System

b
O
&
e
foded
~
<
Z
o
bt
&
<

C

\ \i W
,,, \ : _//,
.4_/ o

OIICEpts

\// i 11% V

\L 1\\!\1 SR

X < \ \ \
\ N \ AN A R
\

V\\v V\\

Abraham Silberschatz « James L. Peterson

ALTERNATE EDITION

Operating
System
Concepts

Abraham Silberschatz

University of Texas at Austin

James L. Peterson
Microelectronic and Computer
Technology Corporation
(MCQ)

Reading, Massachusetts e Menlo Park, California ¢ New York
Don Mills, Ontario e Wokingham, England e Amsterdam e Bonn e Sydney

Jim DeWolf: Sponsoring Editor

Karen Guardino: Managing Editor

Karen Myer: Production Supervisor

Hugh Crawford: Manufacturing Supervisor
Marshall Henrichs: Cover Designer

Joe Vetere: Technical Art Consultant
Wendy Lewis: Production Coordinator
Lorraine Hodsdon: Layout Artist

This book is in the Addison-Wesley Series in Computer Science.
Michael A. Harrison: Consulting Editor

The programs and applications presented in this book have been included for
their instructional value. They have been tested with care, but are not
guaranteed for any particular purpose. The publisher does not offer any
warranties or representations, nor does it accept any liabilities with respect to
the programs or applications.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and Addison-Wesley was aware of a trademark claim, the designations
have been printed in initial caps or all caps.

CP/M® Registered Trademark of Digital Research Incorporated
UNIX™ Trademark of Bell Laboratories

Library of Congress Cataloging-in-Publication Data

Silberschatz, Abraham.

Operating systems concepts.

Bibliography: p.

Includes index.

1. Operating systems (Computers) I. Peterson,
James Lyle. 1L Title.
QA76.76.06355583 1988 005.4'3 87-33451
ISBN 0-201-18760-4

Reproduced by Addison-Wesley from camera-ready copy prepared by the
authors.

Reprinted with corrections April, 1989

Copyright © 1988, 1985, 1983 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher. Printed in the United States of America. Published
simultaneously in Canada. :

EFG-DO-89

To my parents, Wira and Mietek,
my wife, Haya,
and my children, Lemor, Sivan and Aaron.

Avi Silberschatz

To my wife, Jeanne,
and my children, Jennifer and Kathryn.

Jim Peterson

Preface

Operating systems are an essential part of a computer system.
Similarly, a course on operating systems is an essential part of a
computer science education. This book is intended as a text for an
introductory course in operating systems at the junior, senior, or first-
year graduate level. It provides a clear description of the concepts that
underlie operating systems.

This book is not centered around any particular operating system or
hardware. Instead, it discusses fundamental concepts that are applicable
to a variety of systems. Our emphasis is on solving the problems
encountered in designing an operating system, regardless of the
underlying hardware on which the system will run.

Many comments and suggestions were forwarded to us concerning
our first and second editions. These, together with our own
observations while teaching at the University of Texas and IBM have
prodded us to produce this alternate edition.

The Alternate Edition

The major undertaking was to restructure the organization of the
book by moving the discussions concerning concurrency and system
design to the front of the text. Since concurrency is the very heart of
modern operating systems, it was felt that it is important that students
get this fundamental concept early. This allows students to immediately
begin work on projects in laboratory-oriented courses, or to start
understanding the internals of real systems.

vi Preface

Our basic procedure was to rewrite the material in each chapter,
bringing some of the older material up-to-date, improving the exercises,
and adding new references.

Content of this Book

As prerequisites, we assume the reader is familiar with general assembly
language programming and computer organization. Chapters 1 and 2
explain what operating systems are, what they do, and how they are
designed and constructed. These chapters explain how the concept of an
operating system has developed, the common features of an operating
system, what it does for the user, and what it does for the computer
system operator. It is motivational, historical, and explanatory in nature.
We have avoided a discussion on how things are done internally in
these chapters. Therefore, they are suitable for individuals or lower-level
classes who want to learn what an operating system is, without getting
into the details of the internal algorithms.

