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Introduction

These notes are based on the content of lectures delivered to the Seminar on Operator
Algebras at Oakland University during the Winter semesters of 1985 and 1986. They are a detailed
exposition of [10] and Section 2 of [16], which together constitute a proof of the uniqueness of the
(separably acting) injective III; factor. The exposition contains nothing that is not already in
[10] and [16], but merely fills in details in some of the arguments appearing there. Our hope is
that the notes will contribute in some small way to an understanding and appreciation of these
profound and beautiful results of Connes and Haagerup.

The following rather informal discussion is intended to define terms and fix some notation
relevant for the sequel and to historically orient the results with which it deals. We concentrate
exclusively on only selected developments that focus directly on the classification of factors,
and apologize here for the many serious omissions of developments in the general theory which
consequently result.

The classification of von Neumann algebras to within isomorphism has been the fundamental
problem in their study and has motivated much of the work in the subject. (We will only consider
von Neumann algebras acting in a separable Hilbert space.) Indeed, this was the underlying theme
of the initial work in the 1930’s of the founding fathers Murray and von Neumann [20], [30]. They
isolated the factors, the von Neumann algebras with trivial center, as the key objects for the
classification program and showed that the factors could be divided into the three basic types
I,II, and III. They showed that all type I factors arise as the full algebra B(H) of all bounded
linear operators on a Hilbert space H and are completely classified by the range of their dimension
functions. A consequence of these results is that all type I factors are hyperfinite, meaning that
they contain an ascending sequence of finite-dimensional *-subalgebras whose union is dense in
the weak operator topology. It is hence very natural to consider the hyperfinite type 17 and type
IIT factors as the next goal in the classification program, and in one of the great early triumphs
of the theory (Part IV of [20], Theorem XIV), Murray and von Neumann succeeded in proving

that all hyperfinite I'l; factors are isomorphic (this factor is usually denoted by R;).



Attention now turned to the structure of the hyperfinite factors of type Il and type III,
and suddenly progress came to a screeching halt. Von Neumann [30] succeeded with a great deal
of effort in exhibiting two non isomorphic type III factors, and later J. T. Schwartz and L. Pukan-
sky [24], [23] added two more examples, but the situation remained in this very primitive state
throughout the 50’s and most of the 60’s. However, in 1967 R. T. Powers [22] made an important
breakthrough when he exhibited an uncountable family {R) : 0 < A < 1} of nonisomorphic, hy-
perfinite, type III factors. Powers’ examples are constructed as certain infinite tensor products
of countably many copies of the algebra of 2 x 2 matrices, and in order to better understand these
examples, Araki and Woods [2] conducted a detailed study in 1968 of infinite tensor products of
finite-dimensional matrix algebras, the IT PFI factors. They found a useful isomorphism invari-
ant for such factors, the asymptotic ratio set, and proved that the Powers factor R) is characterized
as the type IIT ITPF1I factor with asymptotic ratio set {0}U{A\" : n =0, +£1,+2,...},0< A < 1.
They also discovered a new type III ITPF1I factor, with asymptotic ratio set [0, + c0), commonly
denoted by Re.

Meanwhile, two developments that would prove crucial for progress on the classification
program were occuring in Japan. A problem of interest at the time concerned the determination
of the commutant of the (spatial) tensor product of two von Neumann algebras: if M; and M,
are von Neumann algebras, is (M; @ M,)' = M; ® M;? In 1967, M. Tomita [27], [28] answered
this question affirmatively by a new and original analysis of the spatial relationship between a
von Neumann algebra and its commutant. The exposition of [27] and [28] was somewhat obscure,
however, and in 1970, M. Takesaki published his seminal monograph [25] which explained and
extended Tomita’s earlier work. Let M be a von Neumann algebra with a vector that is both
cyclic and separating for M. Takesaki associated a closed, densely-defined, positive operator A
with M, the so-called modular operator, which has two very important properties. The first is that
{A*:t € (—o0, 00)} forms a one-parameter unitary group for which A™"* M A" = M,t €
(—o0, o), and so A gives rise in this way to a one-parameter group of *-automorphisms of M,
the modular automorphism group. The second is that A induces a conjugate-linear, involutive
isometry J of the underlying Hilbert space for which JMJ = M'. This shows in particular that
M and M' are anti-isomorphic, and is the key to Tomita’s proof of the commutation theorem for

