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Preface

This volume collects the expanded notes of four series of lectures given on
the occasion of the CIME course on Nonlinear Optimization held in Cetraro,
Italy, from July 1 to 7, 2007.

The Nonlinear Optimization problem of main concern here is the problem
of determining a vector of decision variables x € R™ that minimizes (maxi-
mizes) an objective function f(-) : R™ — R, when z is restricted to belong
to some feasible set F C R", usually described by a set of equality and in-
equality constraints: F = {x € R™ : h(z) = 0,h(:) : R* - R™; g(z) <0,
g(-) : R™ — RP}; of course it is intended that at least one of the functions
f.h, g is nonlinear. Although the problem can be stated in very simple terms,
its solution may result very difficult due to the analytical properties of the
functions involved and/or to the number n, m, p of variables and constraints.
On the other hand, the problem has been recognized to be of main relevance
in engineering, economics, and other applied sciences, so that a great lot of
effort has been devoted to develop methods and algorithms able to solve the
problem even in its more difficult and large instances.

The lectures have been given by eminent scholars, who contributed to a
great extent to the development of Nonlinear Optimization theory, methods
and algorithms. Namely. they are:

— Professor Immanuel M. BOMZE, University of Vienna, Austria

— Professor Vladimir F. DEMYANOV, St. Petersburg State University,
Russia

— Professor Roger FLETCHER, University of Dundee, UK

— Professor Tamas TERLAKY, McMaster University, Hamilton, Ontario,
Canada (now at Lehigh University, Bethlehem, PA - USA).

The lectures given by Roger Fletcher deal with a basic framework for treating
the Nonlinear Optimization problem in the smooth case, that is the Sequen-
tial Quadratic Programming (SQP) approach. The SQP approach can be
considered as an extension to constrained problems of Newton’s method
for unconstrained minimization. Indeed, the underlying idea of the SQP
approach is that of applying Newton’s method to solve the nonlinear equa-
tions given by the first order necessary conditions for optimality. In order to



vi Preface

fully develop the idea, the required optimality conditions for the constrained
problem are recalled. Then the basic SQP method is introduced and some
issues of the method are discussed: in particular the requirement of avoiding
the evaluation of second order derivatives, and the occurrence of infeasibility
in solving the QP subproblems. However the basic SQP method turns out
to be only locally convergent, even if with a superlinear convergence rate.
Therefore the need arises of some globalization strategy, that retains the good
convergence rate. In particular, two classes of globalization strategies are con-
sidered, the first one using some merit function, the second one resorting to
some filter method. Filter methods are of main concern in the context of the
course, since they have been introduced and developed by Roger Fletcher
himself. A last section of the lecture notes deals with the practical problem
of interfacing a model of the nonlinear programming problem with a code
for its solution. Different modelling languages are mentioned, and a short
introduction to AMPL is provided.

The lectures given by Tamas Terlaky, whose chapter is co-authored by Imre
Pélik, focus on the Interior Point Methods (IPM), that arose as the main nov-
elty in linear optimization in the eighties of the last century. The interesting
point is that the IPM, originally developed for linear optimization, is deeply
rooted in nonlinear optimization, unlike the simplex method used until be-
fore. It was just the broadening of the horizon from linear to nonlinear, that
allowed to describe for the first time an algorithm for linear optimization not
only with polynomial complexity but also with competitive performances.
The lecture notes first review the IPM for linear optimization, by introduc-
ing the self dual-model into which every linear optimization problem can be
embedded; the basic notion of central path is defined, and its existence and
convergence are analyzed; it is shown that, by a rounding procedure on the
central path, a solution of the problem can be found in a polynomial number
of arithmetic operations. On these bases, a general scheme of IP algorithms
for linear optimization is provided, and several implementation issues are con-
sidered. Then, the more general problem of conic optimization is addressed,
relying on the fact that most of theoretical results and algorithmic consider-
ations valid for the linear case carry over to the conic case with only minor
modifications. Moreover conic optimization represents a step in the pathway
from linear to nonlinear optimization. The interest in conic optimization is
motivated by important applications, like robust linear optimization, eigen-
value optimization, relaxing of binary variables. In particular, two special
classes of conic optimization problems are considered, namely second order
conic optimization and semidefinite optimization, and for each class a well
suited IPM is described. Finally, the interior point approach is extended to
nonlinear optimization, by employing the key of a reformulation of the non-
linear optimization problem as a nonlinear complementarity problem. In this
way a central path can be defined also for the nonlinear case, even if its exis-
tence and convergence require stronger assumptions than in the linear or conic
cases, and complexity results hold only in the convex case. The analytical and
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algorithmic analysis of IPM is complemented by an overview of existing soft-
ware implementations, pointing out that some of them are available in leading
commercial packages. A challenging list of open questions, concerning mainly
algorithmic issues, concludes these lecture notes.

