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PREFACE

The microwave art has progressed considerably during recent years.
The complexities of the problems involved and the ever-increasing need
for improved civil and military communications employing microwaves
have attracted many mathematicians, physicists, and engineers to this
new field. As a result, a tremendous store of information about various
new theories and techniques in the microwave field is now available
which was not incorporated in any textbook written prior to or during
World War II. However, there appears to be a gap between the physical
and mathematical developments in the microwave field. The object of
this text is to attempt to bridge this gap and to present some basic
principles of microwave theory and techniques. With Maxwell’s equa-
tions as a starting point, the analytical treatments for many new micro-
wave techniques which often lead to the design of some microwave
components are incorporated in this text.

The complexities of the mathematical problems involved in microwave
analysis usually call for various analytical techniques and mathematical
tools, all of which may not be familiar to the average engineer. There-
fore a brief review of elementary mathematics is presented at the begin-
ning of this text. Perhaps one of the essential purposes of this mathe-
matical review is to introduce unambiguously mathematical symbols and
nomenclatures which are used throughout the text. In addition, a set of
mathematical identities and formulas often useful for microwave field
analyses are included in the review.

For a book of this nature certain prerequisites on the part of the reader
have to be assumed. Familiarity with electrostatic and magnetostatic
field, Maxwell’s equations, and an clementary knowledge of real and
complex variables will be desirable for the reader.

The sections on surface-wave lines, discontinuities in transmission
lines, nonuniform lines, and nonreciprocal networks as presented in
Chapters 7, 11, 12, and 13, respectively, are relatively new in the micro-
wave field, and their inclusion may be considered almost necessary in
any modern text since the theories and techniques described in these
chapters constitute a major development in the microwave art. The
unusual development of many microwave filter theories and techniques
during and after World War .II necessitates an entire chapter (Chapter

10) on microwave filters.
vii



viii PREFACE

The rapid and tontinuous growth of microwave engineering in recent
years would seem to discourage any attempt to write a book covering all
new materials at a given date. There is always the possibility of encoun-
tering in the immediate future new discoveries on theories and techniques
that can hardly be conceived today, but will increase in significance in
years to come. As mentioned before, attempts have been made to
include in the book some of the most recent topics in the microwave field
wherever possible. With this object in mind, numerous technical papers
and books have been freely consulted while preparing the text. The
author realizes that no formal acknowledgment of these sources, of any
kind, ¢an be adequate, and he wishes to express his sincere gratitude to
the authors and publishers of the sources referred to in various parts of
the book. Grateful acknowledgment is also made for the use of some
pioneering works in the microwave analysis field, such as “Principles of
Microwave Circuits” by Montgomery, Dicke, and Purcell, which essen-
tially formed the nucleus of one chapter.

In addition, the author acknowledges with sincere thanks the help and
encouragement of his colleagues at the Ramo-Wooldridge Corporation
and the Radio Corporation of America. He is particularly grateful to
Drs. Dusne Roller, George Jeromson, Thomas Stout, and Mildred Moe
and Mr. Alex Stogryn for their many valuable suggestions. Sincere
thanks are due to Mr. William Foss and Miss Andrea Haug for their
help in organizing the manuseript.

: Rabindra N. Ghose
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CHAPTER 1

INTRODUCTION AND EARLY HISTORY

The rapid advancement of microwave theories and techniques in the
past two decades and their application in radio communication systems
well justify the tremendous research and development effort that went
into the improvement of the microwave art. Today microwaves are
playing an ever-increasing role in the field of communication. Millions
of miles of microwave facilities are now available for voice and television
communications all over the world. In addition, microwave systems are
being used for such services as teletype, telemeter, radar, radio beacons,
remote control, and many others.

The microwave art is often considered to be one of the youngest
branches of radio engineering. However, its foundation goes back to the
origin of radio. It was perhaps Faraday who first clearly conceived the
existence of electric and magnetic fields, but it was left to Maxwell to
develop this conception into his all-encompassing electromagnetic field
theory. His concept of the displacement current as necessary to account
for the existence of electromagnetic waves and his postulate that electro-
magnetic waves must propagate in free space with the velocity of light
may be considered the foundation of electromagnetic field theory and
hence of microwave theory. Experimental verification of Maxwell’s
postulate and theory was first made by Hertz. He demonstrated the
existence of electromagnetic waves and showed that their properties,
such as reflection, refraction, and interference, are similar to those of
light waves. .

