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Introduction

This monograph is devoted to the study of Sobolev spaces in the general
setting of Riemannian manifolds. In addition to being very interesting mathe-
matical structures in their own right, Sobolev spaces play a central role in many
branches of mathematics. While analysis proves more and more to be a very
powerful means for solving geometrical problems, it is striking that no global
study of these spaces exists in the general context of Riemannian manifolds.
The objective of this monograph is to fill this gap, at least partially. In so doing,
it is intended to serve as a textbook and reference for graduate students and
researchers. This monograph also hopes to convince the reader that the naive
idea that what is valid for Euclidean spaces must be valid for Riemannian man-
ifolds is completely false. Indeed, as one will see, several surprising phenomena
appear when studying Sobolev spaces in the Riemannian context. Elementary
questions now give rise to sophisticated developments, where the geometry of
the manifolds plays a central role. This monograph is full of such examples.

In a certain sense, Sobolev spaces are studied here for their own interest.
Needless to say, they are fundamental in the study of PDE’s. A striking example
where they have played a major role in the Riemannian context is given by the
famous Yamabe problem. The concept of best constants appeared there as cru-
cial for solving limiting cases of some partial differential equations. (Geometric
problems often lead to limiting cases of known problems in analysis). While
the theory of Sobolev spaces for (non compact) manifolds has its origin in the
70’s with the works of Aubin and Cantor, many of the results presented in this
monograph have been obtained in the ’80’s and '90’s. As the reader will easily
be convinced, the study of Sobolev spaces in the Riemannian context is a field

currently undergoing great development !

This monograph presupposes a preliminary course in Riemannian geome-
try. Not much is assumed to be known so that chapter 1 of Aubin [Au6] should
provide specialists in analysis who do not know Riemannian geometry with suf-
ficient knowledge for what follows. Needless to say, many excellent books on
Riemannian geometry exist. Although the following ones are not the only possi-
ble quality choices, we refer the reader to Chavel [Ch], Gallot-Hulin-Lafontaine
[GaHL], Jost [Jo], Kobayashi-Nomizu [KoN], and Spivak [Sp] for more details

on what is assumed to be known here.

The material is organized into five chapters and several new results are

presented. More precisely, the plan of this monograph is as follows.



b'd Introduction

Chapter 1 is devoted to the presentation of recent developments of An-
derson and Anderson-Cheeger concerning harmonic coordinates, as well as the
presentation of a packing result that will be often used in the following chapters.

Chapter 2 is devoted to the presentation of Sobolev spaces on Riemannian
manifolds, and to the study of density problems.

Chapter 3 is devoted to Sobolev embeddings. This includes the presenta-
tion of general results on the topic, and the study of Sobolev embeddings for
Euclidean spaces, compact manifolds, and complete manifolds.

Chapter 4 is devoted to what is currently called the best constants problems.
Several results are discussed here, including those concerning the resolution of
Aubin’s conjecture by Hebey-Vaugon.

Finally, chapter 5 is devoted to the study of the influence of symmetries on
Sobolev embeddings.

It is my pleasure and privilege to express my deep thanks to my friend Michel
Vaugon for his valuable comments and suggestions about the manuscript. It is
also my pleasure and privilege to express my deep thanks to Ms Thanh-Ha Le
Thi, and more generally to the staff of Springer-Verlag, for its patience and
dedication.

Emmanuel Hebey
June 1996
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Chapter 1
Geometric preliminaries

This chapter is devoted to the presentation of geometric results we will use
in the sequel. This includes a brief introduction to Riemannian geometry, the
presentation of recent results of Anderson and Anderson-Cheeger concerning the
harmonic radius of a Riemannian manifold, and the presentation of a packing
lemma that will be often used in the following chapters.

1.1 A BRIEF INTRODUCTION TO RIEMANNIAN GEOMETRY

A Riemannian manifold (M, g) is a manifold M together with a (2, 0) tensor
field g such that for any z in M, g(z) is a scalar product on T;(M). Let |.|, be
the norm on T;(M) with respect to g(x). One can define a distance dgj on M
and a positive Radon measure f — fM fdv(g). Basically, dy(z,y) is the infimum
of the lengths L() of all piecewise C! curves 7 : [a,b] — M from z to y, where

b
)= [ 1,

while the Riemannian volume element is given in any chart by

dv(g) = y/det(gij)dz ,

where the g;;’s are the components of g in the chart, and dz is the Lebesgue’s
volume element of R"™, n = dimM . One can also define the Levi-Civita connec-
tion of g as the unique linear connection on M which is torsion free and which
is such that the covariant derivative of g is zero. The Christoffel symbols of the
Levi-Civita connection are then given in any chart by

mk

T = 5 (Bigmj + 0jgmi — Omgi;)9

N =

where (g*/) denotes the inverse matrix of (g;;), and the Einstein’s summation
convention is adopted. The components in any chart of the Riemann curvature
Rmp,q) of (M, g), viewed as a (4, 0) tensor field, are given by the relation