Chapters 3 to 5 deal with the process concept and concurrency,
which is at the very heart of modern operating systems. A process is
the unit of work in a system. Such a system consists of a collection of
concurrently executing processes, some of which are operating system
processes (those that execute system code) and the rest being user
processes (those that execute user code). These chapters cover various
methods for process management, cpu scheduling, and deadlock
handling.

Chapters 6 through 9 deal with the classic internal algorithms and
structures of storage management and file system. They provide a firm
practical understanding of the algorithms used: their properties,
advantages, and disadvantages. The algorithms are presented in a
natural order, so that new, more complicated systems can be built upon
the understanding of simpler systems.

Chapter 10 (protection systems) and Chapter 11 (distributed
systems) present advanced topics and current trends. These topics are
still being researched and may well need later revision. However, we :
include them in the book for two reasons. First, although research is
still ongoing and final solutions to these problems are still being sought,
there is general agreement that these topics are important and students
should be exposed to them. Second, existing systems use these
solutions, and anyone working with operating systems over the next
five years will need to be aware of the developments in these directions.

In Chapter 12 we illustrate how the many concepts described can be
put together in a real system. We have chosen the Unix operating
system, specifically Berkeley’s 4.2BSD, for this example system. This
operating system was chosen in part because it was at one time almost

Preface vii

small enough to understand and yet is not a “toy” operating system.
Most of its internal algorithms were selected for simplicity, not speed or
sophistication. Unix is readily available to computer science
departments, so many students may have used it.

Each chapter ends with references to further reading. Chapter 13 is
essentially a set of references to further reading for the entire book and
briefly describes some of the most influential operating systems.

Organization

Operating systems first- began to appear in the late 1950s, and for
twenty years underwent major changes in concepts and technology. As
a result, the first-generation operating system textbooks that appeared
during this period (such as Brinch Hansen [1973a], Madnick and
Donovan [1974], Shaw [1974], Tsichritzis and Bernstein [1974]) tried to
explain a subject that was changing even as they were being written.

Now, however, operating system theory and practice appears to
have matured and stabilized. The fundamental operating system
concepts are now well defined and well understood. While there will
undoubtedly be new algorithms, the basic approach to cpu scheduling,
memory management, the user interface, and so on, is not likely to
change. Few really new operating systems are being written. Most large
computers use operating systems that were designed in the 1960s. The
newest operating systems are being developed for the multitude of
microcomputer systems, but these are generally either MS-DOS, Unix,
or imitations of these. It is now possible to write a book that presents
well-understood, agreed-upon, classic operating system material.

This text is one of a second generation of operating system
textbooks. Our text differs from other texts in the level of content and
organization. The basic concepts have been carefully organized and
presented; the material flows naturally from these basic principles to
more sophisticated ones.

Errata

This book has benefited from the careful reading and thoughtful
comments of many people in the previous two editions. We have
attempted to clean up every error in this new edition, but as with
operating systems, there will undoubtedly still be some obscure bugs.
We would appreciate it if you, the reader, would notify us of any errors
or omissions in the book. If you would like to suggest improvements or
contribute exercises, we would be glad to hear from you. An errata
sheet is available to instructors for the second edition, and we will
update it with errors in this edition as they become known.

viii Preface

Acknowledgments

This book is derived from the previous two editions, and so, has been
helped by many people, including Gael Buckley, Richard Cohen, Dick
Kieburtz, Carol Kroll, Michael Molloy, John Quarterman, Elaine Rich,
and Sara Strandtman.

We would also like to acknowledge the helpful reviewing of Richard
Schlichting, University of Arizona; Charles Oualline, East Texas State
University; John Stankovic, University of Massachusetts at Amherst; and
Ajoy Kumar Datta, Arizona State University.

