

ANALYSIS

OF DISTRIBUTED

REAI-TIME
SIS

PAUL J. FORTIER

- iII | .New Y'ork,'NY

Library of Congress Catalog Card Number 85-60356

Copyright ©1985 by Intertext Publications, Inc. All rights reserved.
Printed in the United States of America. Except as permitted under the
United States Copyright Act of 1976, no part of this book may be
reproduced or distributed in any form or by any means, or stored in a
data base or retrieval system, without the prior written permission of the
publisher.

10 9 87 65 43 21

ISBN 0-07-021k19-3

Intertext Publications, Inc.
McGraw-Hill Book Company
1221 Avenue of the Americas
New York, NY 10020

ADA is a registered trademark of the United States Department of
Defense. Cray I is a registered trademark of the Cray Computer
Corporation.

Acknowledgments

The realization of this book is due to more than just the efforts of the author.
In order to put the record straight I wish to express my appreciation to the
following individuals. First, I wish to thank all my instructors throughout my
formative and present period of instruction for instilling in me the zest for
knowledge and the seeds of thought. They truly made this effort possible. Ad-
ditionally, I wish to give special thanks to Robert Charette of Softec for his
many enlightening discussions on various portions of this text, to Thomas
Conrad for his inputs in the area of software engineering, and to Daniel Jut-
telstad for his blue-sky discussions and constant prodding. A very special level
of gratitude is due to Lloyd Watts for putting my handwritten notes into us-
able form, and to William Giallo for the artwork which appears throughout
the book. Finally, I want to thank my wife, Kathleen, for her crucial efforts at
clarifying and organizing my original illustrations, and for her undying sup-
port during the preparation of this manuscript. Finally, I want to thank my
children, Daniel, Brian, and Nicole, for their patience with me while I con-
stantly neglected them during the writing of this book.

Paul J. Fortier
Newport, Rhode Island
April, 1985

OCRNQN N~

Table of Contents

Introduction 1
The Basics of Computer Architecture 9
Distributed Computer Systems: Introduction and Concepts 46
Communications Networking 70
Operating Systemsooiiiii 95
Data Base Management Systems 121
Performance Evaluation 164
Computer-Aided Designcooooii . 187
Total System Designooiiiii 211
Appendix ... 267
References 274

CHAPTER ONE

Introduction

The design of computer systems, whether distributed or otherwise, is made
up of the selection and design of the basic building blocks which comprise
the system (such as memories, CPUs, I/O devices, networks, software, etc.),
the combination of these elements into a system architecture, and the evalua-
tion of whether the collection of components constitutes a successful com-
puter system. This evaluation can be done before the computer is built via
analytical simulation models, during design time via modeling and testing to
verify that the initial specification or expectations are being met or through
user acceptance via rigorous use and feedback once the system has been deliv-
ered.

Each one of these evaluation techniques has merit from a designer’s view-
point. At one extreme they allow total flexibility to build anything wanted
and see what happens afterwards (the architect’s Heaven). That is, one can
wait until the system is delivered and used to see if it truly is an operable de-
sign and implementation. At the other extreme, rigorous a priori studies will
drive the actual design to the point where the architect has little to do once
the initial testing is done. That is, the major building blocks would be se-
lected based on user needs and the design would be derived directly from the
basic building blocks.

The above extremes represent the art of computer design versus the science
of computer design (Figure 1.1).

These design techniques can be accomplished ad hoc. That means, as you
build a computer, the build-a-little, test-a-little approach can be used, or the
project can be based upon structured, computer-aided design tools to give an
operable and efficient design before the building of hardware and expending
of capital is begun.

Based on the above, the goal of this text is to introduce the reader to the
concepts for design and performance evaluation of Distributed Computer Sys-
tems. We will start with the elementary notion of the nature of a computer.
This discussion will deal with the basic components of the classic von Neu-
mann machine, followed by introductions of concepts for other classes of
computers. It will include special purpose machines such as signal processors,
array processors, backend computers, data flow machines, etc. This will lead
into a discussion of what constitutes a distributed computer, what its capabili-

1

2 DESIGN AND ANALYSIS OF DISTRIBUTED REAL-TIME SYSTEMS

FIGURE 1.1 Approach to system design

ties are, and what problems arise from distribution not seen in the central
computer models and how they differ.

Following this the reader will be introduced to the major components
which comprise distributed systems, namely networks, operating systems, and
data base management systems, ending with discussions for performance eval-
uation and computer-aided design.

Network architecture design will deal with the description, classification,
and design of protocols and hardware to allow a collection of computers or
devices to converse over some geographic distance. This distance can be
widely separated, as seen in ARPANET, or more tightly coupled as in a local
network, as seen in a real-time control application such as paper mills, nuclear
plants, ships, planes, etc.

