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Preface for the Second Edition

This revised edition initially intended to correct the misprints of the first one. But
why does it happen now, while the subject extensively expanded in the past twenty
years, and after the publication of two major books (among other ones) devoted to
dynamical systems [88] and automatic sequences [14]? Let us try to explain why
we got convinced to do this new version. On the one hand, the initial account of the
LNM 1294 offered a basis on which much has been built and, for this reason, it is
often referred to as a first step. On the other hand, the two previously quoted books
consist in impressive and complete compilations on the subject [14, 88]; this was
not the spirit of our LNM, almost self-contained and “‘converging” to the proof of
a specific result in spectral theory of dynamical systems. From this point of view,
those three books might appear as complementary ones.

This having been said, reproducing the corrected LNM identically would have
been unsatisfactory : a lot of contributions have concurred to clarify certain as-
pects of the subject and to fix notations and definitions; also a great part of the
raised questions have now been solved. Mentioning these improvements seemed to
us quite necessary. Therefore, we chose to add some material to the first introduc-
tory chapters, which of course does not (cannot) reflect the whole progress in the
field but some interesting directions. Moreover, two applications of substitutions -
more generally of combinatorics of words - to discrete Schrodinger operators and
to continued fraction expansions clearly deserved to take place in this new version :
two additional appendices summarize the main results in those fields.

The initial bibliography has been inflated to provide a much more up-to-date list
of references. This renewed bibliography is still far from being exhaustive and we
should refer the interested reader to the two previously cited accounts.

In recent contributions, the terminology has changed, emphasizing on the
morphism property. However, we chose to keep to the initial terminology, bearing
in mind the fact that this is definitely a second edition.

Lille Martine Queffélec
December 2009



Preface for the First Edition

Our purpose is a complete and unified description of the spectrum of dynamical
systems arising from substitution of constant length (under mild hypotheses). The
very attractive feature of this analysis is the link between several domains : combi-
natorics, ergodic theory and harmonic analysis of measures.

The rather long story of these systems begins perhaps in 1906, with the con-
struction by A. Thue [234] of a sequence with certain non-repetition properties
(rediscovered in 1921 by M. Morse [190]):

0110100110010110 ---

This sequence (called from now on the Thue-Morse sequence) can be obtained by
an obvious iteration of the substitution 0 — 01, I — 10, or else, as an infinite block
product : 01 x 01 x Ol x ---, where B x 01, for any 0 — | block B. means : repeat B
and then B, the block deduced from B by exchanging 0 and 1. Also, if S>(n) denotes
the sum of digits of n in the 2-adic expansion, u = (u,) with

", = (,llr.Sz (n)

is the =1 Thue-Morse sequence.

The Thue-Morse sequence admits a strictly ergodic (= minimal and uniquely er-
godic) orbit closure and a simple singular spectrum, as observed by M. Keane [143].

The various definitions of the Thue-Morse sequence lead to various constructions
of sequences, and thus, of dynamical systems:

— substitution sequences [55, 63,68, 104, 188] then [71, 119,132,135, 173. 174,
189,208], ...

—a class of 0 — 1 sequences introduced by M. Keane, called generalized Morse
sequences [143], admitting in turn extensions [175, 176] then [102, 154-156. 162].

— g-multiplicative sequences, with g = (g, ), ¢, integer > 2 [59] then [166.202].
In this account, we restrict our attention to the first category of sequences. but.

in case of bijective substitutions (chapter 9). we deal with particular G-Morse se-
quences and g-multiplicative sequences.

vii



viii Pretace for the First Edition

Ergodic and topological properties of substitution dynamical systems have been
extensively studied; criteria for strict ergodicity [68, 188], zero entropy [68,209], ra-
tional pure point spectrum [68, 173, 174], conditions for presence of mixed spectrum
[68] and various mixing properties [71] are main investigations and results in these
last years. But, except in some examples ([135, 143], ...), no descriptive spectral
analysis of the continuous part of the spectrum has been carried out.