The methods mentioned before are able to find only local solutions of the
Nonlinear Optimization problem. In his lectures Immanuel Bomze considers
the much more difficult problem of Global Optimization, that is the problem
of finding global, rather than local, solutions. In order to fully explain how
a gap in difficulty of the problem arises, he makes reference to the simplest
nonlinear optimization problem, that is quadratic programming, minimizing
a quadratic objective function under linear constraints. If the quadratic ob-
jective function is nonconvex, this problem may have so many local non global
solutions that any enumerative strategy is not viable. A particular feature of
the nonconvex quadratic programming is that necessary and sufficient global
optimality conditions can be stated, which not only provide a certificate of
optimality for a current tentative solution, but also an improving feasible
point if the conditions are not satisfied. These conditions rely on the notion
of copositivity, which is central in algorithmic developments. Moreover, ad-
ditional optimality conditions can be stated in terms of nonsmooth analysis,
thus establishing a link with the contents of the lectures by Vladimir De-
myanov introduced below. A particular instance of a quadratic programming
problem is the so-called Standard Quadratic Programming Problem (StQP),
where the feasible set is the unitary simplex. StQP is used to illustrate the
basic techniques available for searching global solutions; among these, the
well known branch-and-bound approach borrowed from combinatorial opti-
mization. Again, StQP is used to illustrate approaches by which the problem
may be in some way reformulated, relaxed or approximated in order to ob-
tain a good proxy of its exact global solution. Finally, a section deals with
detecting copositivity, a problem known to be in general NP-hard.

In the Nonlinear Optimization problems considered up to now, the
functions f, h, g, are assumed to be smooth, that is at least continu-
ously differentiable. In his lectures, Vladimir Demyanov faces the much more
difficult case of nonsmooth optimization. The smooth case can be character-
ized as the “kingdom of gradient”, due to the main role played by the notion
of gradient in establishing optimality conditions and in detecting improving
feasible solutions. Therefore, a first challenge, when moving outside of that
kingdom, is to provide analytical notions able to perform, in some way,
the same role. To this aim, different definitions of differentiability and of
set-valued subdifferential are introduced, where each element of the subdiffer-
ential is, in some sense, a generalized gradient. On these bases, it is possible
to establish optimality conditions for nonsmooth optimization problems, not
only when the decision variable belongs to the usual R™ finite dimensional
space, but also when it belongs to a more general metric or normed space.
More in particular, first the case of unconstrained optimization problems,
and then the case of constrained optimization problems are considered. It is
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remarkable the fact that a nonsmooth constrained optimization problem
can always be transformed into a nonsmooth unconstrained optimization
problem by resorting to an exact nondifferentiable penalty functions that
accounts for the constraints. Therefore, an amazing feature of nonsmooth
optimization is that, in principle, the presence of constraints does not add
analytical difficulties with respect to the unconstrained case, as it happens
if the same exact penalty approach is adopted in smooth optimization.

