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Preface to the Second Edition

This second edition, unfortunately, had to be done without the contribution
of Raphael Hpegh-Krohn, who died on 28 January 1988. The authors of the
present edition hope very much that the result of their efforts would had been
appreciated by him. His beloved memory has been a steady inspiration to us.
Since the appearance of the first edition many new developments have taken
place. The present edition tries to take this into account in several ways, keep-
ing however the basic structure and contents of the first edition. At that time
the book was the first rigorous one to appear in the area and was written in a
sort of pioneering spirit. In our opinion it is still valid as an introduction to all
the work which followed; therefore in this second edition we preserve its form
entirely (except for correcting some misprints and slightly improving some
formulations). A chapter has been however added, in which many new devel-
opments are included. These concern both new mathematical developments
in the definition and properties of the integrals, and new exciting applications
to areas like low dimensional topology and quantized gauge fields. In addition
we have added historical notes to each of the chapters and corrected several
misprints of the previous edition. As for references, we have kept all those of
the first edition, numbered from 1 to 56 (with the corresponding updating),
and added new references (in alphabetic order).

We are very grateful to many coworkers, friends and colleagues, who in-
spired us in a number of ways. Special thanks are due to Philippe Blanchard,
Zdzistaw Brzezniak, Luca Di Persio, Jorge Rezende, Jorg Schifer, Ambar
Sengupta, Ludwig Streit, Aubrey Truman, Luciano Tubaro, and Jean-Claude
Zambrini. We also like to remember with gratitude the late Yuri L. Daleckii
and Michel Sirugue who gave important contributions to this area of research.

Trento, Sergio A. Albeverio
June 2005 Sonia Mazzucchi



Preface to the First Edition

In this work we develop a general theory of oscillatory integrals on real Hilbert
spaces and apply it to the mathematical foundation of the so-called Feynman
path integrals of non-relativistic quantum mechanics, quantum statistical me-
chanics and quantum field theory. The translation invariant integrals we define
provide a natural extension of the theory of finite dimensional oscillatory inte-
grals, which has recently undergone an impressive development, and appear to
be a suitable tool in infinite dimensional analysis. For example, on the basis of
the present work, we have extended the methods of stationary phase, Lagrange
immersions and corresponding asymptotic expansions to the infinite dimen-
sional case, covering in particular the expansions around the classical limit of
quantum mechanics. A particular case of the oscillatory integrals studied in
the present work are the Feynman path integrals used extensively in physics
literature, starting with the basic work on quantum dynamics by Dirac and
Feynman, in the 1940s.

In the introduction, we give a brief historical sketch and some references
concerning previous work on the problem of the mathematical justification
of Feynman’s heuristic formulation of the integral. However, our aim with
the present publication was not to write a review work, but rather to de-
velop from scratch a self-contained theory of oscillatory integrals in infinite
dimensional spaces, in view of the mathematical and physical applications
mentioned above.

The structure of the work is briefly as follows. It consists of nine chapters.
Chapter 1 is the introduction. Chapters 2 and 4 give the definitions and ba-
sic properties of the oscillatory integrals, which we call Fresnel integrals or
normalized integrals, for the cases where the phase function is a bounded per-
turbation of a non-degenerate quadratic form (positive in Chap. 2). Chapters 3
and 5-9 give applications to quantum mechanics, namely N-particle systems
with bounded potentials (Chap. 3) and systems of harmonic oscillators with
finitely or infinitely many degrees of freedom (Chaps.5-9), with relativistic
quantum fields as a particular case (Chap.9).



VIII Preface to the First Edition

This work appeared first as a Preprint of the Mathematics Institute of
Oslo University, in October 1974.

The first named author would like to express his warm thanks to the
Institute of Mathematics, Oslo University, for the friendly hospitality. He
also gratefully acknowledges the financial support of the Norwegian Research
Council for Science and the Humanities. Both authors thank Mrs. S. Cordtsen,
Mrs. R. Mgller and Mrs. W. Kirkaloff heartily for their patience and skill in
typing the manuscript.

