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Preface

These notes represent accurately the contents of the six lectures we gave in
the Statistics Department of Columbia University, between the 10th and the
25th of November 2004.

The audience was a mix of faculty, most of whom were fine “connoisseurs”

of stochastic calculus, excursion theory, and so on, and graduate students who
were basically acquainted with Brownian motion.

Our aim in teaching this course was two-fold:

on one hand, to give the audience some familiarity with the theory and
main examples of enlargements of filtrations, either of the initial or the
progressive kinds;

on the other hand, to update the relevant Chapters' of Part II [Yor97b]
of the Zirich volumes, precisely, those which were devoted to martingale
and filtration problems, i.e. Chapters 12 to 17 in Part II.

Each lecture was followed by an exercises session.
Here is the detailed organization of these lecture notes:

as a set of Preliminaries, the basic operations of stochastic calculus
and of the (Strasbourg) general theory of processes are recalled; no doubt
that this is too sketchy, only a first aid tool kit is being presented, and
the reader will want to read much more, e.g. [Del72] and the last vol-
ume, by Dellacherie, Maisonneuve and Meyer, of Probabilités et Potentiel
[DMM92];

in Chapter 1, the transformation of martingales in a “small” filtration
into semimartingales in a bigger filtration is being studied; an important
number of, by now, classical examples, drawn more or less from Jeulin's
monograph [Jeu80] or Jeulin-Yor [JY85], are presented, and then collected
in an appendix at the end of the chapter: this appendix consists in two

' An updated, revisited version of Chapters 1 to 11, corresponding to Part I

[Yor92a], is being published in the Springer Universitext collection under the
title Aspects of Brownian motion [MYO05a).
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tables, the first one for progressive enlargements, the second one for initial
enlargements; we tried to gather there some most important examples,
which often come up in the discussion of various Brownian path decompo-
sitions and their applications. This presentation is close to the effort made
in the Récapitulatif in [JY85] pp. 305-313;

e in Chapter 2, we examine what remains of a number of classical results
in martingale theory when, instead of dealing with a stopping time, one
works up to a general random time;

e the main topic of Chapter 3 consists in the comparison of E [X|F,] and
X, =E [X|]-}]|t=7 where, for the simplicity of our exposition, 7 is the
last zero before 1 of an underlying Brownian motion, and X is a generic
integrable random variable. Note how easily one may be confusing the two
quantities, which indeed are identical when < is replaced by a stopping
time. Moreover, in our set-up with v, one of these quantities is equal to
0 if and only if the other one is, and this remark leads naturally to the
description of all martingales which vanish on the (random) set of the
Brownian zeroes;

e Chapter 4 discusses the predictable and chaotic representation properties
(abbreviated respectively as PRP and CRP) for a given martingale with
respect to a filtration. Although the CRP is rarer than the PRP, a much
better understanding of the CRP, and many examples, have been obtained
since the unexpected discovery by Emery [EmeSQ] that Azéma’s martingale
enjoys the CRP. In particular, we introduce in this chapter the Dunkl
martingales, which also enjoy the CRP.

e the two next Chapters 5 and 6 are devoted to questions of filtrations.
They are tightly knit with the preceding chapters, e.g. in Chapter 5,
Azéma’s martingale plays a central role, and in Chapter 6, ends of pre-
dictable sets are being discussed in the framework of the Brownian filtra-
tion. In more details, the deep roots of Chapter 5 are to be found in
excursion theory where, traditionally, a level, e.g. level 0, is being singled
out from the start, and excursions away from this level are studied. It was
then natural to consider how quantities and concepts related to a given
level based excursion theory vary with that level. Two different sugges-
tions for this kind of study were made, the first one by D. Williams, with
following studies by J. Walsh and C. Rogers, the second one by J. Azéma,
which provoked answers from Y. Hu. Both set-ups are being examined in
Chapter 5.