A tremendous amount of subsequent research and development was,
of course, needed to bring the microwave art to its present stage. Bril-
liant researchers such as Green and Kirchhoff established a firm founda-
tion of the electromagnetic theory at an early date. Later, eminent
physicists and mathematicians—Rayleigh, Watson, Sommerfeld, and
many others—contributed significantly to the theory of microwaves and
the electromagnetic theory. One of the outstanding events in the history
of microwave circuit theory was the recognition of the similarities between
effects in different electromagnetic field configurations and those in
induetive, capacitive, and resistive elements, the circuit elements that
are so familiar to electrical engineers. The impedance concept for a

1



2 MICROWAVE CIRCUIT THEORY AND ANALYSIS

traveling or a stationary wave, largely developed by Schelkunoff, enabled
electrical engineers to treat a microwave component encloging such a wave
as if it were a circuit element in low-frequency communication systems.

The striking similarities between microwave components and low-
frequency circuit components are more than a mere coincidence. When
the basic circuit compenents of electrical engineering are viewed in their
relationship to energy, a fundamental physical concept, one sees that the
energy of an inductor is always stored in the magnetic field, whereas the
energy of a capacitor is always stored in the electric field. Therefore
any microwave component or combination of components that stores
energy in the magnetic field may be considered to possess an equivalent
inductance L. Similarly, any microwave component that stores energy
in the electric field may be regarded as having a capacitance C. When
the energy in a microwave component is dissipated at the boundary
walls in the form of heat or is converted into radiation, the effect becomes
similar to that of a resistance R in a low-frequency system. For sinus-
oidally time-varying circuits, the impedance or admittance encountered
in microwave systems can be related uniquely to R, L, and C components
in exaetly the same way as in a low-frequency system. There is'a one-
to-one correspondence between the microwave and the low-frequency
circuit components.

Unfortunately, a severe restriction is imposed in drawing the analogy
between the microwave and low-frequency circuit components. Since
the stored energy as well as the dissipated energy of any electromagnetic
field depends on the volume enclosing the field or the surface exposed to
the field, the R, L, and C parameters defined on the basis of energy
become dependent on the ratios of the field dimension to the wavelength.
For a low-frequency circuit, these ratios change very little for any
reasonable frequency band, and hence a simple relationship can be
established between the R, L, and C parameters and the impedance. In
any microwave component, however, the dimensions are, in general,
comparable to the wavelength. Therefore one can assign an induc-
tance or capacitance value to the microwave component only when the
frequency remains constant. Nevertheless, the equivalent-circuit con-
cepts are quite useful, particularly for a relatively small bandwidth, as they
enable electrical engineers to make use of a large store of informatien
available in low-frequency-circuit theory.

Another important event in the history of microwaves was the interpre-
tation and utilization of the “discontinuities’’ in microwave components.
Any discontinuity that perturbs the normal field distribution generates an
infinite number of modes which can store energy and which consequently
give rise to equivalent reactances or susceptances. In many microwave
components a discontinuity is a disadvantage since it produces undesira-
ble reflections and thus lowers the transmission efficiency. In some
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modern microwave components, however, adjustable discontinuities are
utilized as tuning devices, matching units, and for compensating for the
mechanical irregularities introduced into components during their
fabrication.

Still another important event in the history of microwaves was the
introduction of nonreciprocal transmitting systems through the use of
ferrites and similar ferromagnetic materials. Under certain conditions,
electromagnetic waves propagated in opposite directions through a
ferromagnetic material may have quite different characteristics. When
such a nonreciprocal device is introduced in a transmission system, it
produces little attenuation of the ‘“forward” wave but a relatively large
attenuation of the reflected wave. The amplitude of the reflected wave
thus becomes very small in comparison with that of the incident wave.
In other words, the generator experiences no reflection; and, in effect,
the result is similar to that obtained when the generator is supplied with g
matched termination. The applications of nonreciprocal networks have
already proved to-be useful for microwave circuits utilizing magnetrons
whose frequency tends to drift with a mismatched load. Attempts are
being made to utilize nonreciprocal networks in several other microwave
cirouits, including those of television systems, so as to prevent ‘“ghosts’
resulting from reflections.

The tremendous achievements obtained in communication systems
through the use of microwaves can hardly be described in a few pages.
Furthermore, even a brief description of the developments in all phases of
microwave communication is well beyond the scope of the present volume,
We shall therefore confine ourselves to a discussion of the general princi-
ples involved in microwave circuit theory and to the analysis and synthe-
sis of the various components of passive microwave circuits.



CHAPTER 2

MATHEMATICAL REVIEW

2.1, Dirac’s Delta Function

In electromagnetic fields which are excited by a point source,
or even a line source, the conditions which the field components must
satisfy at the source are, in general, quite different from those required
outside the source. Stated differently, some boundary conditions, speci-
fied in a field, may exist only at the source. For the purpose of analysis
of such problems it is convenient to use an improper function which, by
definition, exists in the neighborhood of a point, say ro, and which
vanishes everywhere else on a one-dimensional space. Mathematically,

L’ 5(r — ro) dr = 1 ' @.1)

where 7 is included in the interval («, 8), and é is the improper function
called the delta function. The existence of such a function can be con-
ceived only through a limjting process.