Rijki = gio (0kT5y — OITSy, + I‘fﬁf‘f, - Fﬂ?rfk)

Similarly, the components in any chart of the Ricci curvature Re(ar g) of (M, g),
Rep,g) is a (2,0) tensor field, are given by the relation Rij = ¢°° Riqjp.
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It is well known that sign assumptions on the curvatures give topological
and diffeomorphic informations on the manifold. Striking examples of this fact
are given by Myers theorem (a complete Riemannian manifold whose Ricci cur-
vature satisfies Rc(p gy > kg as bilinear forms, k > 0 real, is compact), by the
Cartan-Hadamard theorem (a complete simply connected Riemannian manifold
whose sectional curvature is nonpositive is diffecomorphic to the euclidean space
of same dimension), by the sphere theorem of Berger, Klingenberg, and Rauch
(a compact simply connected Riemannian manifold whose sectional curvature is
1/4 pinched is homeomorphic to the sphere of same dimension), or by Hamil-
ton’s theorem (a compact simply connected 3-dimensional Riemannian manifold
whose Ricci curvature is positive is diffeomorphic to the sphere of dimension 3).
On the other hand, by a recent result of Lokhamp, any compact manifold carries
a metric with negative Ricci curvature. Concerning these interactions between
the curvature and the topology of the manifold, one can also think to the Eu-
ler caracteristic, which according to the work of Allendoerfer, Chern, Fenchel
and Weil, can be expressed as the integral of some universal polynomial in the
curvature.

Another important object one will meet in the sequel is the injectivity ra-
dius. If D denotes the Levi-Civita connection of g, a smooth curve 7 is said to
be a geodesic if D(%)( %}) = 0. In local coordinates, this means that for any k,

(")) + T () (¢ (D)) (1) = 0

By the Hopf-Rinow’s theorem, any geodesic on a complete Riemannian manifold
(M, g) (that is with respect to the distance dg) is defined on the whole of R.
Given (M, g) a complete Riemannian manifold and z a point of M, the injectivity
radius inj(ar,g)(z) at z is defined as the largest r > 0 for which any geodesic v
of length less than r and having z as an endpoint is minimizing. One has that
inj(m,g)(z) is positive for any x. The injectivity radius of (M, g) is then defined
as the infimum of injas 4)(z), ¢ € M. It may be zero.

Closely related to geodesics is the exponential map. Given (M, g) a com-
plete Riemannian n-manifold, z a point of M, and X € T(M), one easily checks
that there exists a unique geodesic vy such that 4(0) = z and (%})o = X. Let
t — vx(t) be this geodesic. The exponential map exp, at z is then the map
from T;(M) to M defined by ezp,(X) = yx(1). Up to the identification of
Tz(M) with R™, it is smooth and it defines geodesic normal coordinates at
on By (injia,g)(2)) = {y € M s.t. dg(z,y) < inju,q)(z)}. More generally, one
can define the cut locus C'ut(x) of z, it is a subset of M, and prove that Cut(z)
has measure zero, that inj s 4)(x) = dg (x,Cut(a:)), and that exp, 1s a diffeo-
morphism from some star-shaped domain of T;(M) at 0 onto M\Cut(z). In
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particular, this implies that the distance function r to a given point is differen-
tiable almost everywhere, with the additional property that |Vr| = 1 a.e., where
|Vr| denotes the norm with respect to g of the first covariant derivative of r.
For more details we refer on one hand to [Au6, chapter 1], where a short
interesting introduction to Riemannian geometry can be found, on the other
hand to the excellent books of Chavel [Ch], Gallot-Hulin-Lafontaine [GaHL],
Jost [Jo], Kobayashi-Nomizu [KoN], and Spivak [Sp]. Needless to say, these are

not the only possible quality choices.
Once and for all,

ALL THE MANIFOLDS IN THIS MONOGRAPH ARE ASSUMED TO BE
CONNECTED, SMOOTH, WITHOUT BOUNDARY, AND OF DIMENSION n > 3.

