Y E DB EHEa KA
EIMEBER RS SRARSHSAR

| 4 e . 4

- —HXBRS Java BRI
(BENKR)

GREAT IDEAS IN

' COMPUTER SCIENCE
: WITH JAVA

B Alan W. Biermann
Dietolf Ramm

=5 5 HFH H kA

Higher Education Press

m The MIT Press

HEH B F HE A F
ESMEFE ERF SRR BFR R

ItERFFe
— {FXBEE Java EEFIIT
(SFZENRfR)

GREAT IDEAS IN COMPUTER
SCIENCE WITH JAVA

Alan W. Biermann

Dietolf Ramm

||||||| The MIT Press

B=. 01-2002-2113 2

Great Ideas in Computet Science with Java

Alan W. Biermann, Dietolf Ramm

(£2002 by The Massachusetts Institute of Technology
All rights reserved .

No part of this book may be reproduced in any form or by any electronic or mechanical means (including

photocopying, recording, or information storage and retrieval) without permission in writing from

the publisher.

This reprint is for sale in the People's Republic of China only and exclude Hong Kong and Macau .

BB RS B (CIP) ¥ iR

IHEVAES® . FARBEE Jaa BFRIT /()
H./R 8 (Biermann, A . W.), (£)R (Ramm,D.) .
A, —ItE GEEE M, 2002 . 7

EYIE ¥ S5 g

ISBN 7-04-011258-2

[.it... I.Ok. . Q... 0. OmFitEH—
EMERL—REER—BEH —HEXQIAVAET—BFH
H—REER—HHM—EX N.TP3

rH E AR A E 59E CIP B 4% (2002) 55 041609 =

HENWA¥*RE —FEABES Java BRI (BEUR)
Alan W. Biermann, Dietolf Ramm

HREZFT HEHFTHMHM MBI 010-64054588

o EEHRBXUMEESS & % ®AW 800-810-0598
HREL4RES 100009 7 it http://www.hep.edu.cn
L4 K 010-64014048 http://www_hep.com.cn
&% W FHEBEILERITH

Ep Rl b ERRERRI)

F & 787x1092 1/16 R X 200247 A% 1R

B % 345 B & 20024F 7 A% 1 RENRI
£ ¥ 800000 £ #H 36007

EBMAGRT BT BAERBET, FRAFEEBYEERIRR AR,
MBI ARSI

it

AIl

20 R, UUHENfBEERIREKNGEERFRBEAMHEREHF. FH.
FE. BEAXAETLETRARW. FERYHEANREL LN H, #5457
AEEGET LN EHRE, A FERERT ERAEE.

HAN21 #HE, AHBEERENN WTO, FEFVHEREEBEmEa, &
B LERE20HLRNEBTRELE, E5XAERML, RES5WE. £
RE=FEFEML, THRAZE. BREEAHLBEEEEEEVHERE 26
71, BREMEBRATEENFEAASWFEEFRE. S| HE M ERLRBASL
FHMN, EARENFRBAABREERRRTGEHY, EHTFH A mBERAH
B BHE REARAL RN —E EXH,

AW, BERERIBERFTHBRLEEEFREERA B AN #R &
T BIHBRHETHEAER, —REBAT, —RERNE. EEEHTEREM
BEERFRAAHMERLANENT, BB EH e, £ -5 36720 2R
HEMEAHEER. ZERMHREZ T ZHFF, EFATVEHREER
FHAAEFL TR, RN BRI AR BRECHFERARFTHRAEEER,
RETEMHERE EHFHAKTN —KAT, TENRLIREEYN, SEAR
KEmEMEY.,

REEMGH#ATHERERTREERTANTRLNARLRT, HEAEE
HEFRFHENER. BB 2455, EXNAEESNEMH#TE RS SR L,
sHTEARENEL AFHAXEVHREXERATRAT M. H4, John Wiley
/B AR TR S5 15 B A 81 5 o L BlE & Silberschatz #3744 S35 4F (R 1E
REMAY, RENEIRERH, BRIREEHABUG#E. Willam Stallings
FEYRT TEXZERTRWHEERESRZNEMN, T ESHEMKBLE
EHHFERFEE N TRATENBFE TR E, IR FAHMFHAM
WA AEE. BEFE¥H Jiawei Han S5 £ 0 (HELEY RS T AAERE
EX W EME, mE4F ¥ Bt Thomas Cormen flk & B T4 8. B tb T A¥ 8L