The next section will describe operating systems comprised of a collection
of Software/Firmware/Hardware responsible to provide a usable environment
for user tasks to run while not interfering with one another.

Following this section a chapter dealing with data base management is pro-
vided. A data base management system provides the interface and control to
global data in a unified fashion to all users. This chapter will describe the
basics of DBMS followed by the issues in the design and structure of distrib-
uted data base management systems. Once this concept has been adequately
covered, the text will introduce the reader to performance evaluation of com-
puter systems via analytical models and simulation leading to discussion of de-
sign aids for users in automating the design of distributed systems.

Architecture and History of Early
Computers

In this section we examine the architecture of the basic von Neumann ma-
chine and describe the historical growth and development of computers from

INTRODUCTION 3

the mid-1940s when von Neumann wrote his paper [379] dealing with the
organization of the stored information computer, to the present status of dis-
tributed computers.

The first computer grew out of the need of the military to have a mecha-
nism to quickly compute ballistic missile trajectories. The outgrowth of these
carly studies was ENIAC, completed in 1946 at the Moore School of Engi-
neering under the direction of Eckert and Mauchly. It consisted of approxi-
mately 1,500 relays and 18,000 vacuum tubes and had the capability of 5,000
add/subtract instructions per second. This early computer had hardwired pro-
grams and required rewiring to reprogram. This system was used for approxi-
mately 10 years before being retired.

Modern stored program computers appeared in 1944. The idea for this
class of computers is attributed to von Neumann. His first stored program
computer was the EDVAC, which was never built. Wilkes, who studied with
von Neumann, built the first stored program computer, the EDSAC, in 1949
in the United Kingdom. It had a prime memory of 1,024 words and second-
ary memory of 4,600 words. It was the first computer to use a memory
hierarchy.

At the same time this was occurring, von Neumann, Goldstein, et al were
working on the TAS or von Neumann machine at Princeton. This machine
became the basis for all modern computers. The architecture has not changed
drastically over the years, other than for technology insertion. Due to its im-
portance, a brief description of it is included herewith. A more detailed study
will be included in future chapters.

The basic von Neumann machine is comprised of five major building blocks
or components (Figure 1.2) as described below.

I_" ________ |

!
I e —]
| MEMORY CONTROL |— — -———l
|
| v |

I
| ‘ | I
¥ l ¥
INPUT ALU OUTPUT

FIGURE 1.2 Von Neumann/IAS architecture.

INPUT

The input unit functions as the means upon which a human can put informa-
tion (programs/data) into the computer to be acted on.

A myriad of devices have been built to date to describe these functions, as
will be seen in Chapter 2.

4 DESIGN AND ANALYSIS OF DISTRIBUTED REAL-TIME SYSTEMS

OUTPUT

The output unit functions as the means upon which the computer provides
the requisite outputs as described to it via the user’s stored program (input)
commands.

MEMORY

The memory unit functions as the medium which is utilized in storing in-
structions (programs), intermediate data, and final results of computations.

ALU

The CPU (arithmetic logic unit) is the functional unit which performs the in-
structions (arithmetic, logic, and redistribution operations) on supplied data.

CONTROL

The control unit interprets instructions supplied from memory and provides
the needed logic signals to devices to execute the interpreted instructions.

The von Neumann architecture operates in a very structured manner. That
is, it operates under a cycle called the read/execute cycle. This cycle, in gen-
eral, performs as follows:

1. The control unit fetches an instruction from memory based on a
pointer which is incremented through a program.

2. The control unit then decodes (interprets) the instruction into its
actions.

3. Based on this decoding, the instruction is now executed. Example:
fetch operand, store operand, get input, perform addition, etc.

4. Once step three is completed, control reverts to step one.

Von Neumann’s original paper describes in great detail much of what is
seen in today’s computers. From this start computers went through various
phases, but they still greatly resemble their early ancestors.

The mid- to late-1940s saw great growth in research, at various institu-
tions, into the design of IAS (von Neumann) style machines.

During the time that the IAS computers were being built, the first real-
time response computer was being built at M.LT. It was completed in 1951.
This type of computer is significant because it allowed computers to be used
in fast response situations or human life critical situations such as real-time
industrial simulations, air traffic control, process control, etc.

The 1950s saw the birth of the computer industry. The first successful ma-
chine was the UNIVAC I delivered in 1951 to the census bureau. Its major
architectural advance was in its use of magnetic tapes for inputting and out-
putting and storage of large amounts of data.

INTRODUCTION 5

Following these early machines were subsequent design modifications With
cach new computer some level of architecture was either refined or upgraded
via technology insertion.