Indeed, not so many dynamical systems lead themselves to a comprehensive
computation of spectral invariants. I mean, mainly, maximal spectral type and spec-
tral (global) multiplicity (see [214] for a rather complete historical survey). Of
course, transformations with purely discrete spectrum are quite well-known [240],
and in this case, the spectrum is simple. In the opposite direction, a countable
Lebesgue spectrum occurs in ergodic automorphisms of compact abelian groups as
in K-automorphisms (see [61]). A very important class of dynamical systems, with
respect to the spectral analysis, consists of gaussian dynamical systems. Guirsanov
proved a conjecture of Kolmogorov [110]: the maximal spectral type of a gaus-
sian dynamical system is equivalent to ¢°, where ¢ denotes the spectral measure
of the process; and its spectral multiplicity has been shown by Vershik to be either
one - with singular spectrum - or infinite ([237,238], see also [89]). Then arose the
question of whether finite multiplicity > 2 (or > | for Lebesgue spectrum) was pos-
sible, and the last results in multiplicity theory have been mostly constructions of
suitable examples. I just quote the last three important ones : Robinson E.A. Jr in
[214] exhibits, for every m > 1, a measure-preserving transformation with singular
spectrum and spectral multiplicity m. On the other hand, Mathew and Nadkarni in
[177, 178] construct, for every N > 2, a measure-preserving transformation with a
Lebesgue spectrum of multiplicity N¢(N) (¢ Euler totient function). In these exam-
ples, the transformations are group extensions. Recently, M. Lemanczyk obtained
every even Lebesgue multiplicity [160].

Turning back to substitution dynamical systems, we prove the following : for
a substitution of length g over the alphabet A (or g-automaton [55]), the spectrum
is generated by k < Card A probability measures which are strongly mixing with
respect to the g-adic transformation on T; in most examples, these measures are
specific generalizations of Riesz products, which is not so surprising because of the
self-similarity property inherent in this study. (Note that such Riesz products play a
prominent part in distinguishing normal numbers to different bases [136]; see also
[50,198],...).

Earlier Ledrappier and Y. Meyer already realized classical Riesz products as the
maximal spectral type of some dynamical system.

The generating measures of the spectrum of some g-automaton are computable
from a matrix of correlation measures, indeed a matrix Riesz product, whose rank
gives rise to the spectral multiplicity. For example, the continuous part of the Rudin-
Shapiro dynamical system is Lebesgue with multiplicity 2, while, by using the
mutual singularity of generalized Riesz products (analyzed in chapter 1), we get
various singular spectra with multiplicity | or 2, as obtained by Kwiatkowski and
Sikorski ([156], see also [101, 102]). For substitutions of nonconstant length, no
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spectral description seems accessible at present but we state a recent characteriza-
tion of eigenvalues established by B. Host [119] and list some problems.

We have aimed to a self-contained text, accessible to non-specialists who are not
familiar with the topic and its notations. For this reason, we have developed with all
details the properties of the main tools such that Riesz products, correlation mea-
sures, matrices of measures, nonnegative matrices and even basic notions of spectral
theory of unitary operators and dynamical systems, with examples and applications.

More precisely, the text gets gradually more specialized, beginning in chapter |
with generalities on the algebra M(T) and its Gelfand spectrum A. We introduce
generalized Riesz products and give a criterion for mutual singularity.

Chapter 2 is devoted to spectral analysis of unitary operators, where all funda-
mental definitions, notations and properties of spectral objects can be found. We
prove the representation theorem and two versions of the spectral decomposition
theorem.

We restrict ourselves, in chapter 3, to the unitary operator associated with some
measure-preserving transformation and we deduce, from the foregoing chapter,
spectral characterizations of ergodicity and of various mixing properties (strong,
mild, weak). As an application of D-ergodicity (ergodicity with respect to a group
of translations [47]), we discuss spectral properties of some skew products over the
irrational rotation [100, 103, 140,212].