Chapter 6 develops our present understanding of the Brownian filtra-

tion, or rather, of some fundamental properties which are necessary for

a given filtration to be generated by a Brownian motion. The results are

due mainly to B. Tsirel'son, and collaborators, between 1996 and 2000

(roughly). In particular, it was established during this period that:

- the filtration of a N-legged Brownian spider (N > 3) is not strongly
Brownian.
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— there exist probability measures ) equivalent to Wiener measure, such
that under @, the natural filtration of the coordinate process is not
strongly Brownian.

Tsirel’son original “hands on” method of attack of these questions later

developed into the search of “invariants of filtration”, e.g. the notions of

standard filtration, cosy filtration,..., which were studied by M. Emery
and co-workers, and Tsirel’son himself, and which we briefly present at the

end of Chapter 6.

e Each chapter ends with some exercises, which complement the content
of that chapter. A standard feature of these exercises, as well as the
style of their solutions, is an illustration of general “principles”, which we
present in the framework of explicit examples. The solutions-presented in
Chapter 7 — are succinctly written, but should contain sufficient details
for the reader. As much as possible, the arguments in the proposed solu-
tions are closely connected with the material found in the corresponding
chapters. We also took the opportunity to include some open questions,
sometimes in the form of exercises, which are then indicated with the
symbol "X.

We are both very grateful for the warm hospitality we received during our
stay in Columbia University as well as the strong motivation of the audience
during the sessions. Thanks to everyone involved, and special thanks to Peter
Bank and Ioannis Karatzas.

Paris, Roger Mansuy
November 3, 2005 Marc Yor
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Notation and Convention

Here is a short list of current notation and convention used in the different
chapters.

We shall always assume that the underlying probability space (£2, F, P) is
separable.

Let A(C F) be a o-field, X an A-measurable random variable and Y a
random variable independent of A. Then, for any Borel function f, the
conditional expectation E [f(X,Y)|A] shall be denoted as H:][f(X. Y)] In
other words, the expectation concerns the hat-variables with all others
remaining frozen.

We sometimes make the abuse of notation:

X € A, meaning that the random variable X is A-measurable.

The symbol 7, (resp. ;) will only be used to denote the last (resp. the first)
zero of a certain process, usually Brownian motion, before (resp. after) the
time t. We often abbreviate v; and d; by v and 9.

In general, to a process N, we associate N, its one sided supremum
process; namely, for t > 0, N; := sup,, N,. However, for Brownian mo-
tion (By; t > 0), we keep the usual notation (S;; t > 0) for its one-sided
supremumn.

In this book, studies of the law of a process (X¢; t > 0) often begin with:
“For any bounded functional F, E[F(X; s <t)]...”. By this sentence,
we mean that F' is a measurable functional on C([0,¢],R) if X is assumed
to be continuous, on D([0,t], R) otherwise.

FX) will denote the initial enlargement of the filtration (F;; t > 0) with
the random variable X, that is the filtration defined by

]_—;7(X) = N (Frge Vo (X)), t>0
e>0

We shall sometimes use the terminology: X -initial enlargement of (F;;t > 0).
For A: 2 — [0, ], a random time, we denote by F* the smallest filtration
which contains (F;; t > 0), and makes A a stopping time, i.e.

R. Mansuy and M. Yor: Random Twmes and Enlargements of Filtrations in a Brownian Setting,
Lect. Notes Math. 1873, 1-2 (2006)
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-1 Notation and Convention

Fri= N (Fige Va(AN(t+e), t>0

>0

We shall sometimes use the terminology: A-progressive enlargement of
(Fe; £>0).

All martingales considered in this volume are assumed to be cadlag (i.e.
right-continuous and left-limited); in a number of cases, they are even
assumed to be continuous, but this will always be specified.

e (resp. N) will often denote a standard exponentially distributed variable
(resp. a standard normal variable).