NUFHFAFRENEALEZECEERR), EEFT 11 EREHRZE T 2001 £ 3K
T % K. B3 -TF £ E Massachusetts X ¥ # James Kurose 3%, ¥ E £ E = fr
BRAERE 10 RRBABH TR A B HF X, AERE GHENNEY HRE, W
EERFAH AEEHTEZRY. EX BRI ARMENTE, BEHTHK
HERTABRHBNGIHE. XEI|ANBMEATHEE. 2o, EltEMEK
HER A

HERLFEENMESINERBERRS S LTI, RRREPELEEHAR
HEMEEFLHEE. BRNESHEHRHATES, FRERZLH MG #E 454
RAEFOEM, THEETHE T RSB F R T ok, Eibs #AHM g s
ENEREMEY, S AHFfELsRERL. FERNHETTHE KR, SIEBK
AEAEANHRAEERRY ARTHEBRERR.

D HAHEMNEE, ROEXNEFHARK, FEFEIF/EF Y HFEHRF
FEFE, REERHEMAAKT, FENARFEMERBTKRE L, BEERE S
BWES L, EEFFENSDFEI LR R F.

BHl, HEHREALE IS FIERBH T EUREFRNE R ALHE, bR
REFRERBFEARAAWEERHEZ —. FTHMRGFRETR TEFLAERF
RENNERAEREASY. EESpLEREFLOLEEDRF, UBHRIFLIT
Db N ERBF XN, BEEN L BRI GLTRER, TEREFAT#H
I REE.

BMNAERTX LAY, BEQRENHE, YREEFR - ARTRENEER
AAL, RERERGEALSHERES L. RAREBELESLARELR. ik
HEREEMNHLE, #AMEFAENTREFANEHALE.

HEHREHFHFT A
—0O0—_%Zf

To our parents,
David J. and Ruth Biermann
Wolfgang and Dora Ramm

Preface

A Survival Kit for the Third Millennium

This book is written for people who find themselves on the outside of a high-technology
world and who want to find a way in. If you have ever wondered what is meant by a Java
class, a file server, an ethernet, the World Wide Web, or Pretty Good Privacy, this book
shows you a path to the answers. You have been told you need a compiler, but why do
you need it? What does it actually do? Watch out for certain types of problems: they are
NP-complete, and you may not be able to compute the answer. You want to have a neat
graphics picture jump onto your Web page when you push the button labeled “surprise.”
Can you make it happen? Your computer runs at 1 gigahertz: that is one billion what per
second? By the way, what actually is a computer?

Most people are beginning to realize that “we are not in Kansas anymore” and that
operating a spreadsheet program or clicking onto the Web is not good enough. With
millions of people in the world hooking in to the high-tech network and every organiza-
tion and computer connected to every other one, we need to catch up with what is going
on. In our jobs, in our recreation, in our personal lives, we are going to have to live with
these machines, and we need some skills and understanding to do it.

More Than a List of Facts

This book presents the story of computer science organized around the theme of the
“great ideas” of the field. These are the discoveries, the paradigms, the simplifying equa-
tions that attract the attention of everyone who comes near, and they provide the best-
known paths to understanding. The book begins with an introduction to the World Wide
Web and then moves to programming in Java. The theory is that if you learn to format
your own Web pages with HTML, and if you can program your machine to do some
interesting tasks, you will truly understand them.

Xip

Preface

Once you understand programming, you will have a notation and a vocabulary to talk
about computing and will be able to dig into the mechanisms behind the facade. This is
the second area of study: the hardware and software that deliver the many services to you.
What are the operating system, the compiler, the browser, and the applications programs
actually doing when you ask for service? Why do they act in the peculiar ways they do?
What can we expect in the future? This book has chapters on computer architecture, com-
pilation, operating systems, security mechanisms, and networks, with detailed descriptions
of what they do and how they work.

The third area of study examines the limitations and challenges of the field as it exists
today. What are the paradigms for understanding the hardest problems that we face?
What do we currently not know how to do but have some chance of solving in the years
to come? What kinds of problems are probably not solvable by computers, now or in the
future?

The book as a whole is designed to give a broad overview of academic computer science
with an emphasis on understanding the deep issues of the field.

In Your Bones as well as in Your Intellect

The method of teaching is by doing rather than just by reading and talking. The theory is
that if you personally go through the steps of creating a program to do something or if
you hand-simulate a process, that mechanism and the related ideas will get built into your
body as well as your mind. They will become instinctive as well as intellectually known.
You learn about database systems by coding one in Java. You learn about system archi-
tecture by reading and writing programs in assembly language. You learn the mechanisms
of a compiler by hand-compiling Java statements into assembly language. You leam to
understand noncomputability by working with the proof on noncomputability and by
learning to classify problems yourself as either computable or noncomputable. This is the
problems-oriented approach to teaching that has been so successful in the traditional quan-
titative sciences.