When the source is located at the origin ro = 0,

JL sy ar =1 @.2)
where a<0<B

From the definition of 8(r — ro) it follows that for a function f(r) which is
continuous at r = ry,

L ® 1()8(r — 7o) dr = f(ro) (2.3)

Some important relations involving the delta function are noted below
without proof.

F@)s(r — ro) = f(ro)d(r — o)

f@)& () = —f(r)ar)
f(r)an(r) = (=)~ (r)é(r) (2.4)

8~ o) = o f_'_ e iy

4



MATHEMATICAL REVIEW 5

where j = 4/—1 and & and & denote the first and nth derivative
of &, respectively.

It should be noted that the delta function is not limited to one variable
and that it can be extended to problems involving both surface and
volume. For instance,

8z — z0)8(y — yo) =0 =z 3 T, y 7 Yo
[ 5 — 208y = yo) dzdy = 1
5(z — 20)8(y — Yo)3(z — 20) = 0 T 7 To, Y 7= Yo, 2 ¥ 2o
f 5z — 20)8(y — Yo)8(z — zg) dxdydz = 1

(2.5)

Specific applications of the delta function will be discussed in Sec. 2.4.

2.2. Matrices

Matrices and determinants serve as convenient mathematical tools for
the solution of algebraic equations involving several variables of the
type encountered in many circuit problems. Through the efforts of the

A N ho_ o el  F £
” 4 3
v '/ID T-Ag A Xem= 3As
V] c F

Fig. 2.1. The lumped-constant equivalent of a typical microwave network.

theoretical group at the Radiation Laboratory, MIT, notably those of
Marcuvitz and Schwinger, it is found possible to translate bounded
electromagnetic field spaces into equivalent circuit elements of the low-
frequency theory.

Consider a lumped-constant equivalent of a microwave network as
shown in Fig. 2.1. The voltage equations for the loop ABCD and DCFE
can be written as

V = IRy + jX, — jXs) + jI:X,
. R X4 . . (2.6)
0 =I,(jXs) + 1 o d A iX, — X
1(7X5) + z(Rz R;—]X4+‘7 2 —J 3)
For such a system of linear equations, it is apparent that all investigations
of the system may be carried out, perhaps with greater efficiency, by
working only with an array of coefficients a;;, with ¢, j = 1,2, . . .,

such that
Vv ay1 Q12 Il]
= 2.7
[0] [(121 azz] [12 ( )



6 MICROWAVE CIRCUIT THEORY AND ANALYSIS

where any = Ry + (X, — X,)
as = jX;
@ = jX,
_ . _ R;X4_ _
G2 = R, +J(X: By — X | X,)

The rectangular arrays of numbers in (2.7), which are called matrices,
can be written symbolically as

v =21 (2.8)

where Z is the impedance matrix of the system and is a square array of
coefficients, and P and I are, respectively, the voltage and current
matrices.

Each ¥ and [ matrix has one column. This type of matrix is often
called a vector. Thus

Vy I,
V:v Ig

r=| | 1=|’ 2.9)
. L.

are vectors,
Diagonal Matrices. A matrix Z is called diagonal if it is a square,
say n X n, and if its off-diagonal elements are zero; that is,

Zy 0 0 --- 0
2=|0 Zu0 - 0 2.10)
0 0 O Znn

Such a matrix is obtained in the network theory to represent the
impedance of a circuit consisting of several loops so that there is no mutual
irapedance between any two loops. If the elements Zy1,, Zss, . . . , Zan
are equal, the matrix is called a scalar matrix. If 2 is a scalar matrix
with each diagonal element equal to Z,, and B is another n X n matrix,
by multiplication, we obtain ZB, an n X n matrix with elements Z,B;,
ZoBss, . . . , ZoBas, ete. This type of scalar multiplication of matrices
results when the impedance matrix of a circuit includes one or more
transformers. The scalar matrix whose diagonal elements are equal to
unity is called an identity matrix and is denoted by %. The product of
any matrix with ¢ yields the matrix itself. The-concept of this identity
matrix is necessary in defining the inverse matrix, which will be shown
later.