In chapter 4, we investigate shift invariant subsets of the shift space (subshifts),
such like the orbit closure of some sequence. Strict ergodicity can be read from
the given sequence, if taking values in a finite alphabet. The correlation measure of
some sequence - when unique - belongs to the spectral family; hence, from earlier
results, we derive spectral properties of the sequence. We give a classical application
to uniform distribution modulo 27 (Van der Corput’s lemma) and we discuss results
around sets of recurrence [25,35,93,219].

From now on we are concerned with substitution sequences. All previously
quoted results regarding substitution dynamical systems are proved in chapters 5-6,
sometimes with a different point of view and unified notations (strict ergodicity, zero
entropy, eigenvalues and mixing properties). We are needing the Perron-Frobenius
theorem and, for sake of completeness, we give too a proof of it.

Till the end of the account, the substitution is supposed to have a constant length.
We define, in chapter 7, the matrix of correlation measures X and we show how to
deduce the maximal spectral type from it. Then we prove elementary results about
matrices of measures which will be used later.

In chapter 8, we realize ¥ as a matrix Riesz product and this fact provides a
quite simple way to compute it explicitly. Applying the techniques immediately, we
treat the first examples : Morse sequence, Rudin-Shapiro sequence, and a class of
sequences arising from commutative substitutions (particular G-Morse sequences),
admitting generalized Riesz product as generating measures.

An important class of substitutions is studied in chapter 9 without complete suc-
cess. It would be interesting in this case to get a more precise estimate of the spectral
multiplicity, which is proved to be at least 2 for substitutions over a nonabelian

group.
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Finally. the main results on spectral invariants in the general case are obtained
in chapters 1011 by using all the foregoing. We have to consider a bigger matrix
of correlation measures. involving occurrences of pairs of given letters instead of
simple ones, which enjoys the fundamental strong mixing property and provides the
maximal spectral type of the initial substitution.

The spectral multiplicity can be read from the matrix . as investigated with the
Rudin-Shapiro sequence and some bijective substitution. We obtain in both cases
a Lebesgue multiplicity equal to 2, while N-generalized Rudin-Shapiro sequences
admit a Lebesgue multiplicity No(N) [203,211].

In an appendix, we suggest an extension 1o automatic sequences over a com-
pact nondiscrete alphabet. We give conditions ensuring strict ergodicity of the orbit
closure.

As explained before, we preferred to develop topics involving spectral properties
of measures and for this reason, the reader will not find in this study a complete
survey of substitutions. A lot of relevant contributions have been ignored or perhaps
forgotten : we apologize the mathematicians concerned.

Paris Martine Queffélec
July 1987



Contents

1  The Banach Algebra M(T) ...t 1
1.1 Basic Definitions ... 1

1.2 The Gelfand Spectrum A of M(T) ..ooooiiiiii 7

1.2.1  Generalized ChaTaclers .. . . cosums s snmens sy swammns s v owavess oo 7

1:2.2 Basic Operations: : : s s s sasman s & s suini 1§ 5 5essi 5 samesi s 5 8

1.2.3  Topologies On A(LL) «.vveeeiiiiii i 8

1.2.4  Constants in A() «ooueriiiii i 9

1.3 Generalized Riesz Products.............. 10

1.4 Idempotents in A and Decompositions of M(T)...................... 14

1.5 Dirichlet MEASUTES : suwns s s womenns 55 conmnn s 6 s smoieiss 55 5 nomnin § 5 pemess s ¢ 3 17

2 Spectral Theory of Unitary Operators .........................ooe . 21
2.1 Representation Theorem of Unitary Operators ....................... 21
2.1.1  Construction of Spectral Measures .......................... 21

2.1.2  Properties of the Spectral Family ............................ 22

2.1.3  Spectral Representation Theorem............................ 25

2.1.4  Invariant Subspaces and Spectral Projectors ................ 26

2.2 Operators with Simple: SPECiuM . .  vuewon s s s sumnes o s ssomion s s swvisos v s oo 29
2.2.1 Basic EXaMPIES. : : cinns v s s scmvmn s 5 ¢ omnns o 6 sosmos s § omimins o 5 6 65 29

