. - v
\ |
| \..
p—

=

3) Sigma m Press]

___Kevin Sullivan

R

|\

PRACTICAL
COBOL
FOR MICROCOMPUTERS

Practical COBOL

for Microcomputers

Kevin Sullivan

ESigma Technical Press

Copyright © 1983 by K Sullivan

All Rights Reserved

No part of this book qay be reproduced by any means without the prior
permission of the publisher. The only exceptions are for the purposes of
review, or as provided for by current legislation relating to photocopying of
small sections for private study or research, or in order to enter the
programs herein onto a computer for the sole use of the purchaser of this
book.

ISBN: 0 905104 60 9

Published by:

Sigma Technical Press
5 Alton Road

Wilmslow

Cheshire SK9 5DY
United Kingdom

Word processed on a Tandy TRS-80 Model lll, using the Word-4-Word
Wordprocessing package.

Typesetting & Production by:-

Designed Publications Ltd
8-10 Trafford Road
Alderley Edge

Cheshire.

Distributed by:

John Wiley and Sons Ltd
Baffins Lane

Chichester Sussex PO19 1UD
United Kingdom

Printed and bound in Great Britain by
J. W. Arrowsmith Ltd., Bristol

PREFACE

This book is intended to be an introduction to COBOL, the most widely
used business programming language in the world. COBOL is also one of
the most standardised languages, so that the programs contained in the
book will run on all COBOL systems with little or no modification. The
programs were all developed and tested on a Tandy TRS-80 Model Il
microcomputer, using RMCobol, so in no sense is this book just a
collection of mainframe programs adapted for a micro. RMCobol (marketed
by Ryan-McFarland Inc) is one of the most widely used implementations
of COBOL on micro, mini and mainframe computers, and is a completely
standard version of the language. (For those of you concerned with
standards, RMCobol is a GSA certified implementation of the ANSI X3.23
74 standard). So, if you have not already invested in a COBOL system,
RMCobol (plus this book, of course!) is well worth considering.

Unlike the majority of books on COBOL, this one introduces the language
through interactive screen-based programs, which start with some very
simple examples and gradually develop to complete file handling systems.

All aspects of the language are covered, from basic screen handling
technigues to indexed file methods. A background to different filing
techniques and data structures is given, together with a section on
structured programming with COBOL.

With the increasing use of micro-computers in business the gradual
movement of COBOL from main-frame computers to micros has become
inevitable. This book acts as an introduction to micro-computer based
COBOL, and is ideal for the new student of COBOL who wants an example-
oriented book. Since all of the examples are explained on a line by line
basis, the book can be used without the need for any 'hands on
experience’, although this is desirable. The book itself forms an ideal first
read’ for anyone who wants to know more about the language before
committing themself to one of the more advanced texts.

My thanks are due to Chris Lund of WLL Computer Services for reading
the preliminary manuscript and for suggesting several technical changes;
also, to Daf Sullivan for patiently reading and correcting the early drafts.

Kevin Sullivan, 1983. -

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

CONTENTS

~

Introduction to COBOL

The {our divisions.

The IDENTIFICATION division.
A word on columns.

The ENVIRONMENT division.
The DATA division.

The PROCEDURE division.

COBOL and Data
More about the DATA division.
Table structure.

Numbers and COBOL.
Unsigned integers.

Signed integers.

Input and output.

Real numbers.

Signed decimal numbers.
Editing numbers.

The CONVERT command.
Arithmetic verbs.
COMPUTATIONAL declarations.

Essential Verbs and Screen Input/Output

ACCEPT DISPLAY Simple screen formatting.

ACCEPT
DISPLAY
Simple Screen formatting.

Further Useful Verbs and Techniques
MOVE

IF ... ELSE

GO TO.... DEPENDING ON.....

A useful questioning routine.

An alternative way of accepting data.