Oslo, Sergio A.- Albeverio
March 1976 Raphael J. Hoegh-Krohn
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Introduction

Feynman path integrals have been introduced by Feynman in his formulation
of quantum mechanics [1].! Since their inception they have occupied a some-
what ambiguous position in theoretical physics. On one hand they have been
widely and profitably used in quantum mechanics, statistical mechanics and
quantum field theory, because of their strong intuitive, heuristic and formal
appeal. On the other hand most of their uses have not been supported by an
adequate mathematical justification. Especially in view of the potentialities
of Feynman’s approach as an alternative formulation of quantum dynamics,
the need for a mathematical foundation has been broadly felt and the math-
ematical study of Feynman path integrals repeatedly strongly advocated, see
e.g. [4]. This is, roughly speaking, a study of oscillating integrals in infinitely
many dimensions, hence closely connected with the development of the theory
of integration in function spaces, see e.g. [5]. The present work intends to give
a mathematical theory of Feynman path integrals and to yield applications to
non relativistic quantum mechanics, statistical mechanics and quantum field
theory. In order to establish connections with previous work, we shall give in
this introduction a short historical sketch of the mathematical foundations
of Feynman path integrals. For more details we refer to the references, in
particular to the review papers [6].

Let us first briefly sketch the heuristic idea of Feynman path integrals,
considering the simple case of a non relativistic particle of mass m, moving in
Euclidean space R™ under the influence of a conservative force given by the
potential V(z), which we assume, for simplicity, to be a bounded continuous
real valued function on R"™.

The classical Lagrangian, from which the classical Euler-Lagrange equa-
tions of motion follow, is

L (x Z—f) = % (%)2 —V(x). (1.1)

1A vivid account of the origins of the idea, influenced particularly by remarks of
Dirac [2], has been given by Feynman himself in [3].
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Hamilton’s principle of least action states that the trajectory actually followed
by the particle going from the point y, at time zero, to the point = at time ¢,
is the one which makes the classical action, i.e. Hamilton’s principal function,

Si(v) = jL (7(7), %) dr (1.2)
0

stationary, under variations of the path v = {y(7)}, 0 < 7 <t, with y(0) =y
and 7(t) = z, which leave fixed the initial and end points y and x, and the
time.

In quantum mechanics the state of the particle at time ¢ is described
by a function v(z,t) which, for every t, belongs to L, (R™) and satisfies
Schrodinger’s equation of motion

0 h?
ihge¥(x,t) = —5— D(z, 1) + V()P(z, 1), (1.3)

with prescribed Cauchy data at time ¢t = 0,

¥(x,0) = p(z), (1.4)
where A is the Laplacian on R™ and h is Planck’s constant divided by 2.
The operator
h2
H=—-——A+V 1.5
A+ V (), (15)
the Hamiltonian of the quantum mechanical particle, is self-adjoint on the

natural domain of A and therefore e~ #*# is a strongly continuous unitary
group on Ly (R™). The solution of the initial value problem (1.3), (1.4) is

V(1) = e 5 o(z). (1.6)
From the Lie-Kato-Trotter product formula we have
i it it k
e wH — 5 lim (e"ﬁfve_ﬁfm’) , (1.7)
k—o0
where
—h2 A 1.8
H = — < o
0 2m (1.8)

Assuming now for simplicity that ¢ is taken in Schwartz space S (R"), we
have, on the other hand

oy — (amite) F [ amen 0
e p(z) = | 2mi—t e e (y)dy, (1.9)

m

hence, combining (1.7) and (1.9)
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kn

i ht\ 2 i
G_E’H,’)(l‘) =s— lim (27ri——> /e_ﬂs‘(” """ ’“)f,;(a:g)dxo...drk_l

k—oo mk
o (1.10)
where by definition x; = x and
~ | m(z; - Ij_1)2 t
Sy(zg,. ... zg):; {5——(’%)2———V(1]-) - (1.11)

The expression (1.10) gives the solution of Schrédinger’s equation as a limit
of integrals.

