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To the memorny of Enrndico BompLand

Founder of the CIME, on the Centennial of his birnth



PREFACE

To a large extent, the development of non-linear analysis has been based on convexity: many
existence theorems, in areas ranging from Fixed Point Theory to the Calculus of Variations, depend on
this crucial assumption. Moreover, Convex Analysis, with its emphasis on epigraphs and subgradients,
has been able to extend many classical results substituting for assumptions of smoothness
(differentiability) assumptions of convexity. In this sense convexity is also akin to non-smoothness.

There are, in different domains, successful even if scarce attempts to avoid the assumption of
convexity. The tools employed may become the basis for what could be called Non-convex Analysis:
not a well defined subject but, rather, an active domain of research. Purpose of this CIME Session was
to bring together mathematicians who, with different aims in mind, try to avoid the limitations of
convexity. We hope that the presentation of the basic tools and the discussion of the underlying

fundamental ideas will stimulate further advances in this promising area.

Arrigo Cellina

Trieste, November 20, 1989
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The e-variational principle revisited.
I.Ekeland
notes by S.Terracini

The e-variational principle appeared in 1972, and has been widely used in nonlinear analysis. We
refer to the survey [E2] for the state of the art in 1980. On the invitation of A.Cellina, it has appeared
worthwhile to update this survey by describing more recent results. Some of them have been very useful in
the study of periodic solutions of Hamiltonian systems; we refer to [E2] for proofs and applications.

1. THE e-VARIATIONAL PRINCIPLE.

THEOREM 1.1. (e-principle). Let (X,d) be a complete metric space and let
F: X = R U {40} be a closed semi-continuous function bounded from below. Then, for every x¢e X

and € >0 such that
F(xg) <infF + €
X

there exists an x.e X such that

(1.1) F(x,) + ed(x,, x) < F(xg)

(1.2) Fix) > F(xg) —ed(x, xg), VX # X .

REMARK 1.1. Formula (1.1) usually splits in
(1.1 F(xg) < F(xp)

(1.1)" d(xg, xg) < 1.

So x. improves x, from the point of view of minimization and it is located in a neighborhood of x, .

REMARK 1.2. Formula (1.2) says that the downward slope of F in x is smaller than €, that is

F(xo)-F(x) 0) <e

sup max( [CEN)

X#XE

Observe that if x; is a minimum of F, then its downward slope vanishes.



If X isa Banach space and F is differentiable, then (1.2) implies that
IF(x)lxs < €5

soif € is small, the derivative in x, is almost flat.

REMARK 1.3. We can replace the distance d with any d'=Ad (A > 0), since (X, d") is still a
complete metric space. Taking A = 4 we obtain

Ve
d(xg, xg) < \/:

IIF (x)llye

Hence, if (x,), is a minimizing sequence (thatis lim F(x,) = inf F) , then there exists another sequence
n—+oo X

(yn) such that

F(y, < F(x,)

lim d(x,, y,) =0
n—+oo

lim NF'(y)lxs = 0.
n—+oo

The following examples show how the €-principle can be used to prove some classical results relying on

completeness (rather than compactness).

EXAMPLE 1.1. Fixed point theorems (Banach). Let (X, d) be a complete metric space, and let
f: X—>X be acontraction (i.e. d(f(x), f(y)) < Ld(x,y) with L<1 , Vx,yeX). Then f has a fixed
point.

Define
F(x) = d(x, f(x)) ,

and apply Theorem 1.1 with € =1 —L and any x; such that F(xy) < infF + €.
X
Let x; be such that (2) holds: then x, is the fixed point of f. If not, for x = f(x,) , (2) leads to

L d(x, f(xg)) = d(f(xg) , fz(xg)) > d(f(xg), x¢) — ed(f(x,), x¢)
thatis 1 —e>1-¢. ¢
EXAMPLE 1.2. Inverse function Theorem. Let X, Y be two Banach spaces,and f: X - Y a C!
function such that f'(xq) is an isomorphism. Then f is a local homeomorphism between a neighborhood

of xy and a neighborhood of f(x() . Usually the proof is divided in two steps, and the injectivity is the
easiest to be obtained. Let us prove the open mapping theorem.



Let n, €>0 be such that

Vx, llx —xgll <m , then
IF(x)EI > ellEll  VEeY.

Writing

f(x) = f(xg) + f(xg)(x — xg) + 1(x) ,

A € . s
we find that r: B(xy, p) = Y is Lipschitz continuous with constant ¥ < 7(1f W is small enough).

2
Let ye B(f(xg) , inf(%, W), and define F(x) = lly — f(x)Il . Then Theorem 1.1 says that there is an x; such
that
lxg —xgll < p
(1.3)
ly — 66012 Ty - fx)l = 3 lx = xl, VX # X .