O ONNOOTWW—

39

43

47
47
47
48
49
50

Chapter 6 Example Programs.....with more useful verbs! 53

Example 1: string searching. 53

New verb: INSPECT
Example 2: multiplication tables. 56
Example 3: table manipulation. 59
Example 4: note-pad |. 63
Example 5: note-pad II. 66

New verb: SET

Chapter 7 An Introduction to Data Files 70
Fixed and variable length records. 72
Methods of accessing files: 72
Sequential access. 73
Direct access. 73
Indexed files. 75
Summary of accessing methods 76
Example: sequential files. 76
Chapter 8 Printed Cutput 85
Example 1: printing a form. 85
Example 2: using a page header. 89
Using layout charts 90
Chapter 9 Indexed Files 92
Example 1: an indexed filing program. 92
Example 2: reading the file. 96
A cautionary note on creating files. 97
Example 3: a general filing program. 98
Example 4: updating the file. 103
Chapter 10 Relative Files. 109
Example : a complete file maintenance program. 109
Chapter 11 Structured Programming. 120

What is Structured Programming.....and what s it 120
doingin a bock on COBOL?

Re-using a routine. 120
PERFORMing a routine. 121
Iteration. 122
Flowcharts. 123
Pseudocode. 125

More about PERFORM. 129

Example: relative files, a structured version. 130
Chapter 12 Omissions from RMCobol. 143
ALTER 143
CALL ™ 144
COMPUTE 144
EXIT 146
STOP”LITERAL" 146
UNLOCK 146
Appendix A: The editor CEDIT. 147
Appendix B: Using WORDSTAR as an editor. 152
Appendix C: The compiler options. . 153
Appendix D: Input/Output error guide. ' 170
Appendix E: Reserved words. 176
Appendix F: Syntax of COBOL. 180
Index 197

Acknowledgements

RMCobol is a trade mark of Ryan MacFarland Inc

TRS-80 is a trade mark of Tandy Corporation Inc.

CP/M is a trade mark of Digital Research Inc.

Appendix D is reproduced by permission of WLL Computer Services Ltd.

Appendices E and F are reproduced from the RMCobol manual by
permission of Ryan-McFarland Inc.

Word-4-Word is a trade mark of Premier Publications Ltd.

Vi

Chapter 1

Introduction to COBOL

COBOL is a computer programming language that is widely used in the
business environment. It is one of the earliest of the computer languages,
dating back to the 1950's when it first became available on computer
systems.

Most computer languages have one or more strong points and usually
many weaknesses. COBOL was designed to be a fast efficient filing
system for computers. As such it is not particularly good at complicated
mathematical routines or at string handling. It does however produce
excellent filing systems, which means that COBOL is ideally suited as a
Data Processing Language and it is because of this that it is so widespread
in the business/administrative environments. In addition COBOL has a
very strong point in that it is a standard language. This means that about
95% of any COBOL system will be the same as any other. The differences
will be minor ones. This has the great advantage that a programmer can go
from one COBOL system to another with little or no problems. Languages
like BASIC suffer from the fact that each manufacturer’s version of the
language can be very different from another.

The language itself reflects its age; itis a compiled language, this means
thatwriting a program in it requires three quite distinct operations. Firstly,
one has to write the initial program or source code using a program called
the editor, this is then written to disc and the compiler program is loaded.

Secondly, the source program is then compiled, using the compiler and a
separate program or object code is produced. This object code is then
stored to disc and can be run when required. For the third and final stage,
most micro-computer systems use another program called the ‘runtime’
program, which has to be loaded before the object code can be run.

Mainframe or Mini computers have the executablg code produced directly
from the compiler so this can be run directly.

The sequence of events can be seen in Figure 1.1.

COBOL was originally designed to be run on large ‘'mainframe’ computer
systems, without the use of VDU’s (visual display units). Therefore, its
structure reflects this; with the programmer having to specify the type of
system in use. The need for the system specification can be seen if we look
at the way in which a COBOL program is divided.

Fig 1.1: Writing, Compiling and Running a COBOL Program

Save
Load Write Source
Editor ~| Source ~| Program
Code . to Disk
Stage 1: Write the Source Program
Source
Code
/ Loaded to
Load Compile Compiler
Compiler "1 Source | @ b
Code Save
\ Object
Program
to Disk
Stage 2: Compile the Source Program
Load Load Run
Runtime » Object » Program
Program Code

Stage 3: Run the Object Program

The Four Divisions

Any COBOL program is divided into four parts, or divisions. These each
have a particular function to perform and each must conform to a
particular layout or format. The four divisions are as follows:

(1) IDENTIFICATION DIVISION

(2) ENVIRONMENT DIVISION

(3) DATA DIVISION

(4) PROCEDURE DIVISION.

