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preface

Although there are many textbooks that deal with the formal apparatus of quantum
mechanics (QM) and its application to standard problems, there are none that take
into account the developments in the foundations of the subject that have taken
place in the last few decades. There are specialized treatises on various aspects of
the foundations of QM, but none that integrate those topics with the standard
material. I hope to correct that unfortunate dichotomy, which has divorced the
practical aspects of the subject from the interpretation and broader implications of
the theory. This book is intended primarily as a graduate-level textbook, but it will
also be of interest to physicists and philosophers who study the foundations of QM.
Parts of the book could be used by senior undergraduate students. Some of the
major innovations of this book are as follows.

It is generally recognized that probability is an essential fundamental concept
needed for the interpretation and application of QM, and yet this topic has been
seriously neglected in QM textbooks. In the first chapter, I briefly review probabil-
ity theory and its interpretations. As the formalism of QM is developed throughout
the book, it is related to the axioms of probability theory.

A great deal of care is devoted to the quantum state concept because it is
crucial for a sound interpretation of the theory. The concept of state is first
discussed qualitatively and related to probability in Chapter 2. This preliminary
treatment is reinforced by more detailed treatments of state preparation and state
determination in Chapter 8 and by the theory of measurement in Chapter 9. The
theory of measurement is sometimes regarded as difficult or mysterious. However
there are some firmly established results, which have not been taken into account in
previous textbooks, but which are easy to develop and are very important in
clarifying the interpretation of QM. Other chapters in which questions of interpreta-
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tion come to the fore are Chapters 15 (the classical limit) and 20 (Bell’s theorem).
But a concern with understanding, and not merely calculation, pervades the whole
book.

In addition to emphasizing the conceptual foundations and integrating the
interpretation into the main body of the subject, I have introduced several innova-
tions in the mathematical formalism. Rigged Hilbert space is introduced in Chapter
1 as a generalization of the more familiar Hilbert space. It allows vectors of infinite
norm to be accommodated within the formalism, and eliminates the vagueness that
often surrounds the question of whether the operators that represent observables
possess a complete set of eigenvectors. The space—time symmetries of displacement,
rotation, and Galilei transformations are exploited in Chapter 3 in order to derive
the fundamental operators for momentum, angular momentum, and the Hamilto-
nian. This approach replaces the traditional heuristic, but inconclusive arguments
based on analogy and wave-particle duality, which so frustrate the serious student.
It also introduces symmetry concepts and techniques at an early stage so that they
are immediately available for practical applications. This is done without requiring
any prior knowledge of group theory. Indeed, a hypothetical reader who is ignorant
of the mathematical meaning of the word group, and who interprets the reference to
groups of transformations and operators as meaning sets of related transformations
and operators, will lose none of the essential meaning.

Whenever possible 1 refer to real experiments that test or illustrate the
fundamental aspects of quantum mechanics, such as the direct measurement of the
momentum distribytion in the hydrogen atom. Many of the experiments use
the single-crystal neutron interferometer, which in recent years has turned thought
experiments into real experiments. Others involve lasers and quantum optics.

Some other important topics, seldom included in previous QM textbooks, are
the following: Landau levels of a charged particle in a magnetic field, the
Aharonov-Bohm effect, and the ultrahigh-field Zeeman effect (Chapter 11); quan-
tum beats in atomic spectroscopy (Secs. 12-4 and 19-7); quantum coherence, photon
correlations (bunching and antibunching), and the limitations of classical electro-
magnetic theory (Chapter 19); and, finally, Bell’s theorem, whose significance and
implications are still being debated (Chapter 20).

The first chapter of the book consists entirely of raathematical topics (vector
spaces, operators, and probability), which may be quickly skimmed by mathemati-
cally sophisticated readers who are anxious to get to the physical development that
begins in Chapter 2. They have been placed at the beginning, rather than in an
appendix, because one needs not only the results but also a coherent overview of the
theory of these topics, since they form the mathematical language in which quantum
theory is expressed. The amount of time that a student or a class spends on Chapter
1 may be expected to vary widely, depending on the degree of mathematical
preparation. But, in any case, the important topics are collected together for
convenient reference. '

Many of the chapters are based on standard material; however I have included
many novel examples and problems. Solutions to certain problems are given in
Appendix D. These are not intended to be a representative selection. The solved
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problems are those that are particularly novel and those for which the answer or the
method of solution is important for its own sake (rather than merely being an
exercise).

