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PREFACE

When the fact that the majority of students studying physics, chemistry, and
biology will eventually be engaged in experimental work is considered, it
becomes evident that some early training in electronics is essential. However,
the past attempts to satisfy this need have not produced the desired effect—
namely the ability to quickly analyze, understand, and use electronic equip-
ment intelligently and effectively. One of the basic problems, of course, is
the limited amount of time that a student may devote to such a study.

Many good courses in electronics are offered in electrical engineering
departments. The problem with these courses is that they are often part of a
carefully designed program for electrical engineers and require extensive
prerequisites. Also, they often involve material not really useful to students
not planning a career in electronics.

One way around this problem is to offer courses in electronics as part
of the curriculum in the physical or biological sciences. These courses un-
fortunately often become merely a survey of electronics, which, while intro-
ducing a student to a wide variety of circuits and techniques, never really
allow him to do the calculations required by his particular research problems.
Physicists have their own problems, in that electronics courses often become
too involved in the physics of the real devices encountered which, although
- admittedly interesting, are not apt to help the student in a problem in the
laboratory. Occasionally the courses provide a mechanism for introducing a
little applied mathematics, which again may or may not help the student
solve a circuit or connect two pieces of equipment together without en-
gendering smoke.

It is necessary to resist the above temptations and design an electronics
course which concentrates on circuit analysis and the practical use of elec-
tronic equipment. The physics of devices may be discussed outside the main
lectures, in the laboratory, etc., and references can be given to the many
excellent texts on physical electronics.

Such a course has been designed and given for the last eight ycars by the
authors to students of physics, chemistry, biology, and applied science.
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Usually the students were seniors or graduate students. The text is designed
for and has been used in a one-quarter course with three lecture hours and one
three-hour laboratory per week. The course has then been followed by a
one-lecture hour, one three-hour laboratory course in the second quarter in
which the students design, build, and operate their own circuits and elec-
tronics systems.

It has been our experience that most of the students enjoyed the course,
and were no longer “afraid” of electronics. Those students going on to
graduate school have demonstrated a definite ability to work with elec-
tronics, while those terminating at the Bachelor’s level find their background
in electronics to be a real asset in obtaining a position.

What we have tried to do in this text is to bridge the gap between the
more sophisticated science student and the electronics engineer. By “‘sophis-
ticated” we mean having some familiarity with calculus, some notion of
ordinary differential equations, and the kind of physics or chemistry back-
ground offered by a reasonable introductory course. We hope that students
who have studied this text will be able to read the vast electronics literature
available and will be able to communicate profitably with the electronics
people with whom they will come into contact.

The authors would like to acknowledge the important role which our
students have played in the development of the text. Particular mention
must be made of the teaching assistants, Steve Brooks, Gary Smith, Don
McCauley, Stan Johnson, Bob Eldred, and Mike Ellison, especially with
recard to the laboratories. Another student, George Ellis, drafted all the
diagrams and waveforms for the text. We would also like to thank Ginny
Cahill, whose extensive editorial assistance helped to prepare the manuscript
for publication. Finally, we would like to acknowledge the support of the
editors of John Wiley & Sons, especially Gary Brahms and Don Deneck,
v hose help and encouragement made this book possible.

James A. McCray
Thomas A. Cahill
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NOMENCLATURE

These quantities are constant or direct current (dc)
values except in situations in which an alternating
current (ac) is superimposed on top of a direct
current. In these cases, they are total values for
voltage, current, charge, and power.

These quantities represent deviations from dc
values, usually in time. dV/dt = d(Vy + AV)/dt =
dv/dr. Equations in these variables are called *“‘ac”
or “‘signal” equations.

These quantities always represent the Laplace
transforms of v, i, q, or p, and may or may not be
written explicitly as V(s), I(s), etc.

This symbol represents an ideal voltage source, one
whose internal impedance is zero.

This symbol represents an ideal current source, one
whose internal impedance is infinite.

This nomenclature merely indicates the voltage
between the two points.