222 Simple Lebesgue Spectrum..........ooooooiiiiio.. 30

2.3 Spectral Decomposition Theorem and Maximal Spectral Type...... 31

2.4 Spectral Decomposition Theorem and Spectral Multiplicity......... 34
241  Multiphicity FUNCHON w5 v o mwsmes ¢ ¢ swwsins 3 5 cwmms & ¢ smesss 5 5 54 35

242 Global Multiplicity .........oooiiiiiiiiiii i 37

2.5  Eigenvalues and Discrete Spectrum ... 40
251 Eigenvalues .......ooooiiiiiiiii 40

2.5.2 Discrete Spectral Measures .........cooovviiiiiiiiiiiinn... 41

253 BasicExamples ......o..:s.oieicicsnsnssssioning s mmmsns s 43

2.6 Application to Ergodic Sequences............oooiiiiiiiiii 44

3 Spectral Theory of Dynamical Systems .................................... 49
3.1 Notations:and DERAIIONS : ; wswwss s s s smwens s s s amsars s s vwimes v5 o vmes s 4 v 49

Xi



Xl

Contents

3.2 Ergodic Dynamical Systems ............ooooiiiiiiiiiiii 51
32,1  First EXamMPlEs u: : sowesws ¢ » s s s swmsmns o commin s s swsssams's 4 v 51
322  Main'TheOremS .. oo - saninss s  aomini s+ s swans s s vsenies s 58 D
3.2.3  Quasi-Invariant Systems...........oooiiiiiiiiiiiiiiii 56
3.3 MiXing Properties covouss oo oumomsss s summmas s s semsnn s s vonemn s o swvns s o 59
3.3.1  Weak and Strong Mixing Properties ......................... 59
332 MildMixing Property .. ::sseeis s sosmeis s s swsonis 65 smanie s s 53 62
3.3.3  Multiple Mixing Properties .................cooiiiiinnnn... 66
3.4  Discrete Ergodic Systems ..........ooooiiiiiiiiiiii i 69
34.1  Von Neumann’s Theorem ..., 69
34,2 The KroneCKer FACLOr .. .« vosmume s s csmmmens s vanmone s s cwmsios s o 71
3.5  Purity Law and D-Ergodicity .........ccoiiiiiiiiiiiiiiiiin 73
3.5.1 Extremal Properties of Ergodic Probabilities ............... 74
352  D-ErgodiCity ...o.uviiiiiiiiiiiiii i 75
3.5.3 Applications of PUrity LAWS .ccssetsunessssvonnenn s sovmasnass 77
3.:6. Group EX{ensions .....cies:ssesuss s sommmns s s sommn s s sommpen s » aosen s o3 80
3.6.1 Two-Points Extensions of an Irrational Rotation............ 81
3.6.2  Two-Points Extensions of an Odometer ..................... 85
Dynamical Systems Associated with Sequences ........................... 87
4.1  Topological Dynamical Systems ..............cooiiiiiiiiiiiiiiiiann, 87
4.1.1  Minimality and Topological Transitivity .................... 87
4.1.2  Invariant Measures and Unique Ergodicity .................. 90
4.1.3  Examples and Application to Asymptotic Distribution ..... 93
4.2 Dynamical Systems Associated with Finitely Valued Sequences.... 97
42,1  [SUBSHITES .. .coumien s smmmon oo o icssiis s s niesins o5 o somns § § S i 97
4.2.2  Minimality and Unique Ergodicity .................oooeenn. 98
423  EXAMPIES. . communn o s vamomss s rvumuny s s swsi s o v cwwisions o 5 vcoiwinie v 101
4.3 Spectral Properties of Bounded Sequences ........................... 102
4.3.1 Correlation Measures ... ... ouane s o vumons s s swanis s 5 o o 103
4.3.2  Applications of Correlation Measures ....................... 108
4.3.3  Examples of Correlation Measures ...................oovnes 120
4.3.4  Back to Finite-Valued Sequences ......................ooi 123
Dynamical Systems Arising from Substitutions ........................... 125
5.1  Definitions and Notations ... 125
5.2 Minimality of Primitive Substitutions ... 128
5.3  Nonnegative Matrices and {-Matrix ............cccoooiiiiiiiiinn.. 131
5.3.1  Perron Frobenius’ Theorem for Nonnegative Matrices .....132
5.3.2  Frequencyof Letters...........ooooiiiiiiiiiiiiiiiin. .. 135
5.3.3  Perron Numbers, Pisot Numbers............................. 136
54 Unique ErgodiCity .. . comvess » s commums o s vowimens s s wvwesio s v s arwtormie s ¢ swvasarareis « 137
S5.4.1  Frequency of Factors .:.q:.. . osassiesnnsnass snamass s sranons s 137
5.4.2  The Unique Invariant Measure ................oooiiinnnn... 140