tensor products. In actuality, the existence of a cyclic and separating vector for M is not necessary



for the definition of the modular automorphism group, and in fact if ¢ is any faithful, normal,
positive linear functional on M, then the modular operator A, and the modular automorphism
group of = m;lo AdAf; o m, corresponding to ¢ can be constructed in H, and M, where
(mp, Hy) is the GN S representation of M induced by ¢. A very nice construction of the modular
operator and the verification of its main properties can be found in the book [3] of Bratteli and
Robinson, and a treatment of the full-strength version is given of course in Takesaki’s original

memoir [25].

The second major development we referred to above occured also in 1967 when Hakeda and
Tomiyama [17] introduced and began the study of the class of injective von Neumann algebras.
A von Neumann algebra M is injective if whenever A and B are C*-algebras with A C B,
each completely positive map of A into M extends to a completely positive map of B into M,
i.e., M is an injective object in the category of C*-algebras with completely positive maps as
the morphisms. Hakeda and Tomiyama'’s original definition of injectivity (which they called the
extension property) was different: they said a von Neumann algebra M, M acting on a Hilbert
space H, has the extension property if M is complemented in B(H) by a projection of norm 1.
They showed that this definition was independent of the Hilbert space H and that all hyperfinite
von Neumann algebras have this property. It is a consequence of work by W. B Arveson in 1969
that injectivity and the extension property are one and the same ([14], Theorem 5.3). Later
work of Effros and Lance [14] and Choi and Effros (4], showed that the injective algebras behaved
very well with respect to many of the natural operations performed on von Neumann algebras
(inductive limits, commutants, direct integrals, tensor products). It was noticed in particular
that if injectivity implied hyperfiniteness, then the stability of injectivity with respect to tensor
products would give a simple proof of the uniqueness of the hyperfinite I1,, factor. Attention was
thus focused on the relationship between injectivity and hyperfiniteness, with Effros and Lance

explicitly conjecturing in 1973 that the former implied the latter.

A new epoch in the classification program opened with the appearance of Alain Connes’
thesis [5] in 1973. This memoir contained, among many other results of fundamental importance,
arevolutionary refinement of the structure of type I'II factors. Motivated by the work of Araki and
Woods, Connes used the Tomita-Takesaki theory to discover a generalization of the asymptotic

ratio set which applied to any type III factor M. This invariant, the modular spectrum S(M)



of M, is defined as the intersection of the spectra of all modular operators of M which arise
from a faithful, normal state of M. It is a remarkable fact that S(M)\ {0} is a closed subgroup
of the multiplicative group of positive real numbers, and S(M) is thus of the form (a) {0, 1},
(b)a {0}U{A™; n==41,%2,...},0 < A < 1, 0r(c) [0,+00). Connes hence refined the classification
of type III factors by defining such a factor M to be of type IIl,, type III,, or type III; if
S(M) is respectively of the form (a), (b)x, or (¢). He observed that certain type IIT factors which
arise from the classical group - measure space construction of von Neumann are type III,, the

Powers factor Ry is type IIIy,0 < A < 1, and the Araki-Woods factor R, is type III;.

