). However, for the case of
Hermitian matrix variables, each of our theorems requires an additional hypoth-
esis which is not needed in the case of real variables. Thus, in Theorem
1 we assume that there exist positive definite Hermitian matrices Y; satisfy-
ing (1); in Theorem 2 we assume that the systems (14’), (18") of strict in-
equalities (instead of the systems (14), (18)) are consistent. These hypotheses
are indeed essential (see Examples 2, 3).

Thg systems studied in t‘his paper are quite natural, especially in the case
m =mn=1. For instance, when m = 5 — 1, system (22) becomes

SHE0; YA+ A*Y =C,

where A is ah arbitrary square complex matrix and C,Y are Hermitian.
This differs slight]y\ from the familiar system
|

Vil YA+ A*Y = —J
(I being the identity matrix), which arises in stability problems of differential
equations. It is a classical theorem of Lyapunov (see [1, Chapter 13574
~ P P

4
1i'The work of the second author was supported by the U. S. Atomic Energy Com-
mission at Argonne National Laboratory.
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RICHARD BELLMAN AND KY FAN

Chapter XV, §5]) that there exists a positive definite Hermitian matrix Y
satisfying YA + A*Y = —1 if and only if all eigenvalues of A have negative
real parts.

All matrices considered here are square matrices with complex elements.
Since the matrices considered in a theorem (except in the proof of Theorem
1) are always of same order, the order will often not be mentioned. Through-
out the paper, A;; are arbitrary square complex matrices which are not
necessarily Hermitian, B;, C;, X; and Y; are Hermitian matrices. As usual,
the adjoint of a matrix A is denoted by A*, the trace of A is denoted by
tr A. ‘We repeat again that, for two Hermitian matrices H, K of same order,

H = K means that H— K is positive semi-definite, and H > K means that
H — K is positive definite.

2. Existence theorem. We begin with a lemma which will be needed in
the proof of Theorem 1.

LemmA. | Let H,, H,, ---, H, be p Hermitian matrices of same order. Let &
denote the convex come in the Euclidean p-space B° formed by all points with

coordinates (tr H\Z, tr HyZ, - - -, tr H,Z), when Z varies over all positive semi-
definite Hermitian matrices (of the same order as the Hy’s). If there exist real
numbers ¢, ¢y, -+, cp such that 3., ciHy is positive definite, then & is a closed
set in AP, 3

Proor. Let Z,,Z,,---,Z;, --- bea sequence of positive semi-definite Hermitian
matrices (of the same order as the H,’s) and let limi-. tr HiZ; = #, A1=Ek=)p).
We want to prove that (4,4, ---,t,)€ @ Let H,= >3-, c.H: be positive
definite, and let @ be a positive number such that af < H,, where I denotes
the identity matrix. We have lim;.. tr H,Z; = 3%, cite, so there exists a
positive number b such that a - trZ; < tr H,Z; < b for all i = 1,2,3,---. Then
0 = trZ; < bla for all i. Since Z: is positive semi-definite, tr Z} < (tr Z;)* <
(bla)*, which implies that the elements of Z; are bounded. There exists a
subsequence {7, } such that lim;.. Zy, = Z exists. Then Z is a positive semi-
definite Hermitian matrix and tr H,Z = lim;.. tr H.Z,,=t,(1 < k=< p). Hence
(L, by -+ -, tp)E 2

ExampLE 1. Let

u il @ sy =0k ¢
H‘_(o 0)' H’_(—i o)'

The set & in . &* formed by all points with coordinates (tr H\Z, tr H,Z), when
Z varies over all positive semi-definite Hermitian matrices of order 2, is not

closed. In fact, & consists of the origin (0,0) and all points (x, y) with x > 0
and —o0 < y < +o00,

THEOREM 1. Let Ai; be arbitrary matrices, B;, C;.be Hermitian matrices (all
of same order), and let ¢ be a real number. Suppose that there exist positive
definite Hermitian matrices Y, satisfying

(1) Z(YﬁA.‘j‘*‘A?jYi)-i—Cj:O (l=7=n).
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Then the system

3 (AsX; + X;A) = B, A=ism),

@ 4

tr 2,C;X; = ¢
J=1

is consistent, i.e., solvable for Hermitian matrices Xj, if and only if, for any
m positive semi-definite Hermitian matrices D; and any non-negative number d,
the relations

3) SUD A % ALDY) + dCy =0 A<j<n
b i=]
imply
) trSDiB: + de <0 .
=1

PrROOF. Necessity. Assume that X\, Xz, -+, X, are Hermitian matrices
satisfying (2). For any m positive semi-definite Hermitian matrices D; and
any non-negative number d, we have

m n

tr 3,3, DiAuiX; + X;A5) +d-tr 3, CX; = tr 3DiB; + de,
1 J=1 =1

i=1j=

which can be written
tri‘a {i(DiAii + AiD;) + de}Xj 2 tri‘,D.-B.- +dc.
J=1 (i=1 =1

Hence relations (3) imply (4).