The symbol — (resp. </ ) denotes immersion (resp. non-immersion) be-
tween two filtrations (Fy; ¢ > 0) and (Gy; t > 0) such that F, C G, for
every t; (Fy; t > 0) is said to be immersed in (Gy; t > 0) if all (Fy; t > 0)-
martingales are (G;; t > 0)-martingales. This notion will be studied in
Chapter 5, but we already note that the more general situation when some
(perhaps all...) (Fy; t > 0)-martingales are (Gy; t > 0)-semimartingales
will be a recurrent subject of study in these lecture notes.
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Preliminaries

Throughout these preliminaries, we are working with an underlying filtered
probability space (2, F,(Fy; t > 0),P). We insist that most of the notions
introduced below are relative to this filtered probability space.

0.1 Doob’s Maximal Identity

The following lemmas are variants of Doob’s optional stopping theorem.

Lemma 0.1 Let N be a R, -valued continuous local martingale with Ny = 1,
and Ny = 0.
[ — OO

— —t
Denote Ny = SUpP, < Ny and N = SUp,>¢ Ns.

- law
Then N ezl 1/U where U denotes a uniformly distributed variable.

More generally, for every finite stopping time T such that Ny > 0 a.s.,
NT/NT s a uniform variable independent of Fr.

Proof

e Define, for a > 1, T, = inf{t > 0, N; = a}.
Then: 1 =E[No] = E[N1,] = aP(Nw > a)(= aP(T, < ))
Thus, P(No>a)=1ie P(1/Noo<i)=1

e For any finite stopping time 7" such that Ny > 0 a.s., consider the
local martingale constructed from N by shifting time from 7', namely
(Nusr/Nr; u > 0). We can apply the first step of this proof to this local

. . == ;
martingale whose supremum is N~ /Np. The result follows easily.

|
The next lemma completes, in some sense, Lemma 0.1. (Ny; t > 0) is now
replaced by a general continuous semi-martingale (X;; ¢ > 0), which is not
necessarily positive.

R. Mansuy and M. Yor: Random Times and Enlargements of Filtrations in a Browniwan Setting,
Lect. Notes Math. 1873, 3-9 (2006)
www.springerlink.com (© Springer-Verlag Berlin Heidelberg 2006



4 0 Preliminaries

Lemma 0.2 Let h : R — R be a locally integrable function and set H(x) =
fy dyh(y).

Then H(X;) — hM(X)(X: — X)) =[5 h(X)dX,; hence, if (X¢; t > 0) is a
local martingale, so is (H(X;) — h(X)(X; — X;), t > 0).

Proof

This result is easily obtained when h is regular thanks to It6 formula, and the
essential fact that dX, is carried by {t; X; = X;}. The general result follows
from a monotone class argument.

Comment 0.1 For h(z) = l,<, and (X;; t > 0) a continuous local martin-
gale, Lemma 0.2 yields that

(al,'\',za + XAY,SG: t>0)
is a local martingale, from which the result of Lemma 0.1 follows.

Example 0.1 (Doob’s inequality in LP for positive submartingales)
We consider (Xy; t > 0) a positive continuous submartingale.

; ; : ; = -1,
Taking F(z) = xP with p > 1, Lemma 0.2 implies that Zf - pZ‘f (X — X%)
is a local submartingale.

Up to a localization arqument, we obtain

E [f?] = pf IIE [_E_f_lzt]
< P E [ff

. E[xP)'/? (Hélder)
pP—

](P*l)/ll

Thus

= P
&%l <

< L IZy

0.2 Balayage Formula

The result of Lemma 0.2 may be understood in a more general framework.
Let (k,; u > 0) be a locally bounded, predictable process, (Yy; u > 0) a
continuous semi-martingale starting at 0.

Denote by v; and §; respectively the last zero of Y before t and the first zero
of Y after ¢, namely:

vt = sup{u < t; Y, = 0}
0 = inf{u >t; Y, =0}

Then