Q is unfortunately used universally for four quan-
tities: 1. Charge. 2. *“Q” of a circuit. 3. Operating
point Q. 4. Transistor label Q.
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ANALYSIS OF PASSIVE ELEMENTS
DIFFERENTIAL EQUATIONS
KIRCHHOFF’S LAWS

INTRODUCTION

To have a working model of electronics,
two problems must be surmounted. First,
real devices and circuits are so complicated in
an exact analysis that it would be impossible to
treat all but the simplest cases rigorously. Therefore,
basic models must be assumed for the various com-

ponents of a real circuit, and these models must be justified

on the basis of simplicity and ability to predict that which is

observed in the laboratory. Second, once models are assumed for

the components, methods must be developed to solve the integro-
differential equations that arise when the elements are combined in
circuits and subjected to realistic input conditions. A third point might also

be raised: that in one book, or even a set of books, only a small fraction of
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the vast field of electronics can be covered. We feel strongly that the inevi-
table selection of topics should favor those that can help a scientist in the
laboratory make best use of the tremendous resources of electronics.

To handle the first problem, we have used a lumped parameter model
for passive elements; resistance, capacitance, and inductance. Wher. this
model is insufficient, as in the case of RF transmission lines, modifications
are made that cover the deviations. For active elements, we have used a linear
approximation for the first nine chapters, and have divided active elements
into those possessing high input impedance (tubes, FET’s, etc.) and low
input impedance (transistors). This division introduces simplifications in the
analysis and leads naturally to voltage and current devices.

To handle the second problem, we have not relied upon previous knowl-
edge of differential equations beyond a basic familiarity with integrals and
differentials. This is not enough, for as circuits become realistic, the equations
become horrendous. Therefore, as early as possible in the second chapter, we
introduce Laplace transforms, which -reduce coupled integro-differential
equations to simple algebra. We then use the dec Circuit Scheme with the
Laplace transforms, and the result is a method that allows a scientist to
solve real circuits and find output voltages without ever setting up the coupled
equations. We do this by avoiding the temptation to do contour integrals
(which we admit is fun) by using tables of inverse transforms. Finally, we
show that by using pole-zero plots, even the inverse transform tables can be
avoided in many occasions. We have found that our students have thus
gained both a real facility with electronics and an understanding of circuits
that would be extremely hard to gain any other way. These methods have, of
course, been known to electrical engineers for some time, but they have not
been widely used on the level of a physical or biological scientist.

To handle the third problem, we have selected topics both by their
utility to a scientist in a modern laboratory and by their contribution to an
understanding of circuits. To maintain this book within limits set by a single
quarter of instruction, we have deleted almost all discussion of the physics of
devices. All that is left is what we feel is a bare minimum required for ap-
preciation of the simple models that we use. However, many good books
exist on all levels of sophistication for the physical analysis of real devices,
and we refer to these, listed in the Bibliography, for the details. Also, this
material can be added by the instructor in his lectures or in the laboratory at
exactly the level that suits his class.

KIRCHHOFF'S LAWS

As we have discussed in the introduction, we will use the lumped parameter
model for the passive elements: resistance, capacitance, and inductance.

2



KIRCHHOFF'S LAWS

We base our model on the following results, which are assumed valid f0r~
ideal lumped parameter components:

1. The energy dissipated in a resistor is

t
WR = Rf i2 dt,
0

where R is the resistance and i is the current passing through the resistor.
2. The energy stored in a capacitor (potential energy) is

2

T 2c’
where C is the capacitance and g is the charge on the capacitor.
3. The energy stored in an inductor (“kinetic energy”) is

Wi = tLi2,
where L is the inductance.
The physical laws which apply to electronic circuits are the conservation

of charge and the conservation of energy. The first conservation law leads to
Kirchhoff’s first law, which may be written

At a node
X (current in) = X (current out).

The second conservation law leads to Kirchhoff’s second law, which may be
written

Around a closed loop
Z (voltage sources) = X (voltage drops).

To illustrate the second conservation law, we consider the single loop circuit
of Fig. 1-1.

C
I|
I
+
v(t) @ R
7YY\
L

FIGURE I-I. Series RCL circuit.
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Resistance ¢ R vp=IR
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+q
Capacitance 2l Cc Ue

0la

<+ >

Inductance g L =L g_‘i

FIGURE I|-2. Voltage drop with resistive, capacitive, and inductive
elements.