543  MatriCeS M oo 143



Contents X1l

5.5 Combinatoriall ASPECES szuse s s s nmwmns v 5 swmmin s 5 5w o 5 6 59625 5 5 8w s 3 146
5.5.1  Complexity Function and Topological Entropy ............. 146

5.5.2 Recognizability PTOPEEHES : . vosmans s e osmmon s v s vummn s 05 punsss s 150

5.6 Structure of Substitution Dynamical Systems ........................ 152
5.6.1  Consequences of the Recognizability........................ 152

562  C(X)-InducedMap ......c.ooiiiiiiiiii 154

546.3 MO PIGPETIIES 4. ¢ woun g s s mwmpana « 5 giaryran & 5 v sgmsns o 5 5 smemmirn s 3 156

5.6.4  Bilateral Substitution Sequences..............ooiiiiiii... 159

6 Eigenvalues of Substitution Dynamical Systems .......................... 161
6.1  Eigenvalues of a Constant-Length Substitution....................... 161
6.1.1  Continuous Eigenvalues..................ooo. 161

6.1.2  L2-Eigenvalues.............oouiviriiiiaiiiiiieieienns 164

6.2 Eigenvalues of a Nonconstant-Length Substitution................... 169
6.2.1  Host’s Theorem ... 169

6.2.2  Application to Mixing Property......................ol 174

6.3  Pure Poifil: SPECEOUMY seswnns s s ueisine s 5 6 swmss § 8 ssvewion § 3 5 seisss & 5 S 3 5 176
6.3.1  Discrete Constant-Length Substitutions ..................... 176

6.3.2  Discrete Nonconstant-Length Substitutions................. 180

6.3.3  Pisot Substitutions ... 187

7  Matrices of MEaSUNES ... voueess s smonre st vawsssss sameens « 5 vsmes s o vassigina s o s 193
7.1 Corrglation Vatrix: ; s cosmis s s ssmas s pawngs s  astsne s § § soents i 8 sanmms s s 193
7.1.1 - Spectral Multiplicity ... 193

7.1:2  Maximdl SPECTal TYPEi... « ¢ sumes s s swwsciss s v v avsezen v 5 o sswimsr o o 195

7.1.3  The Correlation MattiX & . . ccocu s svusnss s sasens s nmwass s s s 197

7.2 Positive Definite Matrices of Measures .............ccooviiiiiee... 199
7.2.1  Definitions and Properties...................oooiiii. 199

7.2.2  Decompositions of Matrices of Measures ................... 202

7.3 Characters on a Matrix of Measures.............oooooiiiiiiiiii... 204

8 Matrix Riesz Products ....................... 209
8.1 X asaMatrix Riesz Product ... 209

8.2  Examples of Maximal Spectral Types...........cooooiiiiiiiii. .. 211
8.2.1 Thiig=MOTrse: SEUENCE .« ¢ s sumrers 4 s womns s 5.5 5 smson 3 o v w53 5 211

8.2.2  Rudin-Shapiro Sequence ............oooiiiiiiiiiiiiiii 212

8.2.3  Q-Mirror SEQUENCES «..uuvuiiitei i 215

8.3  Commutative AULOMALA . .....ouutiittiitt et 216

84  AULOMALIC SUMS ;¢ comeins s 5 o svteiwen 5 5 ¢ 5uoans » § 4 HUEEHT 8 5 TRESES 55 FoBman 4 3 220

9 Bijective Automata .............ciiiiiiiiiiiiiiiiiiiii e 225
9.1  Structure of Bijective Substitution Systems................coooina... 226
9.1.1  Extension of the g-Odometer ..., 226