When y # f(x) , i.e. xg # X = [f-1(x)]"! (y - f(xq) — f'(xg) X — 1(x¢)] , then (1.3) leads to
lly — GOl = IIr(X) —r(x Il > lly — f(x)ll — € IIx — Xl ie.

lly — f(x)ll < (%+ DL lly — fxll < lly - f(xp)l
€

a contradiction. Then y = f(x,) . ¢

EXAMPLE 1.3. Cauchy Problems. Consider the problem (in a Banach space E)

dx

T = fx)

(CP)
x(0) = ¢

with IIf(t, x) — f(t, y)ll < k llx —yll. Then (CP) has a solution in [0, T], T <-11;.
Let X = CO([0, T], E) (a Banach space), and define T : C® — CO by
(Tx)() = &+ Ojtf(s, x(s)) ds
Then T is Lipschitz continuous with constant L =kT < 1. Define F(x)=ITx - xlICO , and apply Theorem

1.1 with € =1 -kT ,to find an x; such that (2) holds. Reasoning as in the Example 1.1, one finds that x,
is the solution of (CP).

EXAMPLE 1.4. Dynamical systems. Let (M, d) be a complete Riemannian manifold (possibly infinite
dimensional). Given fe C!(M, M), a (discrete) dynamical system is the semi-group {f"}henN -



For example, the dynamical system naturally associated to the ODE

?j—f= g(x)
x(0) = §

is the group {x(n)}en -

A point xeM is called periodic if there is Ne N such that fN(x) = x. Denote by Per (f) the set {(xe M , x
periodic} .

A point xe M is called non wandering if

VV neighborhood of x,VNeN,3n = N s.t VAfN(V) = @ .

Let Q(f) denote the set of all the non wandering points of M and note that

Q(f) 2 Per(f) .
If the dynamical system arises from a Hamiltonian differential system
o
P aq;
L _oH
e ap; ’

then Poincaré's Theorem says that, if for every h the set {(p, q) /H(p, q) < h} is bounded, then every
(p, @) is non wandering. Therefore it is very interesting to investigate the structure of the set Q(f) . More
precisely, a natural question is whether Q(f) = Per(f) is satisfied. The following result can be proved using
the e-principle.

THEOREM 1.2. Assume xe Q(f) . Then, Ve >0,V Ne N , there exist x,e M and
n 2 N such that

A% x) < e(l +5)
d(M(xp), x;) < €2
(1.4) I - TRx)*yell < ellyll where yg =M(x¢) — X . ¢

Theorem 1.2 states the existence of one "almost” eigenvector of (Tf(x.))* associated to the eigenvalue
A =1. This result is useful in the study of a special class of dynamical systems for which (1.4) never holds

unless x, is periodic.



DEFINITION 1.1 A dynamical system associated to fe C1(M, M) is hyperbolic if for every xeM ,
T,M splits into the sum of a stable subspace E and an unstable subspace E] T,M =E; ® E (depending
continuously on x) such that

VEeES

X

ITMX)EN < A-n lEI

VEEE;  ITM)EN 2 An gl

for some A>0.
THEOREM 1.3. If f is hyperbolic then Q(f) = Per(f) .

Let us observe that, if f is not hyperbolic, Theorem 1.3 is in general false. Indeed, consider the
Hamiltonian system defined by H(p;, p;, 91, q92) = %—L (p? + q?) + (—XZL (p% + q%) (it is the harmonic
oscillator with periods T; = —). Then, every solution is either periodic or quasi-periodic (hence non
wandering), so that Q(f) = R‘Pfion the other hand, the only periodic solutions are of the form (p;,q;) =0
or (p,, qp) =0 . This example provides a case when Q(f) 2 Per(f).

2. SMOOTHNESS AND e-PRINCIPLE.

A smooth e-principle.
Let X be a Banach space. The main property of x; in Theorem 1.1 is that

F(x) 2 F(xg) — € llx — xll, VxeX.

The graph of the mapping appearing at the right hand side of the above inequality is a cone, which is a non
smooth object. Our goal is to replace it with the graph of a smooth function. (This problem has been solved

by Borwein and Preiss [B-P]). Let us recall some basic definitions:

DEFINITION 2.1 A function F: X — R is Gateaux differentiable (G-differentiable) in xye X if there

exists a continuous functional F'(xp)e X* such that

fim Lot hz) “FC0) - pxg), ys,  VyeX.
h—0

DEFINITION 2.2 F: X — R is Fréchet differentiable (F-differentiable) in xpe X if there exist

F(xg)e X and € : X — R with lim &(y) = 0 such that
y—0

F(xg +y) = F(x) + <F'(xp), y> + £(y) llyll



Note that the G-differentiability is weaker than the F-differentiability.
We define the family