In the following, the Einstein’s summation convention is adopted so that a;z* =

¥, et
1.2 ESTIMATES ON THE COMPONENTS OF THE METRIC TENSOR

The purpose of this paragraph is to recall how one gets bounds on the
components of the metric tensor from bounds on the curvature and the injectivity
radius. In other words, how one can choose suitable coordinates so that the
components g;; of the metric in these coordinates are bounded in terms of bounds
on the curvature and the injectivity radius. The first results in this direction were
obtained by using geodesic normal coordinates. In such coordinates, one easily
obtains C°-bounds on the g;;’s from lower and upper bounds on the sectional
curvature, and from a lower bound on the injectivity radius. (See [Au6, chapter
1]. See also lemma 1.4 below for further developments). Independently, we
know by now that harmonic coordinates are more adapted to this goal. These
coordinates were first used by Einstein, then by Lanczos who observed that they

simplify the formula for the Ricci tensor. Namely, in such coordinates,
Rij = — §gmk 8kmg,~j + terms involving at most one derivative of the metric

where (g'7) is the inverse matrix of (g;;) and the Rj;’s denote the components
of the Ricci curvature of the Riemannian manifold (M, g). Although we are not
going to discuss that here, we mention that such a formula has many interesting

consequences. We refer to DeTurck-Kazdan [DK] for some of them.

From now on, let Ay be the Laplace operator associated to g acting on
functions. In local coordinates,

Agu = —g' (aiju - F?jak“) == det 6 (V det(gi;)9™ aku
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where the I‘fj ’

where det(g;;) stands for the determinant of the matrix (g;;). One then has the

s are the Christoffel symbols of the Levi-Civita connection, and
following definition of harmonic coordinates.

Definition 1.1: A coordinate chart (z',...,z2") on a Riemannian n-manifold
(M, g) is called harmonic if Agz* = 0 for allk = 1,...,n. Since Ag:tk = g% I‘fj,
we get that a coordinate chart (z',...,z™) is harmonic if and only if for any

k=1,...,n, gijrfj =0.

It is easy to prove that for any £ € M, there is a neighborhood of z in which
harmonic coordinates exist. The proof of such a claim is based on the classical
fact that there always exists a smooth solution of Aju = 0 with u(z) and 9;u(z)
prescribed. The solutions o/, j = 1,...,n, of

Ay =0
¥(z)=0
Biy‘i(x) = 53

are then the desired harmonic coordinates. Furthermore, since composing with
linear transformations do not affect the fact that coordinates are harmonic, one
easily sees that we can choose the harmonic coordinate system such that g;;(z) =
0;; for any 1,5 = 1,...,n. We refer to DeTurck-Kazdan [DK] for more basic
material on harmonic coordinates.

Let us now define the concept of harmonic radius.

Definition 1.2: Let (M, g) be a Riemannian n-manifold and let x € M. Given
Q> 1,k €N, and @ € (0,1), we define the C¥* harmonic radius at z as
the largest number ry = rg(Q, k, a)(z) such that on the geodesic ball B, (ry) of
center ¢ and radius rg, there is a harmonic coordinate chart such that the metric
tensor is C*'* controlled in these coordinates. Namely, ifgij, 1,7=1,...,n, are
the components of g in these coordinates, then

1) Q7165 < gij < Q6;j as bilinear forms

” 0p9ij(2) — 0p9:i(y
2) Y rifsupldpe )+ Y rh Supy;tz' ﬁg]fi)( Z)ﬁl 0l g1
1<IBI<k = s\

where dg is the distance associated to g. The harmonic radius rg(Q, k, a)(M)
of (M, g) is now defined by rg(Q, k,a)(M) = infremru(Q, k, a)(z).
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One easily checks that the function £ — rg(@Q, k, a)(z) is 1-lipschitzian on
M, since by definition, for any z,y € M,

ra(Q,k,a)(y) > ra(Q, k, a)(z) — dy(z,y)

According to what we have said above, one then gets that the harmonic radius
is positive for any fixed smooth compact Riemannian manifold. Now, theorem
1.3 below shows that one obtains lower bounds on the harmonic radius in terms
of bounds on the Ricci curvature and the injectivity radius. Roughly speaking,
when changing from geodesic normal coordinates to harmonic coordinates, one
controls the components of the metric in terms of the Ricci curvature instead of
the whole Riemann curvature. As it is stated below, theorem 1.3 can be found in
Hebey-Herzlich [HH], and we refer to [HH] for its proof. For original references,
we refer to Anderson [An2], and Anderson-Cheeger [AC]. (See also Jost-Karcher
[JK]). Let (M, g) be a Riemannian manifold. In the following, Rc(as 4) denotes
its Ricci curvature, V7 Rc(pr 4) denotes the jth-covariant derivative of Reas,g),
and if z is some point of M, inj(a,4)(z) denotes the injectivity radius of (M, g)

at z.