Following this and other earlier successes, the industry took off. The next
big leap for the industry came with the arrival of core memories in the mid-
1950s. This event allowed designers to replace the inefficient electrostatic
storage tubes with a new, more reliable, survivable storage medium which re-
quired less space, weight, and power than its predecessor. Along with this
new memory came an advance in multilevel storage systems, that is, the use of
magnetic tape and disk (drum) as secondary storage. At the same time, to al-
leviate the burden of programming in machine languages, efforts were begun
to develop various high level languages. The most noteworthy, based on its
impact on the industry, would have to be the development by Bachus and his
coworkers of FORTRAN during the period 1954-1957. The influence of this
language is still felt throughout the industry.

The next phase in the history of computers came in the late 1950s to mid-
1960s and was due to the use of transistors. These devices allowed many
manufacturers to supply more computing power for the dollar.

The trend at this point was to continually develop larger and more sophisti-
cated machines such as the CDC 6600, and the Burroughs 5000 to name a
few. These machines were designed to be used with high-level languages and
included sophisticated operating systems.

As time went on, the trend began to shift from large scientific computers
to general purpose computers. The emergence of Digital Equipment Corpo-
ration (DEC) with its line of minicomputers and the advance of MSI (me-
dium-scale integrated circuits) followed by LSI (large-scale integration) and
presently VLSI (very large-scale integration) have aided computer designers
by allowing them to provide more and more capability for the same or less
cost than previous designers. This is a phenomenon not seen in other indus-
tries. These led to many markets being developed such as personal computers,
MICroprocessors, minicomputers, super computers, etc.

Along with these strides in architectural features software also progressed
through many phases. Operating systems grew from the primitive capability
of one user on the system at a time (Figure 1.3), through the batch environ-
ment where job turnaround time was reduced, then on to multiprocessing
where the CPU, utilizing its operating system, swaps jobs in and out, giving
all users the feel of running the computer by themselves.

USER 1/0 MEMORY CPU

FIGURE 1.3 Single-user system, c. 1952.

6 DESIGN AND ANALYSIS OF DISTRIBUTED REAL-TIME SYSTEMS

1/70 MEMORY CPU

USER QUEUE
CARDREADER

FIGURE 1.4 Batch processing, c. 1958.

| MAIN
USER | o [/0 MEMORY CPU
— e
USER 2
170
USER 3

FIGURE 1.5 Time-sharing computer [absolute address), c. 1962.

USER | 1/0 MEMORY MAPPER CPU
[
1/0
USER 2
USER N DISK
e

FIGURE 1.6 Time sharing with virtual storage hlerarchy, c. 1972.

The early stand-alone concept of the von Neumann machine, where one
user used the computer while others waited until he was done, was an ineffi-
cient use of an expensive resource (Figure 1.3). This concept disappeared and
progressed, based on user need, into batch systems where the inefficiency of
users’ jobs being loaded and unloaded once completed was resolved. In a
batch environment many users’ jobs were bundled together and fed into the
machine and outputted once completed. This required only one setup and
breakdown between much larger jobs. This aided system efficiency, but still
did not remove all the inefficiency. If a job acquired the CPU and had long

INTRODUCTION 7

idle loops for I/O, etc. the CPU would remain idle when this occurred (Fig-
ure 1.4). The next generation of operating systems removed this inefficiency
by allowing many users to share the CPU at one time via interactive I/O de-
vices. The idea here was to give each process a chunk (quantum) of CPU
time to operate in. If the quantum was well selected, then users would view
the computer as one dedicated to their task. The problem with this setup was
that the system still required users to have great knowledge of the system
structure and addressing to be able to locate their programs in physical mem-
ory (Figure 1.5).

The present operating systems supply a level of multiprocessing to users
along with a virtual memory environment. That is, many users can use the
computer simultaneously while utilizing a memory space much larger than the
physical space. The operating system in concert with compilers, linkers, and
loaders provides mechanisms to handle user virtual addresses and map them
to physical hardware (Figure 1.6).

The trends in the future are clearly based on the past. Vendors will strive
for smaller, faster and cheaper computers which supply the same, if not more,
computing power.

This trend will aid in the development of low-cost collections of computers
combined into a single system (distributed processing).

These networks will be used by personal computer users’ resource-sharing
networks (Figure 1.7) as well as industrial users’ local area networks (Figure
1.8) performing a myriad of user tasks.

The remainder of this book will discuss the basic hardware blocks of a
computer and how these are combined into collections of computers to de-
liver increased capability to users along with discussions of how to select the
proper capabilities in support of user requirements.

USER

USERS

NETWORK
(COMMUNICATION SERVICE)
WIDELY DISTRIBUTED
10 THOUSAND METERS

USERS

CONCENTRATOR

USERS

FIGURE 1.7 Resource networks.