At various places throughout the book 1 have segregated in double brackets,
f{...1], comments of a historical, comparative, or critical nature. These remarks
would not be needed by a hypothetical reader with no previous exposure to
quantum mechanics. They are used to relate my approach, by way of comparison or
contrast, to that of earlier writers, and sometimes to show, by means of criticism,
the reason for my departure from the older approaches.

Acknowledgments

The writing of this book has drawn on a great many published sources, which are
acknowledged at various places throughout the text. However I would like to give
special mention to the work of Thomas F. Jordan, which forms the basis of Chapter
3. Many of the chapters and many of the problems have been field tested on classes
of graduate students at Simon Fraser University. Special mention goes to my former
student Bob Goldstein, who discovered a simple proof for the theorem in Sec. 8-3,
and whose creative imagination was responsible for the paradox that forms the basis
of Problem 9-6. In preparing Sec. 1-5 on probability theory, 1 benefited from
discussions with Prof. C. Villegas. I would also like to thank Hans von Baeyer for
the key idea in the derivation of the orbital angular momentum eigenvalues in Sec.
8-3, and W. G. Unruh for pointing out interesting features of the third example in
Sec. 9-6.

Leslie E. Ballentine
Simon Fraser University



Pretace

Chapter 1
1-1
1-2
1-3

1-4
1-5

Chapter 2

2-1
2.2
23
2-4

Chapter 3

3-1
3-2
3-3
3-4
3-5

Mathematical Prerequisites

Linear Vector Space 2

Linear Operators 5

Self-Adjoint Operators 7

Hilbert Space and Rigged Hilbert Space 16
Probability Theory 19

The Formulation of Quantum Mechanics

Basic Theoretical Concepts 30
Conditions on Operators 35
General States and Pure States 37
Probability Distributions 40

Kinematics and Dynamics

Transformations of States and Observables 47
The Symmetries of Space-Time 49

Generators of the Galilei Group 51

ldentification of Operators with Dynamical Variables
Composite Systems 65

contents

xili

30

47

58

vii



will

G oW W
DN,

Chapter 4

41
4-2
4-3
4-4
4.5
4-6
4-7

Chapter 5

5-1
5-2
5-3
5-4
5-5
5-6

Chapter 6

6-1
6-2
6-3

Chapter 7

7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8

Chapter 8

8-1
8-2

[{Guantizing a Classical System]] 87
Equations of Afotion 68
Symmetrias and Conservation Laws I4)

Coordinate Representation and Applications

Coordinate Representation 74

The Wave Equation and Its Interpretation 75
Galilei Transformation of Schrddinger’s Equation
Frobability Flux 80

Conditions on Wave Functions 82

Energy Eigenfunctions for Free Particles 84
Tunneling 85

Momentum Representation and Applications

Momentum Representation 93
Momentum Distribution in an Atom 95
Bloch’'s Theorem 97

Diffraction Scattering: Theory 99
Diffraction Scattering: Experiment 103
Motion in a Uniform Force Field 106

The Harmonic Oscillator

Algebraic Solution 111
Solution in Coordinate Representation 114
Solution in H Representation 116

Angular Momentum

Eigenvalues and Matrix Elements 119

Explicit Form of the Angular Momentum Operators
Orbital Angular Momentum 124

Spin 128 ]

Finite Rotations 131

Rotation through 2= 137

Addition of Angular Momenta 139

Irreducible Tensor Operators 146

State Preparation and Determination

State Preparation 154
State Determination 158

78

122

Contents

74

93

111

119

154



Contents R

8-3
8-4

States of Composite Systems 160
Indeterminacy Relations 165

Chapter 9 Measurement and the interpretation of States

9-1
9-2
9-3
9-4
9-5
9-6

Chapter 10

10-1
10-2
10-3
10-4

Chapter 11

11-1
11-2
11-3
11-4
11-5

Chapter 12
12-1
12-2

12-3
12-4

Chapter 13
13-1

13-2
13-3

Chapter 14

14-1
14-2

An Example of Spin Measurement 171

A General Theorem of Measurement Theory 173
The Interpretation of a State Vector 174