Armed with his new structure theory for factors, Connes embarked on a remarkable attack on
the classification problem which after three years resulted in his monumental paper [9] of 1976 on
the classification of injective factors. Combining a very deep and penetrating analysis of the group
of *-automorphisms of II; factors with his structure theory for type III factors, Connes deduced
several fundamental results: (a) all injective factors are hyperfinite (b) all injective factors of type
I, are isomorphic (c) all injective factors of type Il are isomorphic (d) for each A € (0,1),
all injective factors of type III, are isomorphic (to the Powers factor R)), and (e) all injective
factors of type II]; come from the group-measure space construction via a discrete cyclic group
and are hence by results of W. Krieger [19] classified by ergodic, nontransitive flows on a standard
measure space. Thus in a single virtuoso performance, Connes brought almost all of the injective

factors to heel!

Almost all, but not all. The injective type III; case refused to yield to Connes’ onslaught.
The betting was that the only injective factor of type III; was the Araki-Woods factor R, and
for the next two years, Connes worked intensively trying to prove this. He discovered several
sufficient conditions for the uniqueness of the injective IT1I; factor but was not able to verify any
of them. One, however, was singled out for special emphasis. Because this condition is central to

our purposes in these notes, we will now describe it in detail.

Let M be a factor, ¢ a faithful, normal state of M. Connes defined the bicentralizer B,
of ¢ to be the set of all elements z of M such that lim,(z, ¢ — zz,) = 0, *-strongly, for each
norm-bounded sequence (z,) of M for which li'xln||x,,<p — @zy|| = 0. Notice that B, is contained
in the relative commutant of the centralizer {z € M : zp = gz} of ¢ in M, whence the term

bicentralizer. The relevance of this for our purposes comes from the following fact, due to Connes,



and proved by him in [10]: if M is an injective ITI; factor that has a faithful, normal state with
a trivial bicentralizer (B, = C - 1), then M is isomorphic to R.,. Thus to prove uniqueness of
the injective III; factor one needs to verify the hypothesis of this statement. To do this became
known among the operator algebras faithful as the bicentralizer problem, and stood as a great
challenge to all the experts. Finally, in 1987, U. Haagerup in a brilliant analytical tour de force
([16]) proved that every injective ITI; factor has a normal state with a trivial bicentralizer, and
hence that all such factors are isomorphic. Thus the classification program for the hyperfinite
factors was at last completed, and a detailed account of the final episode of this great story is the
main goal of these notes.

We end this introduction by reminding the reader of a few basic facts about modular au-
tomorphisms and crossed products of von Neumann algebras that will be used extensively in
Chapter 1 of Part L.

Let G be a locally compact group, M a von Neumann algebra acting on a Hilbert space
H. A continuous action of G on M is a homomorphism a of G into the group Aut(M) of *-
automorphisms of M such that for each z € M, the mapping g — a4(z),g9 € G, is *-strongly
continuous. Let A denote Haar measure on G, and let L?(G, H) denote the Hilbert space of all
H-valued, \-square integrable functions on G. We define the representations 7, of M and A of

G on L%*(G, H) as follows:

(ma(z)E)(R) o' (z)é(h), 2 € M,h€ G, ¢ € L*G,H),

(M9)E)(h) = &(g7'h) , 9, h€ G, €€ L*(G,H).

The crossed product M x oG of M by a is the von Neumann subalgebra of B(L?(G, H)) generated
by {ma(z): 2 € M} and {A(g9): g € G}. If 6 € Aut(M) is a single automorphism, then M x4 Z
will denote the crossed product of M by the Z-action on M defined by n — 6™, n € Z.

A fundamental principle in the modern theory of von Neumann algebras is Takesaki’s duality
theorem for crossed products by abelian groups. We now suppose that « is a continuous action
of an abelian group G on a von Neumann algebra M with G denoting the dual group of G. We

define a unitary representation u of G' on L*(G,H) by

u(p)é(9) = (g,p)é(9),9 € G,p € G,£ € L*(G, H).



We clearly have )
mo(z), T €M, pEG,

Il

u(p)Ta(z)u(~p)

u(p) M9)u(-p) = {9,M)\9), 9€G, p€G,

and so we can define a continuous action & of G on M xo G by

éy(z) = u(p)zu(—p), € M xa G, peG.