Feynman’s idea can now be formulated as the attempt to rewrite (1.10)
in such a way that it appears, formally at least, as an integral over a space
of continuous functions, called paths. Let namely v(7) be a real absolutely
continuous function on the interval [0,¢], such that v(7;) = z;, j = 0,...,k,
where 7; = 1,‘3 and xg, ...,z are given points in R", with z; = x. Feynman
looks upon S; (zk, ..., xo) as a Riemann approximation for the classical action
Si(y) along the path ~,

S,(’y):/ot% (j—z>2dr—/0tV(7(T))d'r. (1.12)

Moreover when k& — oo the measure in (1.10) becomes formally dy =
NTlp<,<;dv(7), N being a normalization, so that (1.10) becomes the heuris-
tic expression

[ e 0p00)d, (1.13)
v(T)=x
where the integration should be over a suitable set of paths ending at time
t at the point x. This is Feynman’s path integral expression for the solu-
tion of Schrodinger’s equation and we shall now review some of the work
that has been done on its mathematical foundation.? Integration theory in
spaces of continuous functions was actually available well before the advent
of Feynman path integrals, particularly originated by Wiener’s work (1923)
on the Brownian motion, see e.g. [8]. It was however under the influence of
Feynman’s work that Kac [9] proved that the solution of the heat equation
0

7 (@) =0Af(z,t) = V(2)f(z.1), (1.14)
which is the analogue of Schrédinger’s equation when t is replaced by —it, o
being diffusion’s constant, can be expressed by

st = [T 00 + o)W, (1.15)

2 For the physical foundation see the original work of Feynman and the book by
Feynman and Hibbs [1]. Also e.g. [7].
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where dW(7) is Wiener’s measure for the Wiener, i.e. Brownian motion,
process with variance o2dr, defined on continuous paths® v(7), 0 < 7 < ¢,
with y(7) = 0. Hence (1.15) is an expectation with respect to the nor-
mal unit distribution indexed by the real Hilbert space of absolutely con-

2
tinuous functions v(7), with norm ||7||2 = fof (3—:) dr. From this we see

that (1.15) can be formally rewritten as (1.13), with %St('y) replaced by
2

—%lot = (3—}) dr — foi V (y(7))dr. Thus (1.15) is a rigorous path integral
(Wiener path integral) which plays for the heat equation a similar role as
the Feynman path integral for the Schrodinger equation. This fact has been
used [10] to provide a “definition by analytic continuation” of the Feynman
path integral, in the sense that Feynman’s path integral is then understood as
the analytic continuation to purely imaginary t of the Wiener integral (1.15).
The analogous continuation of the Wiener integral solution of the equation
(1.14), with V replaced by iV, which corresponds to Schrodinger’s equation
with purely imaginary mass m, has been studied by Nelson [10] and allows
to cover the case of some singular potentials. These definitions by analytic
continuation, as well as the definition by the “sequential limit” (1.10),* have
the disadvantage of being indirect in as much as they do not exhibit Feyn-
man’s solution (1.13) as an integral of the exponential of the action over a
space of paths in physical space-time. In particular they are unsuitable for
the mathematical realization of the original Dirac’s and Feynman’s ideas (see
e.g. [1, 2])° about the approach to the classical limit A — 0, perhaps one of
the most beautiful features of the Feynman path integral formalism. Namely
(1.13) suggests that a suitable definition of the oscillatory integral should al-
low for the application of an infinite dimensional version of the method of
stationary phase, to obtain, for A~ — 0, an asymptotic expansion in powers
of h, with leading term given by the path which makes S;(v) stationary i.e.,
according to Hamilton’s principle, the trajectory of classical motion. The de-
finition of Feynman path integrals and more general oscillatory integrals in
infinitely many dimensions which we give in this work is precisely well suited
for this discussion, as shown in [41].