Which Wave Function? 178

Spin Recombination Experiment 180

Joint and Conditional Probabilities 182

Formation of Bound States

Spherical Potential Well 192

The Hydrogen Atom 196

Estimates from Indeterminacy Relations 203
Some Unusual Bound States 205

Charged Particle’in a Magnetic Fieid

Classical Theory 208

Quantum Theory 210

Motion in a Uniform Static Magnetic Field 214
Aharonov - Bohm Effect 220

Zeeman Effect 223

Time-Dependent Phenomena

Spin Dynamics 229

Exponential and Nonexponential Decay 234
Energy - Time Indeterminacy Relation 238
Quantum Beats 240

Discrete Symmetries
Space inversion 244

Parity Nonconservation 247
Time Reversal 250

Approximation Methods

Stationary State Perturbation Theory 259
Variational Method 270

171

192

208

229

244

259



e Contents

14-3 Time-Dependent Perturbation Theory 280
14-4 Atomic Radiation 286

Chapter 15 The Classical Limit 294

15-1  Not Classical Msachanics, but Classical Statistical Mechanics 295
156-2 The Hamilton - Jacobi Equation and the Quantum Potential 297
15-3 Quantal Trafectories 300

15-4 The Large Quantum-Number Limit 301

Chapter 16 Scattering 306

16-1 Cross Section 306

16-2 Scattering by a Spherical Potential Weil 311
16-3 @General Scattering Theory 316

16-4 Born Approximation and DWBA 323

16-5 Scattering Operators 328

16-€ Scattering Resonances 336

16-7 Diverse Topics 340

Chapter 17 Identical Particles 346

17-1  Permutation Symmetry 346

17-2 Indistinguishability of Particles 348

17-3 The Symmetrization Postulate 350

17-4  Creation and Annihilation Operators 353

Chapter 18 Many-Fermion Systems 365

18-1 Exchange 365

18-2 The Hartree - Fock Method 370

18-3 Dynamic Correlations 375

18-4 Fundamental Consequences for Theory 381
i8-5 BCS Pairing Theory 382

Chapter 19 Quantum Mechanics of the Electromagnetic Field 392

19-1 Normal Modes of the Field 393

19-2 Electric and Magnetic Field Operators 395
19-3 Zero-Point Energy and The Casimir Force 399
19-4 States of the Electromagnetic Field 403



Corntents

19-5
19-6
19-7
19-8

Chapter 20
20-1
20-2
20-3
20-4
20-5
20-6

Appendix A

Appendix B

Appendix C

Appendix D

Spontaneous Emission 410

Photon Detectors 413

Correlation Furictions 418

Coherence 425

Bell's Theorem and Its Consequences

The Argument of Einstein, Pédo:’sky, and Rosen
Spin Correlations 439

Bell's Inequality 441

Clauser and Horne 444

Polarization Correlations 247
Implications of Bell’s Theorem 452

Schur’s Lemma

Irreducibility of Q and P

Proof of Wick's Theorem
Solutions to Selected Problems
Bibliography

Index

437

%1

437

457

459

460

462

475

481



chapter 1

mathematical
prerequisites

Certain mathematical topics are essential for quantum mechanics, not only as
computational tools, but because they form the most effective language in terms of
which the theory can be formulated. These topics include the theory of linear vector
spaces and linear operators and the theory of probability. The connection between
quantum mechanics and linear algebra originated as an apparent by-product of the
linear nature of Schrodinger’s wave equation. But the theory was soon generalized
beyond its simple beginnings, to include abstract “wave functions” in the 3N-
dimensional configuration space of N particles, and then to include discrete internal
degrees of freedom such as spin, which have nothing to do with wave motion. The
structure common to all of these diverse cases is that of linear operators on a vector
space. A unified theory based on that mathematical structure was first formulated
by P. A. M. Dirac, and the formulation used in this book is really a modernized
version of Dirac’s formalism. - '

That quantum mechanics does not predict a deterministic course of events, but
rather the probabilities of various alternative possible events was recognized at an
early stage, especially by Max Born. Modern applications seem more and more to
involve correlation functions and nontrivial statistical distributions (especially in
quantum optics), and therefore the relations between quantum theory and probabil-
ity theory need to be expounded.