The course took place in the wonderful location of San Michele Hotel
in Cetraro and was attended by 34 researchers from 9 different countries.
The course was organized in 6 days of lectures, with each lecturer present-
ing his course material in 5 parts. The course was indeed successful for its
scientific interest and for the friendly environment - this was greatly facili-
tated by the beauty of the course location and by the professional and warm
atmosphere created by the organizers and by all of the staff of Hotel San
Michele.

We are very grateful with CIME for the opportunity given of organizing
this event and for the financial as well as logistic support; we would like to
thank in particular CIME Director, prof. Pietro Zecca, for his continuous en-
couragement and friendly support before, during and after the School; we also
would like to thank Irene Benedetti for her help and participation during the
School, and all of the staff of CIME, who made a great effort for the success
of this course. In particular we would like to thank Elvira Mascolo, CIME
Scientific Secretary, for her precious work in all parts of the organization of
the School, and Francesco Mugelli who maintained the web site.

Gianni Di Pillo and Fabio Schoen
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Global Optimization: A Quadratic
Programming Perspective

Immanuel M. Bomze

Spectal thanks to Gianni Di Pillo and Fabio Schoen,
for their continuous support and valuable remarks

Introduction

Global optimization is a highly active research field in the intersection of
continuous and combinatorial optimization (a basic web search delivers over
a million hits for this phrase and for its British cousin, Global Optimisation).
A variety of methods have been devised to deal with this problem class,
which - borrowing biological taxonomy terminology in a very superficial way
—may be divided roughly into the two domains of ezact/rigorous methods and
heuristics, the difference between them probably being that you can prove
less theorems in the latter domain. Breaking the domain of exact methods
into two phyla of deterministic methods and stochastic methods, we may have
the following further taxonomy of the deterministic phylum:

) passive/direct, streamlined enumeration
exhaustive methods
homotopy, trajectory methods

) smoothing, filling, parameter continuation
methods using global structure
hierarchical funnel, difference-of-convex

.M. Bomze (=)

Department of Statistics and Operations Research, University of Vienna,
1010 Wien, Austria

e-mail: immanuel.bomze@Qunivie.ac.at

G. Di Pillo et al. (eds.), Nonlinear Optimization, Lecture Notes in 1
Mathematics 1989, DOI 10.1007/978-3-642-11339-0_1,
© Springer-Verlag Berlin Heidelberg 2010
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) o escape, tunneling, deflation, aux.functions
iterative improvement methods
successive approximation, minorants

implicit enumeration methods: branch & bound

In these notes, we will focus on a problem class which serves as an ap-
plication model for some of the above techniques, but which mathematically
nevertheless is of surprisingly simple structure — basically the next step after
Linear Optimization, namely Quadratic Optimization. Despite the fact that
curvature of the objective function is constant and that constraints are linear,
quadratic problems exhibit all basic difficulties you may encounter in global
optimization: a multitude of inefficient local solutions: global solutions with
a very narrow domain of attraction for local solvers; and instances where you
encounter very early the optimal solution, but where you find a certificate for
global optimality of this solutions, or even only a satisfying rigorous bound
very late — a case of particular nuisance in applications.