9.1.2  Group AutOMAatON .....uuutiiiii e 230



XIv

10

11

12

Contents

9.2 Spectral Study of Bijective Substitutions ........................l 232
9.2.1  ADBClAN CaSC s s vomnsa s s sowmmis s 1 nowosng o § sosasng s sasmans i s 233

9.2.2  Non-Abelian Case ..........coviiiiiiiiiiiiiiiiii. .. 235
Maximal Spectral Type of General Automata............................. 243
10:1 The'Coincidence Matnix (€ : « ssumunss sossns s 5 s omsmsn ¢ o vwwoins s sygows s = o 243
10.1.1 Properties of C .....covcen e onmomenssbosionas s s bsasnis s saseig .. s 244

10.1.2 EXamples..oooooioiiiiii e 247

10.2  The Projection Operator P ..........oouiiiiiiiiiiiiiiiiiiiiii e, 248
10:2:1 A Property OF P i o« swwss s s vuswumc o5 puwmms 1 ¢ 5 spmmws o s swoists 63 250

10.2:2: Examples: : sosmnn s savssn s s cavmmes s s saweos s 8 5 svs i o 20eess 2 3 5 252

10.3  The Bi-Correlation Matrix Z...........oooiiiiiiiiiiiiiiiiiiiennn, 254
10.4 Main Theorem on Maximal Spectral Type........................ ... 259
Spectral Multiplicity of General Automata................................ 265
11.1  More About the Spectrum of Constant-Length Substitutions ........ 265
11.1.1  The Convex Set . ...ooiiiiii e 265

Va2, EXATAPIES ; conpecs o 2 smpurmmns & o ssrarsross 5 sarssonse o » sistesnsss o s o s s 268

11.2  Spectral Multiplicity of Constant-Length Substitutions .............. 271
11.2.1 Main Theorem on Spectral Multiplicity .................... 272

11:2:2. EXAMPIES cocoiic e o o monioims o v o oomomei 55 5 85if6i6:35 5 & 816505 5 8 5itiins 5§85 275

11.2.3  More About Lebesgue Multiplicity ..............ooooone. 279
COomPact AVLOMIALA -.:: < - & aincioion o 5 5 puminin o & sisisiuliis § 5 Saeiemss § 8 RIS » SHEBEE § § 53 281
12.1  Strictly Ergodic Automatic Flows ..., 281
12.2  Application to Bounded Remainder Sets.............................. 286
Schrodinger Operators with Substitutive Potential ....................... 293
A.l  Classical Facts on 1D Discrete Schrodinger Operators............... 293
ALl Preliminaries.... . i oo i o aoeiis s s saines s § seasams s somnes s ¢ e 293

A.1.2  Schrodinger Equation ... 295

A.1.3  Periodic Potential ...............o i 299

A.2  Ergodic Family of Schrodinger Operators ..., 302
A:2:l  General Properties. oo s  samna « sameuns s s svsmnmns « susmni s & sead 0D

A.2.2  Lyapunov Exponents ...............cooocciiiiien 305

A.2.3  Results from Pastur, Kotani, Last and Simon ...............307

A.3  Substitutive Schrodinger Operators ............cccoeevvvveeennne.......308
A:3:]1  The ' Trace Map Method . . coemi s aovmss s s s swsins s s wwnmnas s sl 0

A.3.2  The Palindromic Density Method............................315
Substitutive Continued Fractions ...........................................319
B.I  Overview on Continued Fraction Expansions ........................319
B.1.1  The Gauss Dynamical System .............................0321

B.1.2  Diophantine Approximationand BAD ...................... 322



Contents

AV

B.2  Morphic Numbers ...........oooooiiiiiiiiiiiii .. 324
B.2.1  Schmidt’s Theorem on Non-Quadratic Numbers ...........324