_ The physical development of quantum mechanics begins in Chapter 2, and the
mathematically sophisticated reader may turn there at once. But since not only the
results, but also the concepts and logical framework of Chapter 1 are freely used in
developing the physical theory, the reader is advised to at least skim this first
chapter before proceeding to Chapter 2.



2 Mathematical Prerequisites Chap. 1

1-1 LINEAR VECTOR SPACE

A linear vector space is a set of elements, called vectors, that is closed under
addition and multiplication by scalars. That is to say, if ¢ and  are vectors, then
so is a¢ + by, where a and b are arbitrary scalars. If the scalars are the field of
complex (real) numbers, we speak of a complex (real) linear vector space. Hence-
forth, the scalars will be the complex numbers unless otherwise stated.

Among the very large number of examples of linear vector spaces, there are
two classes that are of common interest.

Example (i) Discrete vectors, which may be represented as columns of complex numbers,

g

Example (ii) Spaces of funcuons of some type, for example, the space of all differentiable
functions.

One can readily verify that these examples satisfy the definition of a linear vector
space.

A set of vectors {¢,} is said to be linearly independent if no nontrivial linear
combination of them sums to zero, that is, if the equation X, ¢,¢, = 0 can hold only
when ¢, = 0 for all ». If this condition does not hold, the set of vectors is said to be
Imearly dependent, in which case it is possible to express a- member of the set as a
linear combination of the others.

The maximum number of linearly independent vectors in a space is called the
dimension of the space. A maximal set of linearly independent vectors is called a
basis for the space. Any vector in the space can be expressed as a linear combina-
tion of the basis vectors.

An inner product (or scalar product) for a linear vector space associates a
scalar (y, ¢) with every -ordered pair of vectors. It must satisfy the following
properties:

a. (Y, ¢) = a complex number
b. (¢, ¥) = (¥, 9)*

C (9, ¥y + ) = o, Y1) + (9, )
d. (¢, ¢) = 0 with equality holding if and only if ¢ = 0

From properties b and c it follows that

(e + ¥y, 8) = cf (¥, 0) = ‘;‘f(‘l’z’*ﬁ)

Therefore, we say that the inner product is linear in its second argument, and
antilinear in its first argument.
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Corresponding to our previous examples of vector spaces, we have the follow-
ing inner products:

Example (i)
If ¢ is the column vector with elements g, a,,... and ¢ is the column vector with
elements b, by, ..., then
(¢,9) =atb +ath, + -
Example (ii)

If ¢ and ¢ are functions of x, then

(4,9) = [¥2(x)$(x)w(x) dx

where w(x) is a nonnegative weight function.

The inner product generalizes the notions of length and angle to arbitrary spaces. If
the inner product of two vectors is zero, the vectors are said to be orthogonal.

The norm (or length) of a vector is defined as (||| = (¢, $)!/2. The inner
product and the norm satisfy two important theorems: Schwarz’s inequality,

(v, 0)1" < (4, 9)(3,9) (1-1)
and the triangle inequality,
I + &) I < 1wl + ol (1-2)

In both cases, equality holds if and only if the vectors are linearly dependent.

Corresponding to any linear vector space V there exists the dual space of
linear functionals on V. A linear functional F assigns a scalar F (¢) to each vector ¢,
such that

F(a¢ + by) = aF(¢) + bF(y) (1-3)

for any vectors ¢ and ¥ and any scalars a and b. The set of linear functionals may “
itself be regarded as forming a linear space ¥’ if we define the sum of two
functionals as

(F, + B)(¢) = Fi(3) +F(¢) )

Riesz Theorem. There is a one-to-one c- tespondence between linear func-
tionals F in V” and vectors f in V, such that all linear functionals have the form

F(¢) = (f,9) (1-5)

/ being a fixed vector and ¢ being an arbitrary vector.

Thus the spaces ¥ and ¥ are essentially isomorphic. For the present we shall only
prove this theorem in a manner that ignores the convergence questions that arise
when dealing rigorously with infinite dimensional spaces. (These questions are dealt
with in Sec. 1-4.)