The energy put into the circuit from the voltage source is given by

a t
/4 =J v(t) dq =fvi dt.
0 0

Conservation of energy requires that

W=- WR+ Wc+ WL’
or

t t 2
: é q L,
dt=f2Rdt L -
J;vl ol +2C 2

If we differentiate this equation with respect to time and cancel a common
factor i, we have

u(x)=iR+%+Lﬂ,

dt
or
di ¢
v(t) — L— ==+ iR.
® dt C
External Back Voltage iR diop
voltage e.m.f. .
+ = | across | + |across resistor |.
SORLCE, due to capacitor (Ohm’s law)
or e.m.f. inductance P

4



DIFFERENTIATING CIRCUIT

We shall work, then, with passive elements having the “voltage drops”
shown in Fig. 1-2.

DIFFERENTIATING AND INTEGRATING CIRCUITS

Now let us consider some very simple but useful passive circuits. The first
circuit to be considered is the differentiating circuit; however, it is also known
by such other names as blocking circuit, clipping circuit, high-pass circuit,
and lead circuit. This copious supply of names brings out a very important
point about electronic circuits. A given configuration of circuit elements may
have several functions depending upon the relative values of the circuit
parameters and the parameters of the input wave form. Throughout this book,
vo() is assumed to be an ideal voltage source; that is, one having zero internal
resistance.

In analyzing the circuit of Fig. 1-3, we first assume that the load current
iy(t) is very small compared with the loop current i(¢). Application of Kirch-
hoff’s second law yields

o) — %‘) —i(OR =0,

which may be written as a differential equation for g():

dg 1 . _ul)
dt " RC™ R’
Let us initially solve the above equation by standard techniques of
differential equations.* The general solution is the sum of the homogeneous
solution and the particular solution:

9(1) = (1) + ¢,(0).
The particular solution will yield the long-term (steady-state) response to an
input while the homogeneous solution will give the decaying (transient)
behavior.
For the homogeneous part, we have

dg, qn

=4 2L =

dt RC )
with solution

() = Ae'RC
where A is a constant determined by initial conditions.
* See any good reference to differential equations, such as I. S. Sokolnikoff and R. M.

Redheffer, Mathematics of Physics and Modern Engineering, McGraw-Hill, New York
(1966), Chapters 2 and 3.

5
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>

°
g

,Cl iz(t) =0

FIGURE I-3. RC differentiating circuit.

The particular solution may be easily found by the method of undeter-
mined coefficients, which applies when the right-hand side of the differential
equation contains only terms from which a finite number of terms can be
obtained by differentiation. We use as a trial function for the particular
solution, the inhomogeneous term, plus all of its derivatives. We find it useful
to obtain the response v,(¢) of a given circuit to a step input vy(¢) = Vu(t),
where

1 0<t
0 t<0
is the unit step function, and to a sinusoidal input vy(t) = V sin (0t + ¢),
where V is the amplitude, w the angular frequency, and ¢ the phase of the
input sinusoidal waveform. The response to the step input tells us how fast a
circuit can respond to a sudden discontinuity in voltage, and the response to
a sinusoidal input gives us the circuit’s steady-state characteristics.
For a step input, the differential equation is
q.,.4 Y
dt RC R
For the particular solution, we have as a trial function

g,(t) = B (a constant).

u(t) =

Substitution of this trial solution into the differential equation yields the
value of B = CV. The solution is

q(t) = Ae™/BC 4 CV.
We now determine A by the initial condition ¢(0) = g,. Then
q(1) = (g0 — CV)e™'% + CV.

The response of the differentiating circuit to a step input is

vy(f) = i()R.
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Dt

FIGURE I|-4. Output of an RC differentiating circuit for an input
step function.

Or since i(t) = dg|dt,

vo(t) = (V - ‘-ICQ) e,

where 7 = RC is the time constant of the circuit, the most important circuit
parameter. For the case we are considering (Fig. 1-4), the signal falls to
about # of its initial value in time 7. This is characteristic of an exponential
decay.

Actually, we are more interested in the response of the circuit to a
pulse, so let us take for vy(t) the rectangular pulse of height ¥ and width T,
(Fig. 1-5). We may solve this problem by considering different time intervals.
Let us assume that initially there is no charge on the capacitor. We have the
solution for time interval I:

vo(t) = Ve /" 0<t<L T,
In time interval II, the differential equation is
dg 1
T + - - 0)
dat’ T 1
volt)
PN
\4
I II
A Dt

FIGURE I-5. Rectangular pulse.