Theorem 1.3: Let « € (0,1), @ > 1, 6 > 0. Let (M,g) be a Riemannian
n-manifold, and Q an open subset of M. Set

Q(8) = {z € M s.t. dy(z,9Q) < 6}

where dg s the distance associated to g. Suppose that for some A € R and i > 0,
we have that for all z € Q(9),

Remg)(2) 2 Mgz and inja g)(2) 2 @

Then there exists a positive constant C = C(n,Q, a,é,1, ), depending only on
n, Q, a, 8, i, and A, such that for any z € Q, ry(Q,0,a)(z) > C. In addition,
if instead of the bound Rc(pr g)(z) > Ags we assume that for some k € N and
some posttive constants C(j),

|V’ Re(um,g)(z)| < C(j) forall j=0,...,k and all z € Q(8)
then, there ezrists a positive constant C = C(n,Q, k,,6,%,C(j)o<j<k), depend-

ing only onn, Q, k, a, é, i, and the C(j)’s, 0 < j < k, such that for any z € Q,
rH(Q) k + 1) a)(x) 2 C.

The proof of theorem 1.3 is by contradiction. It is too long to be developed
here. Let us just say that the general idea is to construct a sequence of Rie-
mannian n-manifolds with harmonic radius less than or equal to 1, to prove that
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it converges to the euclidean space R", and to get the contradiction by noting
that this would imply that the harmonic radius of R" is less than or equal to 1.

(Obviously, R™ has an infinite harmonic radius).

As already mentioned, analogous estimates to those of theorem 1.3 are avail-
able if one works with geodesic normal coordinates instead of harmonic coordi-
nates. These estimates are rougher since, for instance, they involve the Riemann
curvature instead of the Ricci curvature. Anyway, such results are sometimes
useful, and, actually, lemma 1.4 below is used in the proof of theorem 4.12 of
chapter 4. This is why we mention it. For details on its proof, we refer to
Hebey-Vaugon [HV3, section III]. Let (M,g) be a Riemannian manifold. In
the following, Rm(ps ) denotes its Riemann curvature (viewed as a (4,0) ten-
sor field), VRm(pr 4) denotes the first covariant derivative of Rm(y 4y, and, as
above, inja )(z) denotes the injectivity radius of (M, g) at .

Lemma 1.4: Let (M,g) be a Riemannian n-manifold. Suppose that for some
€ € M there exist positive constants Ay and Az such that |[Rmyg| < Ay
and [VRm(pm,q)| < Ay on the geodesic ball By (injip g)(z)) of center x and
radius injp,g)(x). Then there exist positive constants K = K(n,Ay,Az) and
6 =6(n, A1, As), depending only on n, Ay and Ay, such that the components g;;

of g in geodesic normal coordinates at x satisfy: for any 1,5,k = 1,...,n and
any y € B¢ (min(é, z'nj(M'g)(:c))),

(i) %6,5 < gij(exps(y)) < 46 (as bilinear forms)
(11) |9ij (ezpz(y)) — bi;] < K|y|* and |9kgi; (expz(y))| < K]yl

where fort > 0, B§(t) denotes the euclidean ball of R™ with center 0 and radius

t, and |y| is the euclidean distance from 0 to y. In addition, one has that

6(71,1\1,1\2) = +oo and Iﬂ’(n,Al,Az) =0

lim lim
(A1,A2)—(0,0) (A1,A2)—(0,0)

The proof of lemma 1.4 starts with standard estimates of the theory of
Jacobi fields. (See for instance [Au6, chapter 1]). Then it relies on a careful

study of the formula for the curvature in polar coordinates.
1.3 FROM LOCAL ANALYSIS TO GLOBAL ANALYSIS

The purpose of this paragraph is to prove a packing lemma that will be used
many times in the following chapters. This lemma is by now classical. It was
first proved by Calabi (unpublished) under the assumptions that the sectional
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curvature of the manifold is bounded and that the injectivity radius of the man-
ifold is positive. (See Aubin [Au2], and Cantor [Can]). By Croke’s result [Cr,
proposition 14] it was then possible to replace the assumption on the sectional
curvature by a lower bound on the Ricci curvature. Finally, by an ingenious use
of Gromov’s theorem, theorem 1.5 below, one obtains the result under the more
general form of lemma 1.6. When we will discuss Sobolev inequalities on com-
plete manifolds, this lemma will be an important tool in the process of passing

from local to global inequalities.