Proof. It is obvious that any given vector f in ¥ defines a linear functional,
using Eq. (1-5) as the definition. So we need only prove that for an arbitrary linear
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functional F we can construct a unique vector f that satisfies (1-5). Let {¢,} be a
system of orthonormal (that is, orthogonal and of unit norm) basis vectors in V,
satisfying (¢,, ¢,,) = 8, ... Let ¥ = L x,, be an arbitrary vector in V. From (1-3),
we have ‘

F(y) = L x,F(¢,)

Now construct the following vector:

f=2XIF(¢,)]*s,

Its inner product with the arbitrary vector ¢ is

('f’ ‘P) = ZF(¢")X"
=F(y)

Hence the theorem is proved.
Dirac’s Bra and Ket Notation

In Dirac’s notation, which is very popular in quantum mechanics, the vectors in ¥
are called ket vectors and are denoted |¢). The linear functionals in the dual space
V' are called bra vectors and are denoted (F| The numerical value of the
-functional is denoted as

F(9) = (Fl9) . (1-6)
According to the Riesz theorem, there is a one-to-one correspondence between bras
and kets. Therefore we can use the same alphabetic character for the functional (a
member of ¥”) and the vector (in ¥) to which it corresponds, relying on the bra,
(F}, or ket, |F), notation to determine which space is referred to. Equation (1-5)
would then be written as

(Fi¢) = (F, ¢) (1-7)
with |F) being the vector previously denoted as f. Note, however, that the Riesz

theorem establishes, by construction, an antilinear correspondence between bras
and kets. If (F| & |F), then

¢f(Fi+ cf(F| & c)|F) + c)|F) (1-8)

Because of the relation (1-7), it is possible to regard the “braket” ( F\¢) as
merely another notation for the inner product. But the reader is advised that there
are situations in which it is important to remember that the primary definition of
the bra vector is as a linear functional on the space of ket vectors.

([In his original presentation, Dirac assumed a one-to-one correspondence between
bras and kets, and it was not entirely clear whether this was a mathematical or a
physical assumption. The Riesz theorem shows that there is no need, and indeed no
room, for any such assumption. Moreover, we shali eventually need to consider more
general spaces (rigged-Hilbert-space triplets) for which the one-to-one correspondence
between bras and kets does not hold.]}
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1-2 LINEAR OPERATORS

An operator on a vector space maps vectors onto vectors; that is, if A is an operator
and ¢ is a vector, then ¢ = Ay is another vector. An operator is fully defined by
specifying its action on every vector in the space (or in its domain, if that is smaller
than the whole space).

A linear operator satisfies

A(cy + ¥) = ¢ (4y,) = c3(4¢,) (1-9)

It is sufficient to define a linear operator on a set of basis vectors, since every vector
can be expressed as a linear combination of the basis vectors. We shall be treating
only linear operators, and so we shall henceforth refer to them simply as operators.

To assert the equality of two operators, 4 = B, means that Ay = By for all
vectors (more precisely, for all vectors in the common domain of 4 and B; this
qualification will usually be omitted for brevity). Thus we can define the sum and
product of operators:

(4+B)y=A4y + By
ABY = A(BY)
Both equations must hold for all . It follows from this definition that operator
multiplication is necessarily associative: A(BC) = (AB)C. But it need not be
commutative, 4B being unequal to B4 in general. ‘
Example (i)

In a space of discrete vectors represented as columns, a linear operator is a square
matrix. In fact, any operator equation in a space of N dimensions can be transformed
into a matrix equation. Consider, for example, the equation

Miy) = |¢) (1-10)
Choose some orthonormal basis (}u,), i = 1... N} in which to expand the vectors:
¥) = Lajlu), 18 = )k:bauo
J

Operating on (1-1Q) with (u,| yields
Z_‘. (“iiMl"j>“j = 2&: (u;lu, )b,
J .

which has the form of the matrix equation

L Ma,=b, | (1-11)
J

with M, = (u;|M|u;) being known as a matrix element of the operator M. In this
way, ax!xy problem in an N-dimensional linear vector space, no matter how it arises, can
be transformed into a matrix problem.

The same thing can be done formally for an infinite-dimensional vector space if
it has a denumerable orthonormal basis. However, we must then deal with the problem
of convergence of the infinite sums, which we postpone to a later section.