The contents of these notes are organized as follows: Section 1 deals with
local and global optimality conditions in the quadratic world. Due to the
constant curvature of the objective function, conditions for both local and
global optimality can be formulated in a compact way using the notion of
copositivity. It turns out that this class also allows for closing the gap between
necessary and sufficient conditions in most cases. e-subdifferential calculus is
used to analyse these conditions in a more general framework, going beyond
Quadratic Optimization to the quite general theory of difference-of-convex
(d.c.) optimization. To emphasize how close continuous global optimization
is tied to discrete problems, we investigate a particular class of quadratic
problems, the so-called Standard Quadratic Problems (StQPs) which simply
consist of extremizing a quadratic form of the standard simplex — and yet
form an NP hard problem class with immediate applications in combinatorial
optimization. We continue the study of StPQs in Section 2, to exemplify some
basic global optimization techniques like determining escape directions and
rigorous bounds, as well as the basic steps in branch-and-bound. Section 3
is devoted to different approaches to global quadratic optimization, namely
relaxation and approximation, but also exact reformulation. As an exam-
ple for the latter, we discuss an emerging branch of optimization which
receives rapidly increasing interest in contemporary scientific community:
copositive optimization. Again applied to StQPs, the copositive reformula-
tion means that a global quadratic optimization problem is rewritten as a
linear programming problem over a convex cone of matrices, thereby com-
pletely avoiding the problem of inefficient local solutions. The hardness of
the problem is completely shifted to sheer feasibility, and this new aspect
opens up a variety of different methods to approach the global solution of
the original problem (the StQP in our case). The cone of copositive matri-
ces is known since the mid-fifties of the last century, however, algorithmic
approaches to detect whether or not a given matrix satisfies this condition,
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are much more recent. The last Section 4 is devoted to these aspects, and
also discusses some complexity issues. A by now well-established technology
for conic optimization which gained momentum since practical implementa-
tions of interior-point methods were available, is Semidefinite Programming
(SDP), where the matrix cone is that of positive-semidefinite matrices. Since
checking positive-semidefiniteness of a given matrix is relatively easy, SDPs
can be solved to any prescribed accuracy in polynomial time. Section 4 also
describes how SDP-based bounds arising from approximating copositivity
via SDP technology can be reinterpreted in the decomposition context of the
earlier Section 2.

In the sequel, we will employ the following notation: " stands for trans-
position of a (column) vector in n-dimensional Euclidean space R"; for two
such vectors {z,y} C R", we denote by x < y the fact that x; < y; for
all 7. The letters o, O, 0 stand for the zero vector, matrix, or number, re-
spectively, all of appropriate dimension. The positive orthant is denoted by
R? = {z € R" : 0 <z}, the n x n identity matrix by I,,, with i-th column
e; (the ith standard basis vector). e = . e; € R™ is the all-ones vector and
E, = ee' the all-ones n x n matrix. For a finite set A, we denote its cardi-
nality by |A|. If v is a vector in R", we denote by Diag v the diagonal n x n
matrix D with d;; = vy, for i = 1,...,n. Conversely, for an n x n matrix B,
diag B = [b;;]; € R™ denotes the n-dimensional vector formed by the diagonal
elements of B. Finally, we abbreviate by S = O the fact that a symmetric
n x n matrix S is positive-semidefinite (psd), and by N > O the fact that N
has no negative entries.

1 Global Optimization of Simplest Structure:
Quadratic Optimization

Let Q@ = QT be a symmetric n x n matrix, A an m x n matrix and b € R™,
The feasible set of a quadratic optimization problem (QP) is a polyhedron
which can be described as the intersection of finitely many half-spaces:

M ={zeR": Az < b}.
Hence let us consider here

min {f(z) = 32 Qe +c'z:x € M}, (1.1)

bk

as the basic model of a QP. To conveniently formulate optimality conditions,
we frequently employ the Lagrangian function

L(z;u) = f(z)+u' (Az —b), ue R
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being the vector of (non-negative) Lagrange multipliers for the (inequality)
constraints. In our case, the gradient of L with respect to x at a point (T; u)
is affine (i.e., a linear map plus a constant vector) and reads V.L(T;u) =
QT +c+ATu.

If Q is positive-semidefinite (z'Qx > 0 for all z € R"), then (1.1) is
(relatively) easy: the basin(s) of attraction of the global solution(s) are uni-
versal, and virtually all local solvers will deliver it. Note that the first-order
optimality conditions

V.L(@;u) =0 and u' (AT —-b)=0, (T,u)€ M xR (1.2)

are in this case necessary and sufficient for global optimality, and can be
recast into a Linear Complementarity Problem which may be solved by com-
plementary pivoting methods like Lemke’s algorithm [24].