Before we come however to our definition, let us make few remarks on
other previous discussions of the mathematical foundations of Feynman path
integrals. The attempt to define Feynman integral as a Wiener integral with
purely imaginary variance meets the difficulty that the ensuing complex mea-
sure has infinite total variation (as first pointed out by Cameron [10], 1) and
Daletskii [10], 2), in relation to a remark in [5]) and is thus unsuitable to define
integrals like (1.13). For further remarks on this complex measure see [12].

A definition of Feynman path integrals for non relativistic quantum me-
chanics, not involving analytic continuation as the ones [10] mentioned before,

3 Actually, Hélder continuous of index less than 1/2, see e.g. [8].

4 For the definition by a “sequential limit”, in more general situations, see e.g. [11].
5 See also e.g. the references given in [41] and [42].

6 The results are also briefly announced in [42].
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has been given by Ito [13]. We shall describe this definition in Chap. 2. Ito
treated potentials V' (z) which are either Fourier transforms of bounded com-
plex measures or of the form c,z®, with a = 1,2, ¢o > O. Ito’s definition has
been further discussed by Tarski [14]. Recently Morette-De Witt [15] has made
a proposal for a definition of Feynman path integral, which has some relations
with Ito’s definition, but is more distributional rather than Hilbert space the-
oretical in character. The proposal suggests writing the Fourier transform of
(1.13) as the “pseudomeasure”” e~ %" looked upon as a distribution acting
on the Fourier transform of e~ # /o V((M)dT provided this exists, where W is
the Fourier transform of Wiener’s measure with purely imaginary variance.
This proposal left open the classes of functions V' for which it actually works.
Such classes follow however from Chap.2 of the present work. Despite its,
so far, incompleteness as to the class of allowed potentials, let us also men-
tion a general attempt by Garczynski [16] to define Feynman path integrals
as averages with respect to certain quantum mechanical Brownian motion
processes, which generalize the classical ones. This approach has, incidentally,
connections with stochastic mechanics [17], which itself would be worthwhile
investigating in relation to the Feynman path formulation of quantum me-
chanics.®

Let us now make a corresponding brief historical sketch about the prob-
lem of the mathematical definition of Feynman path integrals in quantum field
theory. They were introduced as heuristic tools by Feynman in [1] and applied
by him to the derivation of the perturbation expansion in quantum electro-
dynamics. They have been used widely since then in the physical literature,

7 A theory of related pseudomeasures has in-between been developed by Krée. See
e.g. [43] and references therein.

8 Besides the topics touched in this brief historical sketch of the mathematical
study of Feynman path integrals of non relativistic quantum mechanics there
are others we did not mention, either because they concern problems other than
those tackled later in this work or because no clear cut mathematical results
are available. Let us mention however three more areas in which Feynman path
integrals have been discussed and used, at least heuristically.

(a) Questions of the relation between Feynman’s quantization and the usual one:
see e.g. [10],6), [31, 35].

(b) Feynman’s path integrals on functions defined on manifolds other than
Euclidean space, in particular for spin particles. Attempts using the sequen-
tial limit and analytic continuation approaches have been discussed to some
extent, see e.g. [6],7), [36] and references given therein. For the analytic con-
tinuation approach there is available the well developed theory of Wiener
integrals on Riemannian manifolds, see e.g. [37].

(c) As mentioned before, an important application of Feynman path integrals is
in the discussion of the classical limit, where h — 0. In [41] we tackle this
problem and we refer to this paper and [42] also for references (besides e.g.
[1, 2,5, 7, 38]).