AS
J.P

- Contents

Chapter 1

11
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11

I

Chapter 2

2.1
2.2
2.3
2.4
2.5
2.6
2.7

Introduction

What Is an Operating System?
Early Systems

Simple Monitor

Off-line Operation

Buffering and Spooling
Multiprogramming

Time Sharing

Protection

General System Architecture
Different Classes of Computers
Summary

Exercises

Bibliographic Notes

Operating System Structusgs

System Components

Operating System Services

System Structure

Virtual Machines

System Design and Implementation
System Generation

Summary

Bibliographic Notes

43
49
58
62
65
67
68
69

X Table of Contents

Chapter 3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

Chapter 4

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Chapter 5

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

Chapter 6

6.1
6.2
6.3
6.4

Concurrent Processes

Process Concept

The Producer/Consumer Problem

The Critical Section Problem
Semaphores

Classical Process Coordination Problems
Language Constructs

Interprocess Communication

Summary

Exercises

Bibliographic Notes

CPU Scheduling

Review of Multiprogramming Concepts
Scheduling Concepts

Performance Criteria

Scheduling Algorithms

Algorithm Evaluation

Multiple Processor Scheduling
Summary

Exercises

Bibliographic Notes

Deadlocks

System Model

Deadlock Characterization

Deadlock Prevention

Deadlock Avoidance

Deadlock Detection

Recovery from Deadlock

Combined Approach to Deadlock Handling
Summary

Exercises

Bibliographic Notes

Memory Management

Preliminaries

Bare Machine

Resident Monitor

Multiprogramming With Fixed Partitions

73
80
83
95
101
106
127
138
139
144

149
151
158
159
173
179
179
180
184

187
189
194
197
204
209
211
212
213
217

219
224
225
228 .

Table of Contents xi

6.5 Multiprogramming With Variable Partitions 236
6.6 Multiple Base Registers 243
6.7 Paging 244
6.8 Segmentation 254
6.9 Paged Segmentation 261
6.10 Summary 263
Exercises 264
Bibliographic Notes 268
Chapter 7 Virtual Memory

7.1 Why Virtual Memory 269
7.2 Demand Paging 271
7.3 Performance of Demand Paging 277
7.4 Page Replacement o 280
7.5 Page Replacement Algorithms 283
7.6 Allocation of Frames 294
7.7 Thrashing 297
7.8 Other Considerations 303
7.9 Summary 308
Exercises 310
Bibliographic Notes 317

Chapter 8 Secondary Storage Management

8.1 Introduction 319
8.2 Physical Characteristics 320
8.3 Device Directory 323
8.4 Free Space Management 324
8.5 Allocation Methods 326
8.6 Disk Scheduling 334
8.7 Sector Queueing 339
8.8 Selecting a Disk Scheduling Algorithm 340
8.9 Storage Hierarchy 342
8.10 Summary 344
Exercises 344
Bibliographic Notes 347
Chapter 9 File Systems

9.1 File Concept 349
9.2 File Operations 351
9.3 Access Methods 353

9.4 Directory Systems 356

xii Table of Contents

9.5
9.6
9.7
9.8

Chapter 10

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10
10.11
10.12
10.13

Chapter 11

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9
11.10
11.11
11.12
11.13

Directory Structure Organization
File Protection

Implementation Issues
Summary

Exercises

Bibliographic Notes

Protection

Goals of Protection
Mechanisms and Policies
Domain of Protection

Access Matrix
Implementation of Access Matrix
Dynamic Protection Structures
Revocation

Existing Systems
Language-Based Protection
Protection Problems

Security

Encryption

Summary

Exercises

Bibliographic Notes

Distributed Systems

Motivation
Topology
Communication
System Type

File Systems

Mode of Computation
Event Ordering
Synchronization
Deadlock Handling
Robustness
Reaching Agreement
Election Algorithms
Summary

Exercises
Bibliographic Notes

360
369
373
375
376
377

379
380
381
382
383
387
392
394
399

406
408
410
411
412

415
417

427
429
432
434
437
441
449
451
454
457
458
459

Chapter 12

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10

Chapter 13

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8

Table of Contents

The Unix Operating System

History

Design Principles
Programmer Interface
User Interface

Process Management
Memory Management
File System

/O System
Interprocess Communication
Summary
Bibliographic Notes

Historical Perspective

Atlas

XDS-940

THE

RC 4000 .
CTSS

Multics
05/360

Other Systems

Bibliography

Index

xiii

463
467
468
475
479

488
496
500
506
507

509
511
511
512
514
514
515
517

519

555

CHAPTER 1

Introduction

An operating system is a program that acts as an interface between a user
of a computer and the computer hardware. The purpose of an operating
system is to provide an environment in which a. user may execute
programs. The primary goal of an operating system is thus to make the
computer system convenient to use. A secondary goal is to use the
computer hardware in an efficient manner.