The following result, due to Gromov [GrLP], is by now classical. We refer
the reader to [GaHL, theorem 4.19] for details on its proof.

Theorem 1.5: Let (M,g) be a complete Riemannian n-manifold whose Ricci
curvature satisfies Re(pr g) > (n—1)kg for some k € R. Then, forany0 <r < R

and any x € M,
Vi(R)

Vi(7)
where Voly (B, (t)) denotes the volume of the geodesic ball of center x and radius

Vol, (Bs(R)) < Volg (B (r))

t, and where Vi (t) denotes the volume of a ball of radius t in the complete simply
connected Riemannian n-manifold of constant curvature k. In particular, for any
r>0 and any 2 € M, Voly(B,(r)) < Vi(r).

Remark: Let b, be the volume of the Euclidean ball of radius one. It is well
known (see for instance [GaHL]) that for any t > 0,

t
V_i(t) = nbn/ (sinhs)~'ds
0

where, according to the notations of theorem 1.5, V_;(t) denotes the volume of
a ball of radius ¢ in the simply connected hyperbolic space of dimension n. It is
then easy to prove that for any k > 0 and any t > 0,

bt < V_i(t) < bpten—DVE

One just has to note that for s > 0, s < sinhs < se®, and that if ¢’ = a?g are
Riemannian metrics on a n-manifold M, where a is some positive real number,
then for any ¢ € M and any t > 0,

Voly (BL(t)) = a"Vol, (B(t/a))

As a consequence, by theorem 1.5 and what we just said we get that if (M, g) is
a complete Riemannian n-manifold whose Ricci curvature satisfies Rear,g) > kg
for some k € R, then for any € M and any 0 < r < R,

Voly(B:(R)) < e <"-1>l’°|R(§)"volg(B,(r))

r
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This explicit inequality will be used sometimes in the sequel.

Let (M, g) be a Riemannian manifold. For any £ € M and any r > 0, we
denote by B;(r) the geodesic ball of center « and radius r. Independently, we
say that a family (Q) of open subsets of M is a uniformly locally finite covering
of M if the following holds: UxQx = M and there exists an integer N such that
each point £ € M has a neighborhood which intersects at most N of the Q;’s.

Lemma 1.6: Let (M, g) be a complete Riemannian n-manifold with Ricci cur-
vature bounded from below by some k € R, and let p > 0 be given. There exists
a sequence (z;) of points of M such that for any r > p:

(i) the family (By,(r)) is a uniformly locally finite covering of M, and there
1s an upper bound for N in terms of n, p, v, and k

(ii) for any i # j, Bz,(p/2) N By, (p/2) = 0

Proof of lemma 1.6: By theorem 1.5 and the remark following this theorem
we get that for any £ € M and any 0 < r < R,

Voly (Bx(r) 2 e~V =DM (2)"Voly (B (R)) ()

Independently, we claim that there exists a sequence (z;) of points of M such
that

M = B.(p) and Vi# j, Bs,(p/2) N Bay(p/2) =0 (2)
Actually, let
X, = {(zi)1, =i € M, s.t. I is countable and Vi # j, d,(z;,z;) > p}

where dy is the Riemannian distance associated to g. X, is partially ordered
by inclusion and, obviously, every chain in X, has an upper bound. Hence, by
Zorn’s lemma, X, contains a maximal element (z;), and (z;) satisfies (2).

Let (z;) be such that (2) is satisfied. For » > 0 and £ € M we define
I(z) = {ist. 2 € By, (r)}
By (1) we get that for r > p
Vol (Bx(r)) > 2—1,1-e-2\/mfvozg(Bap(w))
oo VOIS Voly(B., (p/2)

i€l (x)

v
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since

U B:.(p/2) C Bo(2r) and Bi,(p/2)N B, (p/2) = 0if i # j
1€l (x)

But, again by (1),
Voly(Bs,(p/2)) 2 e~2V/n-Dlkr (ﬁ)nVOlg (Bz.(2r))
and since for any i € I (z), B:(r) C Bg,(2r), we get that
Vol, (B.(r)) > (5)"6—4\/mfcard1,(x)vozg(Bx(r))

where Card stands for the cardinality. As a consequence, for any r > p there
exists C = C(n, p, r, k) such that for any z € M, Cardl.(z) < C.

Now, let B (r) be given, r > p, and suppose that N balls B, (r) have a
nonempty intersection with B, (r), j # i¢. Then, obviously, Cardls.(z;) > N+1.

Hence,
N <C(n,p,2r,k)—1

and this proves the lemma.