@ is called the dual action of G on M x, G. Takesaki’s duality theorem ([26], Theorems 4.5 and
4.6) now asserts that the double crossed product (M X o G) x4 G is isomorphic to M ® B(L}(@®))
via an isomorphism which sends the double-dual action & onto the action of G on M ® B(L*(G))
defined by ¢ — a, ® Adp(g) , g € G, where p(g) denotes the right regular representation of G on
LY(@).

We also need to recall some information about weights and their modular automorphism
groups. A (faithful, normal, semifinite) weight on a von Neumann algebra M is an additive,
positively homogeneous mapping w from the set M of positive elements of M into [0, +oo] such
that w(z*z) = 0 only if z = 0, w(sup;z;) = sup,w(z;) for every norm-bounded, increasing net (z;)
in M4, and such that the linear span of the elements of My on which w is finite is o-weakly dense
in M. Each such weight w gives rise to a faithful, normal GN S representation 7, and a modular
automorphism group o“ constructed in the usual way (for the details of these constructions, we
refer the reader to Section I. 1.1 of [5]). The centralizer M“ of w is defined to be the fixed-point
algebra of 0, and we note that if w is the restriction of a normal positive linear functional ¢ to
M, , then M“ agrees with the centralizer {x € M : z¢ = @z} of . Given a weight w on M and
an action « of an abelian group G on M, we can associate with w a canonical weight & on the
crossed product M X, G, called the dual weight. The construction of & is given in Section 5 of
[26], and we note that the set of dual weights on M x o G consists of precisely those weights which
are invariant for the dual action &. The action of the modular automorphism group of the dual
weight @ on M X, G is characterized by the relations

0¥(na(2)) = mal0%(2) , 2 €M, rER,
77(Mg) = Mg), 9€G, reR.

If G is discrete, then there is a canonical normal, faithful, norm-1 projection E of M x, G onto

7o(M) ~ M, and the dual weight @ is in this case given by &(z) = (won o E)(z), * € M X, G.



An important relationship between actions of a locally compact group G on a von Neumann
algebra M is given by the notion of exterior equivalence. Given such an action «, an a —
twisted, unitary 1 — cocycle on M is a strongly continuous mapping ¢ — u, of G into the
unitary group of M such that ug, = ugay(us) for all g,h € G. Two actions a and § of G are
exterior equivalent if there is a [-twisted, unitary l-cocycle ¢ — u, on M such that a,(z) =
ugBy(z)uy , ¢ € M, g € G. Given two exterior equivalent actions a and 8 of G on M, the
1-cocycle implementing the equivalence induces in a natural way a (spatial) isomorphism between
the crossed products M x, G and M xg G ([26], Proposition 3.5). A remarkable theorem of A.
Connes ([5], Theoréme 1.2.1) asserts that if ¢ and v are any two weights on M, then the modular
automorphism groups ¥ and 0¥ are exterior equivalent, and hence the isomorphism type of
M X,+ R is independent of the weight w. The unitary 1-cocycle u; , t € R, which implements
the equivalence between o¥ and 0¥ is called the cocycle Radon-Nikodym derivative of v with
respect to ¢, and is denoted by [Dy : Dy], , t € R. For several useful facts about the cocycle
Radon-Nikodym derivative, the reader should consult Section 1.2 of [5].

As in most situations involving von Neumann algebras, the predual of all normal linear
functionals will play an important role in our considerations. If N is a von Neumann algebra, we
will let N, (respectively, N;}) denote the set of all normal (respectively, normal, positive) linear
functionals on N. The dual space N* of N becomes a Banach N-bimodule with the bimodule

multiplication defined in the usual way by

(ap)(z) = ¢(za), (pa)(z) = ¢(az), z €N,

for each a € N, ¢ € N*. It is a standard fact that N, is a Banach N-submodule of N* with this
bimodule structure. Given any N-bimodule M, we will denote the commutator mz — zm (resp.,
zm — mz) for £ € N, m € M by [m, z] (resp., [z, m]).