Sufficiency. Let 57 denote the real vector space of all Hermitian matrices
(of the same order as the A;;’s) and let .27 denote the one-dimensional vector
space (i.e., the real line). Let SF™=SF @S~ D---PSZ be the direct sum
with 7 summands. In the vector space &7 ™P.#, a vector g = (S, Sz,+ 0+, Sy, ')
is determined by- m Hermitian matrices Si€Z# and a real number s. In
™ @ ., an inner product is defined in a natural way as follows. For two
vectors g = (S,, S;, - -+, Sm, 5) and r = (T, Ty, “++y Tm, ) in SZ™P., the inner
product (g, 1) of o, 7 is

fair) = triS,-T.- a2 St
=1

We can therefore speak of orthogonality in SZ7™ @ .2 .
Let .&” denote the linear subspace of .5#~™ @ . formed by all vectors of
the form

(2 (AiiXs + XGAL), -+, 32 (AnsX; + X;A%), tr z”:cjx,-) ,
J=1 g1 =1

where X;€ 7. Let
0k = (D1, Dis, -+, Dim, di) A=sk=p)
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(where Dyi€ 57, dve &) be p vectors which span the orthogonal complement
of L inSF"PDFH. LetB= (B, B: -+, Bm,c)and by = —(0, B) (1 = k = D).
Then the linear variety .&¥ — B is formed by all vectors ¢ = (Sy, Sz, -+, Sm, S)
in ™ @ F satisfying (0r,0) =b(1 =k =), ie.,

®) tr 3% DusSi + dis = b A<ksp).
i=1

Let .7 denote the set of all vectors (Zi, Zs, -+, Zm, 2) in Z ™ @ A such
that each Z; is positive semi-definite and z= 0. In the Euclidean p-space
A" let & denote the convex cone formed by all points with coordinates of
the form

(tr 5 N ARTE Y X d,z) ]
1=1 =1

when (Z,, Z,, -+, Zm, 2) varies in . For k=1,2,---,p, let
Hk = dlag {Dkl, Dkz, ety ka, dk}

denote the Hermitian matrix such that Dy, Dis, - -+, Dim, di are its successive
diagonal blocks and all elements outside these blocks are zero. It is clear
that & coincides with the set in .Z” formed by all points with coordinates
of the form (tr H,Z, tr H,Z, - -+, tr H,Z), when Z varies over all positive semi-
definite Hermitian matrices (of the same order as the H,’s). According to the
above lemma, in order to show that & is closed in Z?, it suffices to find p
real numbers ¢, ¢z, * - -, ¢, such that %, c,H; is positive definite. Now, by
hypothesis, there exist m positive definite Hermitian matrices Y; satisfying
(1). So we have

tr [i Yii, (AiiX; + X,A:‘,)] + triC,-X,—
: =t =

=1 3=
—tr3 {f;(y..A.-,- + ALY + c,}X,- =0
i=1 =

for any X;€57°. Thus in ™ @ 2, the vector » =(Y,, Yz, -+, Y, 1) is
orthogonal to the linear subspace .&”. Therefore 7 is a linear combination of
3y, 8, -+, 8,. We can find real numbers c,, ¢, - - -, ¢, such that Y; = 3k-, cxDsi
(1=<i<m)and 1= 3% cdi. Then

i CkHI'; = diag. {Yl, Yz, s Ymr 1} »
=1

i.e., Y, Yy, -+, Ya, 1are the successive diagonal blocks in the matrix Sk Cit,
and all elements outside these blocks are zero. Hence i ciHi is positive
definite and &€ is closed in .#°*.

Assume now that system (2) is inconsistent, which means

(6) (& -BNF=0.

In view of the characterization (5) of & — B and our definition of &, (6)
amounts to saying that in .Z2?, the point (b, bs, - - -, b,) is not contained in the