We will now look at each division in turn

The Identification Division

This is the division that gives information about the particular program. It
consists of two essential parts which can be seen in the first sample
program, PROGN1. Here the identification division consists of the
phrases IDENTIFICATION DIVISION. followed by the phrase PROGRAM-
ID. and the program name. The program name is any particular name that
is allowed by the computer system being used.

000100 IDENTIFICATION DIVISION.
000110 PROGRAM-ID. PROGNT.
000160 ENVIRONMENT DIVISION.
000170 CONFIGURATION SECTION.
000180 SOURCE-COMPUTER. TRS-80.
000190 OBJECT-COMPUTER. TRS-80.
000200 DATA DIVISION.

000210 WORKING-STORAGE SECTION.
000220 77 FIRST-MESSAGE PIC X(54) VALUE "WELCOME TO THIS
PROGRAM".

000230 PROCEDURE DIVISION.

000240 START-N1.

000250DISPLAY “ " LINE 1 ERASE.
000260DISPLAY FIRST-MESSAGE LINE 8.
000270 STOP-N1.

000280 STOP RUN.

The phrases mentioned above are essential, including all full stops,
hyphens and spaces (one of the problems with an ‘old" computer
language, is that it is very particular about these). In addition to the
essential information there are a number of phrasgs that can be included
at the programmer’s discretion. These are as follows:

AUTHOR. comment-entry.
INSTALLATION. comment-entry.
DATE-WRITTEN. comment-entry.
SECURITY. comment-entry.
.
All of the above details are reasonably self explanatory and a number of
variations to the ldentification division of PROGN1 can be seen in
PROGN2 and PROGN3:

000100 IDENTIFICATION DIVISION.

000110 PROGRAM-ID. PROGN2.

000120 AUTHOR. KNS.

000130 INSTALLATION. MY PLACE OF WORK.
000140 DATE-WRITTEN. 19/10/99.

000150 SECURITY. SEE MAIN PASSWORD LISTS.
000160 ENVIRONMENT DIVISION.

000170 CONFIGURATION SECTION.

000180 SOURCE-COMPUTER. TRS-80.

000180 OBJECT-COMPUTER. TRS-80.

000200 DATA DIVISION.

000210 WORKING-STORAGE SECTION.

000220 77 FIRST-MESSAGE PIC X(54) VALUE "WELCOME TO THIS
PROGRAM".

000230 PROCEQURE DIVISION.

000240 START-N1.

000250 DISPLAY " " LINE 1 ERASE.

000260 DISPLAY FIRST-MESSAGE LINE 8.
000270 STOP-N1.

000280 STOP RUN.

000110 IDENTIFICATION DIVISION.
000120 PROGRAM-ID. PROGNS3.
000130 AUTHOR. THE AUTHOR.
000140 DATE-WRITTEN. 29/10/989.
000150 ENVIRONMENT DIVISION.
000160 CONFIGURATION SECTION.
000170 SOURCE-COMPUTER. TRS-80.
000180 OBJECT-COMPUTER. TRS-80.
000190 DATA DIVISION.

000200 WORKING-STORAGE SECTION.
000210 77 FIRST-MESSAGE PIC X(54) VALUE "WELCOME TO
ANOTHER PROGRAM".

000220 PROCEDURE DIVISION.

000230 START-N1.

000240 DISPLAY " " LINE 1 ERASE.
000250 DISPLAY FIRST-MESSAGE LINE 8.
000260 STOP-N1.

000270 STOP RUN.

The purpose of the full stop at the end of each statement is to terminate
that particular statement. It is possible to continue statements onto
following lines, but for the time being we will restrict ourselves to
statements that fit onto one line only.