A very important representation theorem for the positive elements of N,, due to H. Araki,
will be used repeatedly in our work. Recall that each factor M can be represented on a Hilbert
space H in such a way that there exists a self-dual cone Plin H and a conjugate-linear isometry
J of order two on H for which JMJ = M', Jé = ¢, £ € PA, and IJI(P') C P., z € M ([15],
Theorem 1.6). Given M and H, J and PV are uniquely determined by these conditions ([15],
Theorem 2.3). Araki showed that for each positive element ¢ of M,, there is a unique vector
€y € Pl such that o(z) = (2€y, €,), ¢ € M ([3], Theorem 2.5.31) (here and in all that follows, (, )



will denote the inner product in an appropriate Hilbert space). We call £, the representing vector
for ¢ (in P') Whenever ¢ is a positive element of M,, £, will always denote this representing

vector unless specifically indicated otherwise.



Part I

Connes’ Reduction of the Uniqueness Proof to the Bicentralizer Problem

Chapter 1: Connes’ Argument: outline and preliminary lemmas

Basic Lemma. Let M be a hyperfinite I1I; factor. Suppose X € (0, 1),Ty = —2n/log). Let
or, be a modular automorphism of M at Tj.

(a) [Lemma 1(a), p.190 of [10] ] The crossed product M X o, Z 1is a factor of type III,,
necessarily hyperfinite, and so isomorphic to the Powers factor Rj.

(b) [Corollary 4, p.191 of [10] ] Let (Rx,6) be the dynamical system dual to (M, or,)
(Part (a) is used here to identify the dual of (M,01,) as (R», 6)). Suppose that

(a) 6 ®idg, is outer conjugate to 6;

(B) 6 ® B is outer conjugate to 8 where 3 is an infinite product action of the unit circle
on the hyperfinite I, factor R. (Note that R\ ® R and Ry @ Ry are both isomorphic to R)).

Then M 1is isomorphic to the Araki-Woods factor Ro.

Proof. The proof of this is based on the following two lemmas. To state them, we recall
that if Int (M) denotes the normal subgroup of inner automorphisms in the group Aut (M) of
*-automorphisms of the von Neumann algebra M, then Int M denotes the closure of Int (M) in
the topology on Aut (M) of point-norm convergence in the predual M, of M with respect to the
action a« = poa~! a € Aut (M), ¢ € M,. In what follows, 2 will mean “is isomorphic to” and

3

~ will mean “is outer conjugate to”.

Lemma 1 [Lemma 5, p.192 of [10] ]. Let M be a hyperfinite 11, factor such that
(a) M~ M ® Ry;
(b)) o1, €elnt M (Ty = —2n/log)).

Then the dual system satisfies (a) and (B) of the Basic Lemma.

Lemma 2 [Proposition 3, p.191 of [10] . Let M; be hyperfinite I11; factors, (Ry,6;) dual to
(Mi,o1,), i =1,2. Then the action of S* = Z on Ry ® Ry given by 6,(t) ® 65(—t), t € S, is

outer conjugate to idp, ® B where B is an infinite product action of S* on R.
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We will take up the proofs of Lemmas 1, 2, and part (a) of the Basic Lemma momentarily.
For now, let us see how these yield a proof of part (b) of the Basic Lemma.

Let (R, ) be dual to (Res, o1,). If 6y ~ 8, then Ry x4, S! & Ry x4 S!. But then by
Takesaki duality ([26], Theorem 4.5), we have

M%R,\XoSIzR,\XaDSI%ROO,

and so we must prove that 6 ~ 6.
By well-known facts, Ro, ® Ry & Roo and Int Ro, = Aut (Rs), so that by Lemma 1, (a)
and (f) of the Basic Lemma hold for the dual system (R, 6y). Hence

(1.1) b0 ® (idr, ®B) ~ (o ®idr,) ® B ~ 6o ® B ~ b0,

(1.2) 0 ® (idp, ® B) ~ (8 ®idr,) ® B ~ 6 ® B ~ 6.