B.2.2 The Thue-Morse Continued Fraction........................ 328

B.3  Schmidt Subspace Theorem ............ccccovviiiiiiiiininne... 331
B.3.1  Transcendence and Repetitions ............................ 332

B.3.2 Transcendence and Palindromes ......................oo. e, 333

2 ] o 1 o 335
UGIOBEATY cuoisins » 5 smeroirsce s § 5mmain' § & RIS 5 & HUUEHRS & o sbiviss s & sovmeisia 3 ebnorins & ssesezen's VR
IIEX . . . onevion s v vioeiminis o o sismiminin o o simmimibins o o siaiaad § 3 5 5505 § § £ 506iH0 4 b ¥ doman o & waonns sy bl



Chapter 1
The Banach Algebra M(T)

This first chapter is devoted to the study of the Banach algebra M(T). This study will
be brief because we need only little about M(T), and there exist excellent books on
the subject, in which all the proofs will be found [123, 141,218,232]. We introduce
the technics of generalized characters to precise the spectral properties of measures
such as generalized Riesz products, which will nicely appear later as maximal spec-
tral type of certain dynamical systems.

1.1 Basic Definitions

We consider U the multiplicative compact group of complex numbers of modulus
one, and T = R\27Z that we identify with U by the map A — e*: Tis equipped
with the Haar measure m, identified this way with the normalized Lebesgue measure
s=dx on [—m,x].

I. The elements of the character group I = T, isomorphic to Z, will be considered
sometimes as integers, with addition, sometimes as multiplicative functions on
T. and, in this case, we denote by ¥, instead of n the element 1 — ¢™".

2. M(T) is the algebra of the regular Borel complex measures on T, equipped with

the convolution product of measures, defined by

1 x v(E) :/Ty(E—t)dv(t)

for u.v € M(T) and E any measurable subset of T.
M(T) is a Banach algebra for the norm

Iull = [ dlul

|t] being the total variation of .

M. Queftélec., Substitution Dynamical Systems — Spectral Analysis: Second Edition, |
Lecture Notes in Mathematics 1294, DOL 10.1007/978-3-642-11212-6_1.
() Springer-Verlag Berlin Heidelberg 2010



I The Banach Algebra M(T)

The Fourier coefficients of u € M(T) are, by definition,

ﬁ(rr):/ei"’du(t)z/)/,,dp, nez
T

and satisfy : [|[1||e := sup,cz | (n)| < ||u||. The Fourier spectrum of  is the set
of integers n € Z for which fi(n) # 0.

. The measure u is positive if u(E) > 0 for every measurable set E, and, in this
case, the sequence (f1(n)) is positive definite, namely

Y ugf(i—j) =0

1<i.j<n

for any finite complex sequence (z;))<j<y.
Conversely, the Bochner theorem asserts that a positive definite sequence
(an)nez is the Fourier transform of a positive measure on T.

Positive measures of total mass one are probability measures.
. We recall that y is a discrete measure if 4 = ¥ a;6;, (& being the unit mass at
t € T) and that u is a continuous measure if u{t} =0 for all r € T. My(T) is
the sub-algebra of discrete measures in M(T) and M.(T), the convolution-ideal
of all continuous measures on T. Every u € M(T) can be uniquely decomposed
into a sum

M= Hg+ M

where p,; € My(T) and u. € M.(T) respectively are the discrete part and the
continuous part of u.

There is a necessary and sufficient condition for a measure u to be continuous,
which involves the Fourier transform of u :

Lemma 1.1 (Wiener). Let u € M(T). Then :

1
M.(T li
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n=-—

and in this case, we have limy .. ﬁ Zf:/:fN+K |fi(n)|? = O uniformly in K.

. Let u,v € M(T); we say that u is absolutely continuous with respect to v and
we write g < v if |u|(E) = 0 as soon as |v|(E) = 0, for any measurable set E.
Then, by the Radon-Nikodym property, 4 = f - v where f € L'(v) is referred to
as the density of u with respect to v, usually denoted by du /dv. Let us define

L(v)={u eM(T); u < v} (1.1

So we are allowed to identify L(v) with L' (v). The measures u, v are said to be
equivalent, and we write 4 ~ v, if y < vand v < .