A Word on Columns

Having studied the sample programs shown so far it should be apparent
that there is a particular layout to the programs. This layout is another
inheritance from the old ‘punched card” days and is present because the
structure of the COBOL language was determined at a time when punched
cards forced a particular layout on the computer user. The first six
columns are used for line numbers only. The next column is used to mark
comment lines. By placing a "*" in this column the compiler will ignore any
entry on the same line. The main use for this is as an aid for program
documentation. The following three columns are called the A margin and
are used for Division and Section headers together with various data level
entries. Most of the program lines are written in the next 60 columns
called the B margin. The final 7 columns can be used as program
identification remarks. This is asecond ‘comment’ field and is also ignored
by the compiler. Different manufacturers decided on a standardised
system for these layouts or fields and these are adhered to even though
relatively few systems still use punched card entry.

The various columns are shown in Figure 1.2.

COLUMNS DESCRIPTION

1-6 Sequence numbers for COBOL programs.

7 Primarily used for comments. Indicated by the presence of an * in
the column.

8-11 The A margin.

12-72 The B margin. All lines not started in margin A start here.

73-80 Further comment columns.

(o8 [73 7 (1] 9] (3] (13 12 [z€ 8 13 oz N zi 8 (S v ¢ v
: — 121N
| _ ClTT]!
| | M,ﬂ_ ”
T b T
. : ; . AEECARRERAFNREL RN
! T T e T
1 L] [| T I | T
x | | | N |
L] Lhafprily D , , i | | b
T = === = e R T
“ SENENN 31 N S N P O N S S
. _ NI AR N AN AR NRNEREN
—+ T _ _ ; i _ T _,_,%_
J i :) B |] . Ly
T —T T i i ; : < !
% q P B BB i EE R ;_ ! “ ,“
i i v ! | ol ! . | 1o i | | |
! RN Al SREENENERE B RS | » || EARAREAERAN
| T I | HIFEEERNE W EH v |
T |1 ' | RN] | H I R EERRE T
+ ; ; i ! , 7 T T B O T
! | | i _TL_ L m‘. | i ,.“v || :_v, |
H | ! IR i [[T T —] i T
I _ { 1 | I | | . “‘ #A_ ui L
! | HEEREE [RRERN Rl FREIREERERD BRERER
T 0 ¥ T T T T T
| IR , BEEEEN AR | L Ll o coady L
T T i
NN NN R AR I T N N N AR AN N
| I | i i T ' H [T [| H;_ R I f
L | | | | | ! i L |
Fl:]! ! BERIRE EREREER v RERERREE REER RN ,
+ , - , : . e : ———
] A I B ! I R HERNEEE
3 ; ' { | | | ‘_ 1 .A_I? | i 1
RN SEREENERE! EENEREEERNE AR ANRN ! L L L I
T T -2 M [T 0e IS B [13 oy 9E It 87 v, 0T £l .:“ [‘.h, _Nq;:m, n:.JR__
0 P
NOILYDIdIIN3al | _NIW3LVIS 10800 q “ Yz 3ININOITS
| _ - 12 3omane
M HONNd T awa _ - HIAWYHO Odd
ssv10 DIHIYED WYHOOHd
SNOILINELSNI ONIHON(WILSAS

wio4 6UIpe) 10800
Z'L eunbiy

The Environment Division

The ENVIRONMENT division contains two sections. The firstis called the
CONFIGURATION SECTION and is that part of the program which can be
used to record which computer was used to write the program and which
computer was used to run the program. These are called the source and
object computers respectively.

The second part of the ENVIRONMENT DIVISION is called the INPUT-
OUTPUT SECTION and is used to describe and declare any files that are
used in the program. We will look at the file structure in more detail later
on. Briefly the information contained in this section covers the type of file
(sequential, relative, indexed) and the various names that can be used to
reference the file, both inside and outside the program.

In the main-frame world this section of the program would be used to tell
the computer which disk drive to use for the file, or which printer to use for
the output, and so on.

With micro-computers the disk used to store the file will usually be the
first available, or the drive will be selected by the file name, (dependent
upon the operating system used).

An example of an ENVIRONMENT DIVISION is given below,

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER.
TRS-80.
OBJECT-COMPUTER.
TRS-80. -
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT DETAILS-1 ASSIGN TO RANDOM “"DET/ONE"
ORGANIZATION IS INDEXED
ACCESS IS RANDOM
RECORD KEY IS NAME-ONE.

This example will be discussed in more detail in the chapter on indexed file
handling.

The Data Division.