6 1 Introduction

see e.g. [18], also under the name of Feynman history integrals. We shall now
shortly give their formal expression. For more details see, besides the original

papers [1], also e.g. [18]. The classical formal action for the relativistic scalar
boson field is S(¢) = So() + [pns1 V (@ (Z,1)) dZdt, with

1 de\? & /002
9} = —_— —_— —_— _Y — 2 A2 T
So(¢) 5 / |(d7—> § (8.11-) mp } dzdt

Rn+1 i=1

where @ is a function of Z, t, m is a non negative constant, the mass of the field,
and V is the interaction. Similarly as in the case of a particle, the classical
solutions of the equations of motion is given by Hamilton’s principle of least
action. The corresponding quantized system is formally characterized by the so
called time ordered vacuum expectation values G (Z1,t1, ..., Tk, tx), formally
given, for t; < ... < tx, k = 1,2,..., by the expectations of the products
D (£1,t1) ... P (Zx, tx) in the vacuum state, where @ (Z,t) is the quantum field
(see e.g. [18], 7)). An heuristic expression for these quantities in terms of
Feynman history integrals is

G (&1, t1,..., Tk tx) =T (/eib'm«p(fl,tl)-..so(fk,tk)dw),

where T is the so called time ordering operator and the integrals are thought of
as integrals over a suitable subset of real functions ¢ on R"*1 | see e.g. [18], 7).
A mathematical justification of this formula, or a related one, would actually
provide a solution of the well known problem of the construction of relativistic
quantum field theory. Somewhat in connection, in one way or the other, with
this problem, a large body of theory on integration in function spaces has been
developed since the fifties and we mention in particular the work by Friedrichs
[19], Gelfand [20], Gross [21] and Segal [22] and their associates, see also e.g.
[23]. With respect to the specific application to quantum field theory, more re-
cently a study of models has been undertaken, see e.g. [24], in which either the
relativistic interaction is replaced by an approximate one, with the ultimate
goal of removing at a later stage the approximation, or physical space-time
is replaced by a lower dimensional one. We find here methods which parallel
in a sense those discussed above in relation with Schrodinger’s equation and,
in a similar way as in that case, we can put these methods in connection with
the problem of giving meaning to Feynman path integral, although in this
case the connection is even a more indirect one as it was in the non rela-
tivistic case. We mention however these methods for their intrinsic interest.
The sequential approach based on Lie-Kato-Trotter formula has been used
especially in two space-time dimensional models particularly by Glimm, Jaffe
and Segal [25]. The analytic continuation approach, in which time is replaced
by imaginary time, is at the basis of the so called Euclidean-Markov quantum
field theory, pursued vigorously by Symanzik [26] and Nelson [27] and applied
particularly successfully, mostly in connection with the fundamental work of
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Glimm and Jaffe, for local relativistic models in two space-time dimensions,
with polynomial [24] or exponential interactions [28] .9 and in three space-time
dimensions with space cut-off [29],1° respectively in higher dimensions with
ultraviolet cut-off interactions [30].!* Much in the same way as for the heat,
Schrédinger and stochastic mechanics equations, there are connections also
with stochastic field theory [17], 4)-7).12

Coming now to the Feynman history integrals themselves, it does not seem,
to our knowledge, that any work has been done previous to our present work,
as to their direct mathematical definition as integrals on a space of paths in
physical space-time, except for the free case [14].

We shall now summarize briefly the content of the various sections of our
work.

In Chap.2 we introduce the basic definition for oscillating integrals on
a separable real Hilbert space, which we call Fresnel integrals, and we es-
tablish their properties. In Chap.3 this theory is applied to the definition
of Feynman path integrals in non relativistic quantum mechanics. We prove
that the heuristic Feynman path integral formula (1.13) for the solution of
Schrédinger’s equation can be interpreted rigorously as a Fresnel integral over
a Hilbert space of continuous paths. In addition we derive corresponding for-
mulae also for the wave operators and for the scattering operator.!? In Chap. 4
we extend, in view of further applications, the definition of Fresnel integrals
and give the properties of the new integral, called Fresnel integral relative to
a given quadratic form. This theory is applied in Chap.5 to the definition
of Feynman path integrals for the n-dimensional anharmonic oscillator and
in Chaps.6 and 7 to the expression of expectations of functions of dynami-
cal quantities of this anharmonic oscillator with respect to the ground state,
respectively the Gibbs states [33] and quasifree states [34] of the correspon-
dent harmonic oscillator.!* In Chap. 8 we express the time invariant quasifree
states on the Weyl algebra of an infinite dimensional harmonic oscillator by

9 The Wightman axioms for a local relativistic quantum field theory (see e.g. [40])
have been proved, in particular.

19 The space cut-off has now been removed [44].

' See also [45].