A Course in Computer Science

This book is unusual in two ways. It covers a very broad set of topics (from HTML text
formatting to program complexity and noncomputability), and it covers these topics to a
relatively deep level (to the extent that students can solve problems in these domains). As
such, it can be used in an introductory computer science course for students who will
major in the field. These students will begin their studies with a broad view and will fit
each succeeding course into a slot that has been prepared by the earlier studies. But the

XD

Preface

book can also serve as a text in the only computer science course that some students will
ever take. It provides a conceptual structure of computing and information technology
that well-informed lay people should have. It supports the model of FITness (Fluency in
Information Technology) described in a recent National Research Council study (Snyder
et al. 1999) by covering most of the information technology concepts that the study
specified for current-day fluency.

A Thousand Heroes

This book is the product of fifteen years of experience in teaching “great ideas in computer
science” at Duke University and many other institutions. The list of contributors includes
many faculty and student assistants who have taught the “great ideas” approach. {See,
for example, a description by Biermann of this type of course at several universities, in
“Computer Science for the Many,” Computer 27 (1994): 62-73.) Our teaching assistants
have contributed extensively by helping us develop an approach to introducing Java, by
writing many of the notes that eventually evolved into this book, and by developing the
laboratory exercises and software for our classes. The primary contributors were Steve
Myers, Eric Jewart, Steve Ruby, and Greg Keim. We owe special thanks to our faculty
colleagues Owen Astrachan, Robert Duvall, Jeff Forbes, and Gershon Kedem for pro-
viding constructive critique, stimulating conversation, and technical advice. Ben Allen
prepared some of the Java programs that are presented in the simulation chapter. Carrie
Liken created some of the graphics in chapter 5. Matt Evans was the artist for most of
the cartoons. Charlene Gordon contributed cartoons for chapters five and eleven. Other
contributors have been David and Jennifer Biermann, Alice M. Gordon, Karl, Lenore,
and M. K. Ramm, Jeifu Shi, Michael Fulkerson, Elina Kaplan, Denita Thomas, our
several thousand students in courses at Duke, long lists of people who helped us with our
earlier editions, our manuscript editors Deborah Cantor-Adams and Alice Cheyer, and,
as always, our kind executive editor Robert Prior.

Studying Academic Computer Science:
An Introduction

Rumors

Computers are the subject of many rumors, and we wonder what to believe. People say
that computers in the future will do all clerical jobs and even replace some well-trained
experts. They say computers are beginning to simulate the human mind, to create art,
to prove theorems, to learn, and to make careful judgments. They say that computers
will permeate every aspect of our jobs and private lives by managing communication,
manipulating information, and providing entertainment. They say that even our political
systems will be altered—that in previously closed societies computers will bring universal
communication that will threaten the existing order, and in free societies they will bring
increased monitoring and control. On the other hand, there are skeptics who say that com-
puter science has many limitations and that the impact of machines has been overstated.

Some of these rumors are correct and give us fair warning of things to come. Others
may be somewhat fanciful, leading us to worry about the future more than is necessary.
Still others point out questions that we may argue about for years without finding
answers. Whatever the case, we can be sure that there are many important issues related
to computers that are of vital importance, and they are worth trying to understand.

We should study computer science and address these concerns. We should get our
hands on a machine and try to make it go. We should control the machine; we should
play with it; we should harness it; and most important, we should try to understand how it
works. We should try to build insights from our limited experiences that will illuminate
answers to our questions. We should try to arm ourselves with understanding because the
Computer Age is upon us.

This book is designed to help people understand computers and computer science. It
begins with a study of programming in the belief that using, controlling, and manipulating
machines is an essential avenue to understanding them. Then it takes readers on a guided
tour of the internals of a machine, exploring all of its essential functioning from the internal

Xviil

Introduction

registers and memory to the software that controls them. Finally, the book explores the
limitations of computing, the frontiers of the science as they are currently understood.

In short, the book attempts to give a thorough introduction to the field with an emphasis
on the fundamental mechanisms that enable computers to work. It presents many of the
“great ideas” of computer science, the intellectual paradigms that scientists use to under-
stand the field. These ideas provide the tools to help readers comprehend and live with
machines.

Studying Computer Science

Computer science is the study of recipes and ways to carry them out. A recipe is a proce-
dure or method for doing something. The science studies kinds of recipes, the properties of
recipes, languages for writing them down, methods for creating them, and the construc-
tion of machines that will carry them out. Of course, computer scientists want to distin-
guish themselves from chefs, so they have their own name for recipes: they call them
algorithms. But we will save most of the technical jargon for later.