This division is the one in which all the items of data to be used in the
program are described. As before there are two sections to this division.

The first is called the FILE SECTION and it is this that describes the data
structure of the file or files to be used. The second part is called the
WORKING-STORAGE SECTION and this deals with any items of data that
will be used in the program itself, during execution. The exact structure of
the items in the data division is rather involved and will be covered in the
chapter on data.

The Procedure Division.

It is this division that most people will think of as the program "proper’. All
the commands that instruct the program to do one thing or another are in
this part. The PROCEDURE DIVISION is divided into a series of ‘paragraph’
names that are used as references. In many of the example programs the
first paragraph is called START-N1 and is concerned with clearing the
screen and possibly displaying any messages. The full structure of the
PROCEDURE DIVISION will be dealt with separately.

Chapter 2

COBOL and Data

Because of its inherent data processing features, COBOL makes a rather
big thing of how you describe the data that you intend to process. So, we'll
spend quite a bit of time explaining how to do this.

More about the Data Division.

The Data Division is the one in which all the data that will be used
throughout the program is declared. This applies from the most sophisticated
file descriptions down to small single characters. In this section of the
book, the part of the data division called the WORKING-STORAGE
SECTION will be discussed. The part of the division that deals with files
will only be mentioned briefly and will be covered in greater detail in later
parts of the book.

Data is described in the data division by using a level number. The
simplest type of data is the type that refers to a single item, perhaps a
name, a message, a number and so on. This type of data is called
elementary data and has a level number of 77. If a data item is subdivided
then this is called a group data item. Data items with this level number
cannot be subdivided. At the time of writing there is talk of Level 77 data
items being phased out. The feeling is that all data is related in some way
and therefore is more correctly represented by a group data item.

All data items have to have a PICTURE clause specifying the length or
format of the data. The three types of data are alphabetic, alphanumeric
and numeric. Alphabetic data types are represented by an A in the picture
clause, Alphanumeric data types by an X, and Numeric data by a 9.

The length of the data type is important. There are two ways of describing
any data items:

(1) by representing each character or digit by its corresponding letter. For
example, a five digit number could be representedby 99999. A two letter
word would be represented by AA. An address of 10 characters by

XXXXXXXXXX. Clearly this somewhat simple approach is satisfactory for
simple cases but would rapidly become unwieldy.

(2) The data type is inHicated by a preceding letter and the length of the
data item by a number in brackets. For example, a 10 digit number would
be represented by 9(10). A 30 character line by X(30) and so on. This is
the commonest method and will be used throughout the book.

We are now in a position to look at some examples of data items:-

77 FIRST-NAME PICTURE A(20).
77 ADDRESS-ONE PICTURE X(30).
77 TOTAL-NUMBER PICTURE 9(10).

In each of the above cases the level numper is the first entry in the line, this
is followed by the name of the data item, and this in turn is followed by the
picture clause. FIRST-NAME must consist of alphabetic characters of
maximum length 20 ADDRESS-ONE must be alphanumeric of length 30
and TOTAL-NUMBER must be numeric of length 10. The picture clause
can be abbreviated to PIC and it will be used as such in all of the following
programs.

Before going any further, you may be wondering why the name of each
data item is hyphenated. This is to avoid any possible confusion (on the
part of the compiler) with COBOL reserved words. For instance, one
example of areserved word is DISLAY, which, if used as adataitem, would
be likely to cause a compilation error. A completely safe alternative would
be to use DIS-PLAY, in which case only you might be confused! But, the
pointis that you might just forget which are and are not reserved words so,
since none of them ever contain a hyphen, just hyphenate every data item
and you will eliminate one possible problem!

To continue with the story, Level 77 data items are the simplest in that
they cannot be further subdivided. More often we would want our data to
represent some form that has various subheadings and other subdivisions.
This can be achieved by using level numbers such as 01, 02, 03, 04
where the data item 04 is a subdivision of 03 and 03 is a subdivision of 02
which is a subdivision of O1. The following is an example of a data item
CLIENT-RECORD which has three identical subdivisions.

01 CLIENT-RECORD.
02 SUR-NAME PIC X(20).
02 FIRST-NAME PiC X(20).
02 JOB-TYPE PIC X(15).

10