(As we shall see, the infinite-tensor product actions of R that occur in the statements of Lemmas
1, 2, and the Basic Lemma can all be taken to be a fixed canonical product action of S on R).

Now set 8(t) = 6(—t), 6o(t) = 6o(—t), t € S'. By Lemma 2,

(1.3) 6 @ 8, ~ idg, ® B,

(1.4) 6 @6 ~ idg, ® B.

Thus from (1.1) - (1.4), we deduce that

6~ 6@ (idp, ® B~ 6 ® (6 ® 6y)

4

(6 ®6) ® 6
~ (idr, ® B) ® 6o
s B Q.ED

Thus by Lemma 1 and the Basic Lemma, to prove that a hyperfinite III; factor M is

isomorphic to R, we must prove that for some A\ € (0, 1), (a) and (b) of Lemma 1 always
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hold. Connes’ proof of the implication (M a hyperfinite ITI; factor with trivial bicentralizer)
= M = R, hence proceeds like so: in Chapter 2, he uses a new characterization of Araki’s
property L) obtained in that chapter to prove that whenever M is a hyperfinite I1I; factor which
satisfies (b), then (a) in fact holds. This reduces the proof of the above implication to proving
(M a hyperfinite I1I; factor with trivial bicentralizer) = (b) of Lemma 1 holds. Connes proves
this is Chapter 4 by using a characterization of IntM for type III factors that he developes in

Chapter 3.

Proof of part (a) of the Basic Lemma. The proof of this is based on the flow of weights of a
properly infinite von Neumann algebra, which we will now describe. The basic reference for this

is of course [11].

Let M be a properly infinite von Neumann algebra. Let w be a dominant weight on M,
i.e., a faithful, normal, semifinite weight on M with properly infinite centralizer, and with the
property that w is unitarily equivalent to Aw for all A > 0 (the existence of such a weight on
M is guaranteed by Theorem II. 1.1 of [11]). Let (N, 6, 7) be a continuous decomposition of
M relative to w, i. e., N is the centralizer M*“ of w, € is a continuous action of the real line
R on N such that 706, = e "r, r € R for the faithful, normal, semifinite trace 7 on N,
and M is isomorphic to the crossed product Nx4 R. Connes and Takesaki [11] showed that the
action of the multiplicative group R} of positive real numbers on the center Z(N) of N defined
by s — f0_10g ‘1Z(N) , 8 € R}, does not depend on the weight w, and this action, denoted by
FM is called the (smooth) flow of weights on M. Abstractly, the restriction to the projection
lattice in Z(N) of the flow of weights represents the action of multiplication by elements of R}
on the unitary equivalence classes of all integrable, faithful, normal, semifinite weights on M with

properly infinite centralizer, whence the name.

We will need two facts about the flow of weights, one general, one particular. The general
fact is given by Theorem II. 3.1 of [11]: the kernel of FM is precisely the modular spectrum S(M)
of M. The particular fact computes the flow of weights for a factor of type III,, 0 < A < 1:
if A = 1, the flow of weights is trivial, and if 0 < A < 1, the flow of weights is canonically

isomorphic to the action of R} on R /(S(M)NRY) given by multiplication ([11], Section II.3).

We begin the proof of (a) of the Basic Lemma by recalling that for any factor M, the outer

conjugacy class oy, of the modular automorphism oy in Out (M) = Aut (M) / Int (M) for

to
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any tp € R is independent of the faithful, normal, semifinite weight ¢, and so therefore is the
isomorphism class of M Xo¥ Z.

Now, let M be a III; factor, Ty = —27/logA,0 < A < 1. Since S(M) = [0, + o0), it follows
from Théoréme 3.4.1 of [5] that oF, is outer for each nonzero integer n, and so by [5], Proposition
411, N = MXg,, Zis afactor.