The multiplication of two maitrices is possible when and only when the
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number of columns in the first matrix is the same as the number of rows
in the second. Consider, for example, the product of two matrices
A(m X n) X B(n X s). This operation is defined to yield a matrix
given by

iy @iz " G1a bu bz - -+ by
Qs1 Q@22 " Usa % b2 bay - - - b
Am1  Gm2 Qmn ba1  Das bns
Cii Ci2 Cis
I 3 Cz2 C2¢
Cm1 Coma
where c11 = Gubu + @ibar + awsbs: + - ¢ 0+ Gba
C12 = Qubiz + @i2b22 + @isbse + ¢ ¢ © 4 Giaba:

Cme = amlblu + am2b23 + amzbh 4w a«mubnu
or Cij = E airb; (2.11)

k=1
ExampLe 1. The matrix product given below will further illustrate
(2.11):

2 3 4 1 2 (2+9+20) 4412+ 24) 31 40
1 2 3|x{3 4|=l0+6+15 (@2+8+18) |=|22 28
4 5 6 5 6 (4 + 15 4+ 30) (8 + 20 + 36) 49 64

Inverse Matriz. The inverse matrix Z2-! is defined as the matrix which
when multiplied by Z yields an identity matrix. In order that the
matrix 2 have an inverse, it is necessary, in general, that Z be a square
matrix. If Z is a square matrix, 2-! is also a square matrix. To
obtain 2! we:

1. Obtain Z, the transpose of Z, that is, write 2 with the rows and
columns interchanged.

2. Find Z@, that is, the adjoint matrix where each element of Z is
replaced by its cofactor.

3. Divide each element of Z® by the determinant of Z, denoted by
iz '

The resultant matrix thus obtained is Z2-1.

ExampLE 2. For a ferromagnetic material the permeability is not a
simple scalar but can be expressed in the form of a matrix 2, given by

v —jk O
p=|jk u O

0 0 o u
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Suppose it is desired to find g~1. We first find the transposed matrix:

s Jjk O
gB=|—jk s O
0 0 u
Replacing each element of g by its cofactor yields
Hits jk“l 0
—jkus  pps 0
0 0 ur-—kK?
Finally, the determinant of # = |u| = us(u® — k?); hence

N Jk 0
ud — k* ut — ko

_ jk ®
pt = ut — kr p— k2 0
0 0 l
B,

The use of matrices, usually in the form of scattering matrices, has
proved very useful in the analysis and synthesis of microwave circuits,
particularly for the multiport junctions in microwave networks. Such
matrices for typical microwave circuits are discussed in detail in Chap. 9.

2.8. Vector Analysis

Physical quantities such as force, velocity, field intensity, ete., can be
defined uniquely only when their magnitudes and directions are specified.
These quantities are, by definition, vectors. The common laws of the
algebraic operations such as addition, multiplication, and divigion which
are applicable to scalars or quantities which ean be specified by their
magnitudes only are not applicable to vectors. These must therefore
be redefined for vectors. In order to distinguish vectors from scalars, a
boldface type will be used to denote the vectors in this text. The
magnitude of the vector F will be represented by |F| or simply F.

A complete analysis of the vector algebra is outside the scope of this
book. We shall, however, for the purpose of review, discuss briefly
those vector operations which occur frequently in microwave theory.

Scalar and Vector Products. Unlike scalars, it has proved convenient
to define two independent types of vector multiplication, namely, the
“scalar product’’ and the “vector product.”

Iet A and B be any two vectors. The scalar product of A and B
is the quantity |A| |B| cos 8, where 6 is the angle between the vectors
A and B. |A4]and |B]| are the moduli of the vectors A and B, respectively.
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Symbolically,
A-B = |A||B]cos @ (2.12)

If the vectors are expressed in terms of their components in cartesian
coordinates such that

A=u,A.+ugAy+llsA:
B = u.B, + u,B, + u,B,

where u,, u,, and u, are unit vectors in the z, y, and z directions, respec-
tively, then
A. B = A-Bs + Ava + AIBI (2-13)

The scalar product of two vectors is also called the ‘“dot product,” or
“inner product.”
The “vector product,” or ‘“‘cross product,” of A and B is, by definition,
a vector directed normal to the plane containing A and B and is equal'in
magnitude to |4| |B| sin 6, @ being the acute angle between A and B.
Symbolically, ‘
A xXB = |A||B| sin 8 u. 2.14)

where u, is a unit vector normal to the plane containing A and B.. The
sense of the vector u,, that is, whether it is directed upward or downward
from the plane containing A and B, is specified such that if a right-hand
screw is turned in the same direction as if rotating A into B (through the
smaller angle between them), u, coincides with the direction in which the
screw is driven.

From the definition of the vector product, one derives the following
identities:

AXB=—-BxA (2.15)
AXxB =u,(4,B, — A.B)) + w,(A.B., — A.B,) + u,(A.B, — 4,B.)
(2.16)

where A and B are any two vectors.

Space and Time Derdvatives of Veciors. Like scalar quantities, the
differentiation of a vector can be carried out with respect to one or more
of the variables involved in the vector. The differentiation of a vector
(in, for example, cartesian coordinates) with respect to a scalar, say time,
is expressed simply as

G A= 2 d+ d, + nd) = wd. +ud, +ud @17)

where a dot at the top denotes a differential operator 8/4i.
Another differential operator very widely used in physical problems
i8 krown as the divergence. Symbolically,

divA=V-A (2.18)