12 We did not mention here other topics which have some relations to Feynman’s

approach to the quantization of fields, for much the same reason as in the preced-

ing Footnote 8). For discussion of problems in defining Feynman path integrals

for spinor fields see e.g. [36] and references given therein. For the problem of the

formulation of Feynman path integral in general relativity see e.g. [39, 4],2), and

references given there.

Similar results hold for a system of N non relativistic quantum mechanical parti-

cles, moving each in d-dimensional space, interacting through a superposition of

v-body potentials (v = 1,2,...) allowed in particular to be translation invariant.

The same results hold for a system of N anharmonic oscillators, with anharmonic-

ities given by superpositions of v-body potentials, as in the preceding footnote.

15
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Feynman path integrals defined as Fresnel integrals in the sense of Chap. 4,
and this also provides a characterization of such states.

Finally, in Chap.9 we apply the results of Chap.8 to the study of rela-
tivistic quantum field theory. For the ultra-violet cut-off models mentioned
above [30] we express certain expectation values, connected with the time or-
dered vacuum expectation values, in terms of Feynman history integrals, again
defined as Fresnel integrals relative to a quadratic form. We also derive the
correspondent expressions for the expectations with respect to any invariant
quasi-free state, in particular for the Gibbs states of statistical mechanics for
quantum fields ([33]3)).

Notes

The introduction appears here unchanged from the one of the first edition which
obviously took only into account developments up to the year of appearance (1975).
Simultaneously to the appearance of the first edition of this book, a method of
stationary phase for Feynman path integrals was developed [87] and Maslov’s
approach to Feynman path integrals via Poisson processes became known [38].
These and subsequent developments are discussed in Chap. 10. Concerning foot-
note 2 we might add the following more recent references (articles resp. books
on Feynman path integrals and their applications, of general interest, not nec-
essarily concerned with the rigorous approach discussed in the present book):
[60, 75, 74, 111, 125, 161, 179, 192, 113, 208, 209, 210, 211, 228, 229, 251, 253,
264, 287, 315, 318, 323, 325, 354, 376, 378, 401, 404, 409, 458, 467, 250, 90].
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The Fresnel Integral of Functions
on a Separable Real Hilbert Space

We consider first the case of the finite dimensional real Hilbert space R",
with some positive definite scalar product (z,y). We shall use |z| for the
Hilbert norm of z, such that |a:|‘) = (z, ). Since e312” is a bounded continuous
function it has a Fourier transform in the sense of tempered distributions and
in fact

/e%mzei(m'y)dz = (27ri)% e‘%l’”?, (2.1)

with dz = dz...dz,, where z; = (e;,z), e1,...,e, being some orthonormal
base in R™ with respect to the inner product (, ). For a function f in the
Schwartz space S (R™) we shall introduce for convenience the notation

/ f(z)dz = (2ri) " 2 / f(z)dz, (2.2)

so that ] f(z)dz is proportional to the usual integral with a normalization
factor that depends on the dimension. We get from (2.1) that, for any ¢ €
S (R™)

/ 2o 5(z)dz = / e~ 217 p(2)dx, (2.3)

where () = [l @Y p(y)dy.

Let now f(z) be the Fourier transform of a bounded complex measure
wy lpll < oo, f(z) = [el@¥du(y). We shall denote by F (R") the linear
space of functions which are Fourier transforms of bounded complex measures.
Since the space of bounded complex measures M (R™) is a Banach algebra
under convolution in the total variation norm ||u||, we get that F (R")is a
Banach algebra under multiplication in the norm ||f|, = ||u| for f(z) =
[el@¥dpu(y). The elements in F (R™) are bounded continuous functions and
we have obviously || f|| . < ||fll,- For any f € F (R") of the form

f@) = [ =)