To undetstand what operating systems are, it is necessary to
understand how they have developed. In this chapter, we trace the
development of operating systems from the first hands-on systems to
current rthultiprogrammed and time-shared systems. As we move
through the various stages, we see how the components of operating
systems evolved as natural solutions to problems in early computer
systems. Understanding the reasons behind the development of
operating systems gives an appreciation for what an operating system
does and how it does it.

1.1 What Is an Operating System?

An operating system is an important part of almost every computer
system. A computer system can be roughly divided into four
components (Figure 1.1):

2 Chapter 1: Introduction

® The hardware (cpu, memory, /O devices).
® The operating system.

® The applications programs (compilers, database systems, video
games, business programs).

® The users (people, machines or other computers).

The hardware provides the basic computing resources. The applications
programs define the ways in which these resources are used to solve the
computing problems of the users. There may be many different users
trying to solve different problems. Accordingly, there may be many
different applications programs. The operating system controls and
coordinates the use of the hardware among the various application
programs for the various users.

An operating system is similar to a government. The basic resources
of a computer system are provided by its hardware, software, and data.
The operating system provides the means for the proper use of these
resources in the operation of the computer system. Like a government,
the operating system performs no useful function by itself. It simply
provides an environment within which other programs can do useful
work.

We can view an operating system as a resource allocator. A computer
system has many resources (hardware and software) that may be
required to solve a problem: cpu time, memory space, file storage space,
input/output (/O) devices, and so on. The operating system acts as the
manager of these resources and allocates them to specific programs and
users as necessary for their tasks. Since there may be many, possibly
conflicting, requests for resources, the operating system must decide
which requests are allocated resources to operate the computer system
fairly and efficiently.

A slightly different view of an operating system focuses on the need
to control the various /O devices and user programs. An operating
system is a control program. A control program controls the execution of
user programs to prevent errors and improper use of the computer. It is
especially concerned with the operation and control of O devices.

In general, however, there is no completely adequate definition of
an operating system. Operating systems exist because they are a
reasonable way to solve the problem of creating a usable computing
system. The fundamental goal of computer systems is to execute user
programs and solve user problems. Towards this goal _computer
hardware is constructed. Since bare hardware alone is not very easy to
use, applications programs are developed. These various programs

1.1 What Is an Operating System? 3

user user user . o o user
1 2 3 n
y
compiler assembler text .. database
editor) system

application programs

operating system

computer
hardware

Figure 1.1 Abstract view of the components of a computer system

4 Chapter 1: Introduction

require certain common operations, such as controlling the /O devices.
The common functions of controlling and allocating resources are then
brought together into one piece of software: the operating system.

It is perhaps easier to define operating systems by what they do,
rather than what they are. The primary goal of an operating system is
convenience for the user. Operating systems exist because they are
supposed to make it easier to compute with an operating system than
without an operating system. This is particularly clear when you look at
operating systems for small personal computers.

A secondary goal is efficient operation of the computer system. This
goal is particularly important for large, shared multi-user systems. These
systems are typically very expensive, and so it is desirable to make them
as efficient as possible. These two goals, convenience and efficiency, are
sometimes contradictory. In the past, efficiency considerations were
often more important than convenience. Thus much of operating system
theory concentrates on optimal use of computing resources.

To see what operating systems are and what operating systems do,
let us consider how they have developed over the last 30 years. By
tracing that evolution we can identify the common elements of operating
systems and see how and why they have developed as they have.

Operating systems and computer architecture have had a great deal
of influence on each other. To facilitate the use of the hardware,
operating systems were developed. As operating systems were designed
and used, it became obvious that changes in the design of the hardware
could simplify the operating system. In this short historical review,
notice how the introduction of new hardware features is the natural
solution to many operating system problems.

1.2 Early Systems

Initially, there was only computer hardware. Early computers were
(physically) very large machines run from a console. The programmer
would write a program and then operate the program directly from the
operator’s console. First, the program would be manually loaded into
memory, either from the front panel switches, paper tape, or punched
cards. Then the appropriate buttons would be pushed to load the
starting address and to start the execution of the program. As the
program ran, the programmer/operator could monitor its execution by
the display lights on the console. If errors were discovered, the
programmer could halt the program, examine the contents of memory
and registers, and debug the program directly from the console, Output
was printed, or punched onto paper tape or cards for later printing.