T:{¢;x—>R,¢=%Z¢nnx_xnu,(p,,so,2q>,,=1 . lim x, =X } .
n=1 n=1

n—+oo

THEOREM 2.1. Assume that for x # 0 the norm |-l is G-differentiable (resp. F-differentiable) with
derivative J(x). Then each b€ F is G-differentiable (resp. F-differentiable) and the derivative is

oo

O'(x) = D @, lIx = x Il J(x = xp) . L

n=1

THEOREM 2.2. (Borwein-Preiss). Let F: X — RuU(+e]} be a lower semicontinuous function such
that inff F > —eo . Let €>0 and xoe X be such that
X

F(xg) <infF + €.
X

Then there exist x,€ X and ¢ F such that

2.1) F(x¢) <inf F + €
X
2.2) lIxg — xqll < 1
(2.3) F(x) 2 F(xg) + 2e [¢(x¢) — 0(x)], VxeX.

REMARK 2.1. If F is differentiable then
F'(x¢) = — 2€ ¢'(xg) .

Moreover, the sequence (x,), can be chosen so that llx, — x I <1 (V¥n) ; hence, since

I(x)llxs« =1, we have

IF'(x)lge < 26 . T e

REMARK 2.3. A reflexive space can always be renormed so that the new norm is differentiable. In this
case, Theorem 2.1 holds with some ¢e ¥, where ¥ contains all the elements of ¥ having a single non

Z€ro term:



Fo= (0 F /000 =3Ik~ XI2) .

A Hilbert space is reflexive and the standard norm is differentiable (twice for x # 0). Therefore (2.3)

becomes
F(x) 2 F(xg) + € [lIxg — Xl - lIx - XI12] ,

and moreover we obtain

F"(x¢) 2 — 2¢l.
As a consequence of the above remarks we have the following

COROLLARY 2.1. Let X be a Hilbert space, let F:X — R be twice differentiable and bounded from

below. Then there exists a sequence (x,), such that

lim F(x,) = infF
X

n—+oo

lim NF(x,)lxe =0

N—+eo

lim F'(x,)20. .

n—+oo

REMARK 2.4. The main idea in proving the existence of ¢ in Theorem 2.2 consists in the following

iterative construction:

FO = F
step 0

X prescribed

Foi1 = Fo(x) + 8um lix — x, |12
stepn + 1 Xp4+1 1S chosen such that
Foi(Xpe1) < VE(x)+ (1 =vV) infF
where W, Vv, 8 are chosen as follows:

F(xg) —inf F<g; <g, <€

0<p<1—5-
€



0<L<[1-(2ynp
K €

d=(1-pe.

h
Observe that F,,;(x) = F(x) + z Suk lix — x,II2 . The sequence (x,), can be chosen so that x, — X ,
K=0

and it is shown that ¢ = .. ur(l —p) lix — x 12 satisfies (2.3). .
b3 n
n=0

e-principle and differentiability.
Let F: X — R be convex and semicontinuous; a basic result of convex analysis is the following
reciprocity formula:

2.4) F(x) = sup ({<x, x*>—F*(x*)}

xe X*

where F* :X* — R is defined as

F*(x*) = sup {<x; x*>-F(x)} .
xe X

There is a connection between the differentiability of F and the existence and uniqueness of the maximum
for (2.4). (For example, it is easy to see that if F is differentiable in X with derivative F'(x) and the
maximum of the right hand side is achieved in x* , then x* = F'(X) ).

The problem of differentiability on a Banach space X can be handled with the €-principle. Below, we give

some results on this subject.

THEOREM 2.3.(Ekeland-Lebourg). If X admits an F-differentiable norm, then every continuous
convex F: X — R is F-differentiable on a dense Gy set. ¢

THEOREM 2.4. (Borwein-Preiss). If X admits a G-differentiable norm, then every continuous
convex F:X — R is G-differentiable on a dense set. *

THEOREM 2.5. (Preiss). If X admits an F-differentiable norm, then every locally Lipschitz
continuous function F : X — R is F-differentiable on a dense set. ¢

(Note that the norm is never differentiable at the origin, so the differentiability is always assumed for
x # 0).



Linear perturbations.
Let X be a Banach space, and C ¢ X be bounded (possibly not closed). Let F: X = R U(+e0} be

lower semicontinuous and bounded from below. Given x*e X*, we consider the minimization problem
p

(P,4) inf {F(x) + <x*, x>} .
xeC
Note that C is not assumed to be either closed or convex, so that the minimum cannot be achieved for each

x*e X* |

THEOREM 2.6. (Ekeland-Lebourg). Let C be closed and let X, X* be uniformly convex. Then,
Ve >0, 3Ix*e X* lIx*ll < & such that (B.) has a solution. Moreover every minimizing sequence

converges. ¢

THEOREM 2.7. (Stegall). Let C be closed and let X have the Radon-Nikodym property. Then the
same conclusion of Theorem 2.6 holds. ¢

These problems have been studied systematically by Ghoussoub and Maurey, who provide an extension of
the e-principle to the case when two topologies are present on the underlying space X .