However, if @Q is indefinite, then even with a few simple constraints, prob-
lem (1.1) is really difficult. As a running example, we will consider the
problem to determine the farthest point from a point ¢, in the hypercube
M =[-1,1]™

Example 1. Let Q = —I,,, and A = [I,| — I,]T withb=[eT| —e"]T.

If ¢; € [—1, 1], then it is easily seen that all y € R with y; € {—1,¢;, 1}, all n,
are KKT points, and that all z € {—1,1}" (the vertices of the hypercube) are
(local) solutions. If ¢ = o, all vertices are evidently global solutions. However,
if we consider ¢ # o, this renders a unique global solution, while now all other
(2™ — 1) local solutions are inefficient; even more drastically, (3" — 1) KKT
points, i.e., solutions of (1.2) are inefficient. We slightly simplify calculations
by restricting ourselves to ¢ = —pue where 0 < pu < 1. The unique global
solution then is the positive vertex z* = e of M.

1.1 Local Optimality Conditions in QPs

The first-order KKT conditions (1.2) help us to single out finitely many
candidates (3" in Example 1) for being optimal solutions. Note that the
complementary slackness conditions — in our case u' (AT —b) = 0 - at (T, u) €
M xRT always mean L(Z;u) = f(Z) in terms of the Lagrangian, while primal-
dual feasibility always implies L(z;u) < f(x), by construction of L, for all
(z,u) € M x R

Now, to remove 3" —2" candidates in Example 1 above, we have to employ
second-order optimality conditions, using constant curvature of the objec-
tive and/or the Lagrangian: both functions have the same Hessian matrix
D2L(z;u) = D?f(z) = Q for all (z,u) € M x R

The local view of M from T is captured by the tangent cone, which due
to linearity of constraints coincides with the cone of feasible directions at T,
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I'z) = {veR":T+tve M for all small enough t >0}
={veR": (Av); <0if (AT); =b;, allie{l,...,m}}. (1.3)

If T is a local solution, then a decrease along the feasible direction v is im-
possible, and this follows if vT Qv > 0 for all feasible directions v € I'(T):

f(z) = f(T)

IV

L(z;u) — L(T; u)
= v V. L(T;u) + %L‘TQ‘L‘
vio+ %‘I,'T(JU > 0.

However, this condition is too strong: no locality is involved at all ! Hence
we have to repeat the argument directly, with f replacing L. To account
for locality, we also put x = T + tv with ¢t > 0 small. Note that the KKT
condition (1.2) implies the weak first-order ascent condition v' V f(F) > 0
for the increment function 6,(t) = f(T + tv) — f(T) and

f(x) = f(T) = 0,(t) = tv Vf(T) + g'vTQ'u >0, (1.4)

if t > 0 small and v"Vf(T) > 0, even if v Qu < 0: strict first-order ascent
directions may be negative curvature directions. Clearly, the sign of v Qu
determines curvature of the univariate function #, which is convex if and
only if vTQu > 0, and strictly concave otherwise. In the latter case, the
condition 6,(t) > 0 for all t € [0,t] is equivalent to 6,(f) > 0, as always
6,(0) = 0 holds.

Thus we concentrate on the reduced tangent cone
Led(T) = {veI(T): 0" Vf(T) =0} (1.5)

and stipulate only v" Qv > 0 for all v € Iey(T).

Theorem 1 (2nd order local optimality condition) [20,23,48]:

A KKT point T (i.e., satisfying (1.2) for some u € R7*) is a local solution
to (1.1) if and only if

v Qu >0 for all v € Fey(T), (1.6)

i.e., if Q is Iyeq(T)-copositive. If (1.6) is violated, then v € I.oq(T) with
v Qu < 0 is a strictly improving feasible direction.

Copositivity conditions of the form (1.6) will be central also later on in
these notes. Here it may suffice to notice that this condition is clearly satisfied