If we wish to understand computer science, then we must study recipes, or algorithms.
The first problem relates to how to conceive of them and how to write them down. For
example, one might want a recipe for treating a disease, for classifying birds on the basis
of their characteristics, or for organizing a financial savings program. We need to study
some example recipes ‘to see how they are constructed, and then we need to practice
writing our own. We need experience in abstracting the essence of real-world situations
and in organizing this knowledge into a sequence of steps for getting our tasks done.

Once we have devised a method for doing something, we wish to code it in a computer
language in order to communicate our desires to the machine. Thus, it is necessary to
learn a computer language and to learn to translate the steps of a recipe into commands
that can be carried out by a machine. This book presents a language called Java, which is
easy to learn and quite satisfactory for our example programs.

The combination of creating the recipe and coding it into a computer language is called
programming, and this is the subject of the first part of the book (chapters 1-6). These
chapters give a variety of examples of problem types, their associated solution methods,
and the Java code, the program, required to solve them. Chapter 7 discusses problems
related to scaling up the lessons learned here to industrial-sized programming projects.

While the completion of the programming chapters leads to an ability to create useful
code, the resulting level of understanding will still fall short of our deeper goals. The
programmer’s view of a computer is that it is a magic box that efficiently executes com-
mands; the internal mechanisms may remain a mystery. However, as scholars of computer
science, we must know something of these mechanisms so that we can comprehend why a
machine acts as it does, what its limitations are, and what improvements can be expected.

Xix

Studying Academic Computer Science

The second part of the book addresses the issue of how and why computers are able to
compute.

Chapter 8 describes machine architecture and the organization of typical computers. It
presents the basic hardware at the core of a computer system. Chapter 9 addresses the
problem of translating a high-level computer language like Java into a lower-level lan-
guage so that a program written in a high-level language can be run on a given architec-
ture. Chapter 10 introduces concepts related to operating systems; these are the programs
that bridge the gap between the user and the many hardware and software facilities on the
machine. They make it easy for users to obtain the computing services that they want.
Chapter 11 examines a topic of great concern in our networked world, computer security.
As more and more of our lives become documented on machines and the connectivity of
every machine to every other increases, we wonder if our lives will be secure in the new
millennium. The final chapter of this section (12) introduces computer networks and the
many concepts related to machines’ talking to each other.

The final chapters of the book examine the limitations of computers and the frontiers of
the science as it currently stands. Chapter 13 discusses problems related to program exe-
cution time and computations that require long processing times. Chapter 14 describes an
attempt to speed up computers to take on larger problems, the introduction of parallel
architectures. Chapter 15 discusses the existence of so-called noncomputable functions,
and chapter 16 gives an introduction to the field of artificial intelligence.

A great many programs have been developed to illustrate ideas in this book, and you
can obtain them via the Internet. They can be found at Biermann’s World Wide Web
page at the Department of Computer Science, Duke University (http://www.cs.duke.edu/
~awb).

An Approach for Nonmathematical Readers

A problem that arises in the teaching of computer science is that many instructors who
know the field tend to speak in technical language and use too much mathematical nota-
tion for lay people to understand. Then the difficulty in communication leads them to
conclude that ordinary people are not able to understand computer science. Thus, books
and university courses often skirt the central issues of computer science and instead teach
the operation of software packages or the history and sociology of computing.

This book was written on the assumption that intelligent people can understand every
fundamental issue of computer science if preparation and explanation are adequate. No
important topics have been omitted because of “difficulty.” However, tremendous efforts
were made to prune away unnecessary details from the topics covered and to remove
special vocabulary except where careful and complete definitions are given.

Because casual readers may not wish to read every part of every chapter, the book
is designed to encourage dabbling. Readers are encouraged to jump to any chapter at

Xx

Introduction

any time and read as much as is of interest. Of course, most chapters use some concepts
gathered from earlier pages, and where this occurs, understanding will be reduced by
reading chapters selectively. The programming chapters (1-6) are highly dependent on
each other, and the architecture chapter (8) should be read before the translation chapter
(9). Also, some of the advanced chapters (13-16) use concepts of programming from
earlier chapters (1-5). Except for these restrictions, the topics can probably be covered in
any order without much sacrifice.

An overview of what the book contains could be obtained in a single evenitig by read-
ing the introductory (first) and summary (last) sections of each chapter. The intermediate
sections contain the primary material of the book and may require substantial time and
effort to read. However, sections with an asterisk before the title could be skipped without
loss of understanding of the major lessons: they supplement the main chapter text by
treating some points in greater detail.

Great Ideas in Computer Science with Java

SERmE ARk
HEIgT Kk
EEENG Mk