3. MINIMIZATION OF FUNCTIONALS AND CRITICAL POINTS THEORY.

Let X be a Banach space, and F : X — RuU({+e} be bounded from below. In the classical approach
to the problem of minimizing F over X, one assumes X to be reflexive, and F to be coercive and convex
(so that F is weakly lower semicontinuous). The coercivity implies that every minimizing sequence is
bounded in X , the reflexivity of X implies that any bounded sequence has a weakly convergent
subsequence and, from the convexity of F, one concludes that the weak limit is actually a minimum of F.
So, assuming F to be convex, one assumes that every minimizing sequence possesses a weakly
converging subsequence.

On the other hand, the e-principle states the existence of a special minimizing sequence having the further
property that

3.1) F(x) 2 F(x,) — €, lIx — x,ll, VxeX, g, — 0.

A much weaker assumption than the convexity, but still sufficient to have a minimum, is that every
minimizing sequence satisfying (3.1) has a convergent subsequence. It might happen that not every
minimizing sequence converges, but there exists a special minimizing sequence that does.

This idea has been applied by Marcellini and Sbordone, [M-S], in order to minimize functionals of the type

F(u) = [f(x, u, Du)
Q



u: Qg Rn 5 Rn

with f non convex in Du .
When F is Cl, then (3.1) leads to IIF'(x)ll < ¢, . Therefore a good compactness condition is the Palais-

Smale condition
Every sequence (x,), in X such that

lim F(x,) =c
n—+oo

(P-S),
lim F'(x,) =0
n— +oo

possesses a converging subsequence.

The Palais-Smale condition has been introduced for the search of critical points of unbounded functionals.

The Mountain Pass Theorem and its generalizations state the existence of a sequence satisfying (P-S.). (a
Palais-Smale sequence) under some geometrical assumptions, which replace the boundedness of the
functional. The first version (Theorem 3.1) has been proved by Ambrosetti and Rabinowitz in [A-R]. We
also give a generalized Mountain Pass Theorem due to Ghoussoub and Priess [G-B], which can be useful

when dealing with some limiting cases.

THEOREM 3.1. (Ambrosetti-Rabinowitz) Let X be a Banach space, and let Fe C1(X ; R) . Assume
that there are: p >0 and o> F(0) such that

(3.2) inf F>2a
lIxll=p
(3.3) Ixe X, lIxll > p such that F(x) < o .

Then there exists a sequence (x,), such that

lim F(x,)=c>a
n—+oo

lim F'(x,)=0. ¢

n— oo

COROLLARY 3.1. In addition to the assumptions of Theorem 3.1, assume that the Paldis-Smale
condition (P.S.). is satisfied. Then there exists xe X such that

F(x)=c¢

F'(x)=0. .
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PROOF OF THEOREM 3.1.(Sketch) Consider the metric space

(3.4) C={yeCo(0,1;X) / Y0)=0 , Y1) =X)

endowed with the uniform topology, and define y:C —> R as

y(y) = max F(y(1) .

te [0,1]

Since the function y : Cx[0, 1] = R, Y(y, t) = F(y(1)) is continuous, then y is lower semicontinuous.
The assumption (3.2) gives

c=infy2a,
C

so y is bounded from below.
By applying Theorem 1.1, for every € >0 we obtain the existence of Y. C such that

YY) <c + €2
(3.5)
v 2 WY - e lly—Yell o, VyeC.

Define

I = (te [0, 1]/ F(ye(v) = n:ax] F(Ye(s)) .
se (0,1

From (3.5) one can deduce that there exists at least one te€ I such that IF'(Y (t,)ll <€ . Finally, it is
sufficient to take x; =Y.(t;) and (3.2), (3.3) are satisfied. .

REMARK 3.1. The critical value ¢ is expressed by

(3.6) c=1inf max F(y(t)) . )
¥eC te[0,1)

REMARK 3.2. It has been proved that there exists Y, C (Ve >0) such that every t.el¢ has

IF (Ye(t )l < € . .

REMARK 3.3. The topological meaning of (3.2), (3.3) is that the set {x / F(x) < F(0)} is not path
connected and the sphere S, = {lixll=p} "separates” O and X . Indeed every path ye C has to intersect
Sp and hence the set {x/F(x) 2 F(0)} . *