Let 1 be a fixed dominant weight on M, and let ¢ (resp., w) be the weight on N (resp.,
P = Mx,s R) dual to 9 ([26], Section 5). One easily checks that ¢ is dominant on N, and so
it follows from Takesaki duality that the flow of weights on N is given by the action of R = RY
(duality here given by (r,s) = s'",r € R, s € R? ) via the dual action ¥ on the center of N x ¢

R. It is straightforward to see that

(15) N X,e R= (M X0¥ Z) Xqse R & (M Xgv R) Xa;o Z.
o

By Theorem 7.1 of [26], with & = 0¥, (MX,v R)Xay, Z = PXqay, Z can be viewed as the
fixed-point algebra in Px, R of the group G of automorphisms {&, : s € H}, where H' is
the annihilator in R of the subgroup H of R generated by T;. Since the dual action 6% on
Nx o R passes under the isomorphism (1.5) to the restriction of the dual action & to PXoq, Z,
the flow of weights of IV is isomorphic to the action of R} via & on the center of Px 4, Z. Since
M is type I1I;, P is a factor ([26], Corollary 9.7), and so &, is trivial on Px,, Z if and only if
it is trivial on its center. Since P X4, Z is the fixed-point algebra of G in Px, R, we conclude

that the kernel of the flow of weights on N is H+ = {A\" : n € Z}. By Theorem II. 3.1 of [11],

S(N)NRY = {\" : neZ},

and so N is type II1y. Q.ED.

Proof of Lemma 1. We will now define the infinite-tensor-product action of the circle on the
hyperfinite II; factor R that appears in Lemmas 1, 2, and the Basic Lemma. Let M, denote the

algebra of 2 x 2 matrices, and for each t € S, set

—it
g e =( ) (D) em
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Then (3° defines an action of S! on M,. If we realize R as the infinite tensor product of countably
many copies of M, relative to the normalized trace on M,,then 3 =3° ® 8° ® B° ® --- defines
an infinite-tensor-product action of S! on R, the one that will arise in the arguments to come.

In order to verify that the conditions in Lemma 1 guarantee that (a) of the Basic Lemma is
satisfied, we first recall the definition of the modular homomorphism § : R — Out(M) of a factor
M (this will also be used in the proof of Lemma 2). We take a faithful, normal, semifinite weight
won M and set §(r) = e(0¥), r € R, where € : Aut(M) — Out(M) is the canonical quotient map.
By Connes’ cocycle Radon-Nikodym theorem([5], Théoréme 1.2.1), this definition is independent
of the weight w chosen. The kernel of § is by definition the Connes T-invariant T(M) of M, and
if M is of type III5,0 < A < 1, then T(M) is the subgroup of R generated by T, = —-ng—"x ([5],
Théoréme 3.4.1).

Now, let M satisfy the hypotheses of Lemma 1. Since T, € T(R,) = kernel of §, all modular
automorphisms o1, of Ry at Tp are inner, so that if M ~ M ® R, then op, ~op, ® idg,,
and passing to the dual actions we obtain («) of the Basic Lemma.

To verify () of the Basic Lemma, we note first that Ry ~ R, ® R since R) is ITPFI ([2]),
whence

M=~MGQ®R,~(MQ®R),))®R=~MGQ® R

M hence has property L'* of (1], and so by Theorem 3.1 of [1], there is a sequence (u, ) of partial

isometries in M such that
(1.6) ul = 0, upul + ulu, = 1,Vn;
(1.7) || [un, ] ” — 0, VY € M,, ie., (u,)is a centralizing sequence in M.

Let ¢ be a fixed faithful, normal state on M, and consider (u,) as a sequence in

N = Mx,,; Z. We claim that
o

(1.8) [| [un, ¥]|| =0, ¥V € N,

(1.9) 6 (up) = up,n =1,2,3 ..., t € S.