In the opposite direction, we say that y and v are mutually singular, and we
write it L v, if there exists a measurable set E such that
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|u(E)| = [|ul| and [V[(E)=0.

The measure u is said to be singular it yu L m, m the Haar measure on T.
Every u € M(T) can be uniquely decomposed into a sum

M= Hq + Hy

where 1, < m and y; is singular (respectively the absolutely continuous part and
the singular part of ).

Affinity between two measures. Let 1 and v be two positive measures in M(T)
and A € M(T) be such that both u < A and v < A. The affinity p(u,v) of the
measures (L and Vv is the quantity

B diyi2,dv. i
p(y,v)_./T(dl) ((M) dA, (1.2)

obviously independent of the choice of 4. Note that

p(u,v)=0 ifand onlyif u L v.

The measure u is said to have independent powers if u’" L p" whenever n # m,
n,m € N, where u" := % --- % u n times. Such a measure is singular : if not, the
absolutely continuous part v of u satisfies 0 # v" < u" for all n € N; thus, if
m Z ”’ VIII << “Ill’ vl" << v” << u” and “’Il ’K #”.

It is less obvious to give conditions on the Fourier transform of u, ensuring
the absolute continuity of u (with respect to m). Of course, it is necessary for u
to satisfy : limy, .. fi(n) = 0.

This condition is not sufficient and we shall use the notation My(T) for the
ideal of all measures i whose Fourier transform vanishes at infinity. Sometimes,
those measures are called Rajchman measures, and a nice survey on them appears
in [172].

6. M(T) is identified with the dual space C(T)* of the continuous functions on T.
Let () and p in M(T). From Fejer’s theorem, p, converges to i in the weak-
star topology of M(T), o(M(T),C(T)), if and only if

~

,(y) — a(y) forevery yer.

We shall write : w* —lim,, .. tt,, = tt. Recall that the unit ball of M(T) is a weak-
star compact set.
The following proposition will be used in chapter 4 (see [59]).

Proposition 1.1. Let (u,) and (v,) be two sequences of positive measures on T
such that w, — W and v, — v in the weak-star topology of M(T). Then

limsup p (i, va) < p(u.v),

where p denotes the affinity defined in (1.2)
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Proof. The proof involves the Cauchy-Schwarz inequality applied with some
suitable partition of unity. We assume, without loss of generality, that y and
v are probability measures and we fix a probability measure A dominating both
u and v. We put My = {ﬁi- 0}, No = {"" 0}\My and we consider for j € Z
and some fixed € >0

dv

<T@W<O+eyhwy a3

Uj = {x e T\(MoUNG), (1+ €50 (x) < an

Clearly, the sequence (Uj), supplemented by My and Ny, provides an infinite
partition of T. In particular, 3 ; u(U;) < e and we fix J such that

Y uu;) <e (1.4)
Ve
From now on, we denote by Vy, V|, Va, ..., Va;, Vo the finite Borel partition
Mo, No,U_j1,---,Up1,U)j 154 U;

of T. Note that, forevery 2 < j < 2J,
(1+e) V) <vvy) < (1 +&) vy, (1.5)

by integrating the inequalities (1.3) on U; with respect to A. For each j, 0 < j <
2J + 1, let us choose by regularity an open set @; O V; such that

(@) < (1+€)'2u(v)), v(e)) < (1+€)"2v(Vy);

let (fj)o<j<2s+1 be a continuous partition of unity subordinate to the open cov-
ering (wj)o<j<2s+1. Clearly we have

[y < @) < (1+9)Pu(v)) (1.6)

as well as

/Tf,/ dv < v(w;) < (1+€)'2v(V;). (1.7)

We deduce that p(p,, v,) :=

du, dvy 12 ‘JH duy, dvy i
JG G = 3 [ g

T dA dA
/fjdy,,'z/fdv )1/2
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