8 DESIGN AND ANALYSIS OF DISTRIBUTED REAL-TIME SYSTEMS

S

HIGH SPEED LOCAL NETWORK
<1000 METERS

COAX, FIBER
1-100 MEGA BYTES
TRANSFER RATE

FIGURE 1.8 Local area network.

CHAPTER TWO

The Basics of Computer
Architecture

All modern digital computers consist of an interconnection of central process-
ing units (CPU), memories, and input/output devices connected together by
communication buses and controlled via the control unit (Figure 2.1). This
chapter will discuss and introduce the architecture of these four components
and the method by which they are interconnected. Also presented will be a
high-level vista of various devices built from these basic building blocks,
namely associative processors, array processors, signal processors, pipeline
processors and multiprocessors. (Figure 2.2).

r _____ CONTROL
— UNIT

|
LY

7
| | |
i { |
|
L ¥ ¥
INTERNAL OUTPUT

STORAGE > L -
(MEMORY) il

INPUT
—™1 uNIT

F: :::'.'_':_T_—_'Z_—_':T] 1

ARITHMETIC
LOGIC UNIT
(ALU)

FIGURE 2.1 Control unit interaction.

|
L]

-
|

Arithmetic Logic Unit (ALU)

The ALU is the device in a digital computer which performs the actual work
of computation, calculation, and comparisons. This device is composed of a
shifter, adder, logical operator circuit, and an accumulator, temporary and
conditional registers. This device accepts data from the internal storage mem-
ory and acts on it based on the control unit signals being supplied.

Using the supplied data the ALU may be requested to do operations such
as add the content of the accumulator (ALU basic resident register for per-

2

10 DESIGN AND ANALYSIS OF DISTRIBUTED REAL-TIME SYSTEMS

CPU=CONTROL UNIT + ALU + REGISTERS

170 I/0

MEMORY
(A) MULTI PROCESSOR
CONTROL
ALU ALU ALU ALU
REGISTERIREGISTER|REGISTER|REGISTER

MAIN MEMORY

(B) ARRAY PROCESSOR

PE = PE & PE & PE

i

MEMORY

(C) PIPELINE PROCESSOR
FIGURE 2.2 Muitiple-processor architecture configuration.

forming operations) with the data being supplied into the temporary register
(Figure 2.3) and store the result back into the accumulator (A register).

Other operations that the ALU would be required to perform include: in-
crement contents of the A register and store results back into the A register,
neumonic code Inc A (operation code or assembly instruction), decrement
the contents of the A register and store back into B register.

Neumonic dec A

THE BASICS OF COMPUTER ARCHITECTURE

A
REGISTER

TEMPORAY
REGISTER

ALU —

%OENG%TT'SS-" TO CONTROL UNIT

FIGURE 2.3 Arithmetic logic unit.

Load accumulator with the contents of memo
store A into memory location X.

DATA
ouT
MEM (x) sl @
A
MEMORY DATA — ALU o
B
CONDITION
REGISTER
NEUMONIC LDA X A <.—— MEM (X)
STA X MEM (X) @——— o A

FIGURE 2.4 Operation of ALU.

Neumonic LDA X
STA X

Load B register with the contents of memo

into memory location X.

A<-----MEM[X]
MEM[X]<------A

ry location X or store B register

11

ry location X (Figure 2.3) or

12 DESIGN AND ANALYSIS OF DISTRIBUTED REAL-TIME SYSTEMS

Neumonic LDB X B<------ MEMJX]
STB X MEM[X]<------ B

Add memory X to register A or add memory to register B.

Neumonic ADA X A<-----A+ MEM[X]
ADB X B<-----B+MEM[X]

Other operations include arithmetic such as sub B from A,
Multiply A times B, and divide A by B.

Multiply, These require either microprogramming algorithms or
Divide extra hardware to perform and usually require many

more memory cycles to perform.

The ALU also performs logical operations such as:

compares A with B and outputs results into condition register as well
as, and, or, etc. All these operations output a status bit into the condi-

tion register.

Outputs of the condition register are then used by the control hardware/
software to produce the proper effect on the processor. This action will be

described further on in this chapter.

ALUs are comprised of hardware capable of performing the tasks (instruc-
tions) listed above. Hardware for these units includes devices such as half ad-
ders, full adders, right/left shifters, comparator circuits, and, or, nor, etc.
connected by internal buses and controlled via the control unit’s control lines.

A —g
B —

gt

FIGURE 2.5 Half adder.

FIGURE 2.6 Full adder.

rD— SUM = BA +.AB
¢ CARRY OUT= AB
CARRY IN
A —q
8 — SUM
B

=S

CARRY
ouT

More details of specific hardware and software algorithms for the opera-

tions of the ALU can be found in [375], [376], [377], [378].

