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Preface

Although the origins of parallel computing go back to the last century, it
was only in the 1970s that parallel and vector computers became available
to the scientific community. The first of these machines—the 64 processor
Illiac TV and the vector computers built by Texas Instruments, Control Data
Corporation, and then CRAY Research Corporation—had a somewhat
limited impact. They were few in number and available mostly to workers
in a few government laboratories. By now, however, the trickle has become
a flood. There are over 200 large-scale vector computers now installed, not
only in government laboratories but also in universities and in an increasing
diversity of industries. Moreover, the National Science Foundation’s Super-
computing Centers have made large vector computers widely available to
the academic community. In addition, smaller, very cost-effective vector
computers are being manufactured by a number of companies.

Parallelism in computers has also progressed rapidly. The largest super-
computers now consist of several vector processors working in parallel.
Although the number of nrocessors in such machines is still relatively small
(up to 8), it is expected that an increasing number of processogs will be
added in the near future (to a total of 16 or 32). Moreover, there are a
myriad of rcsearch projects to build machines with hundreds, thousands,
or even more processors. Indeed, several companies are now selling parallel
machines, some with as many as hundreds, or even tens of thousands, of
processors. - )

Probably the main driving force for the development of vector and
parallel computers has been scientific computing, and one of the most
important problems in scientific computing is the solution of linear systems
of equations. Even for conventional computers, this has continued to be
an active area of research, especially for iterative methods. However, parallel
and vector computers have necessitated a rethinking of even the most basic
algorithms, a process that is still going on. Moreover, we are in the most
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viii Preface
turbulent period in the history of computer architecture. It will.certainly
be several vears, if ever, before a single parallel architecture emerges as the
machine of choice.

It follows that a book on this topic is destined to be obsolete almost
before it is in print. We have attempted to mitigate this problem by not
tving the book to particular machines. although the influence of the older
CDC CYBER 205 and CRAY-1 will be noted. However, there are many
basic approaches thatare essentially machine independent and that, presum-
ably, will survive even though particular algorithms based on them may
need to be modified. It is these approaches that we have tried to stress.

This book has arisen from a second-semester tirst-yedr graduate course
begun in the early 1980s. Originally the course was directed primarily toward
the analysis of iterative methods, with some attention to vector computers,
especially the CYBER 205, Over the vears more on parallel computers has
been added, but the machines used for projects have beer the CYBER 205
and, more recently, the CRAY X-MP. This is reflected in the exercises,
which are biased heavily toward the CYBER 205.

The organization of the book is as follows. Chapter 1 discusses some
of the basic characteristics of vector and parallel computers as well as the
framework for dealing with algorithms on such machines. Then many of
these concepts are exemplified by the relatively simple problem of matrix
multiplication. Chapter 2 treats direct methods, including LU, Choleski,
and orthogonal factorizations. It is assumed that the reader has had at least
a first course in numerical methods and is familiar with most of these
methods. Thus, the emphasis is on their organization for vector and parallel
computers. Chapter 3 deals with iterative methods. Since most introductions
to numerical methods deal rather lightly, if at all, with iterative methods,
we devote more time in this chapter to the basic properties of such methods,
independently of the computer system. In addition, many of the standard
convergence theorems and other results are collected in two appendixes for
those who wish a more aetailed mathematical treatment. Other than the
above background in numerical methods, the main prerequisites are some
programming experience and linear algebra. Very basic background material
in linear algebra is summarized briefly in Appendix 4.

Many important topics are not covered, and, as mentioned previously,
rather little attention is given to algorithms on current particular machines.
However, each section ends with “References and Extensions,” which give
short summaries of related work and references to the literature. It is hoped
that this will help the reader to pursue topics of interest. References are
given by the format Author [year] (for example, Jones [1985]) and may be
found accordingly in the bibliography.

The book should be read in the spirit of a mathematics book, not as
a “how-to-do-it” manual. The incomplete code segments that are given are



Preface . ' ix
meant to be illustrative, not the basics of a running code. Anyone wishing
to use a linear equation solver for a particular parallel or vector machine
is strongly advised not to start from the material in this book, especially °
for direct methods. Rather, see what routines, e¢specially LINPACK, are
already available on that machine.

The following conventions are used. Vectors are denoted by lower case
bold and matrices by upper case italic. Equation numbers are given by
chapter and section; thus (3.2.4) is the fourth numbered equation in Section
3.2. Theorems jand definitions are likewise numbered within a section by,
for example, 3.2.6. .

I am indebted to Sandra Shifflett, Beverly Martin, and especially, B.
Ann Turleyv for tvping the manuscript, and to many students and reviewers
for their comments. ‘

Charlottestille, Virginia James M. Ortega
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Introduction

1.1. Vector and Parallel Computers

In the early 1970s, computers began to appear that consisted of a
number of separate processors operating in parallel or that had hardware
instructions for operating on vectors. The latter type of computer we will
call a vector computer (or processor) while the former we will call a parallel
computer (or processor). ;

Vector Computers

Vector computers utilize the concept of pipelining, which is the explicit
segmentation of an arithmetic unit into different parts, each of which
performs a subfunction on a pair of operands. This is illustrated in Figure
1.1-1 for floating point addition. '

In the example of Figure 1.1-1, a floating point adder is segmented
into six sections, each of which does one part of the overall floating point
addition. Each segment can be working on one pair of operands, so that
six pairs of operands can be in the pipeline at a given time. The advantage
of this segmentation is that results are being computed at a rate that is 6
times faster (or, in general, K times, where K is the number of segments)
than an arithmetic unit that accepts a pair of operands and computes the
result before accepting the next pair of operands. However, in order to
utilize this capability, the data must reach the arithmetic units rapidly
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Figure 1.1-1. A floating point pipeline.
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2 Chapter 1

Pipeline

Main memory

Figure 1.1-2. Memory-to-memory addition operation.

enough to keep the pipeline full. As one aspect of this, the hardware
instructions for, say, vector addition eliminate the need for separate load
and store instructions for the data. A single hardware instruction will control
the loading of the operands and storing of the results.

Memory-to-Memory Processors

Control Data Corporation (CDC) has produced a line of vector pro-
cessors starting with the STAR-100 in 1973. This machine evolved into the
CYBER 203 in the late 1970s and then the CYBER 205 in the early 1980s.
These machines were all memory-to-memory processors in that vector
operations took their operands directly from main memory and stored the
result back in main memory. This is illustrated in Figure 1.1-2 for a vector
addition.

Register-to-Register Processors

Cray Research, Inc. has produced vector processors since the mid 1970s
that are examples of register-to-register processors. By this we mean that
the vector operations obtain their operands from very fast memory, called
vector registers, and store the results back into vector registers. This is
illustrated in Figure 1.1-3 for vector addition. In Figure 1.1-3, each vector

=a+b
b +
a L
Pipeline
Main Megory . _ Vector Registers -

Figure 1.1-3. Register-to-register addition.
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register is assumed to hold a certain number of words. For example, on the
CRAY machines, there are eight vector registers. each of which holds 64
floating point numbers. Operands for a vector addition are obtained from
two vector registers and the result is put into another vector register. Prior
to the vector addition, the vector registers must be loaded from main
memory, and, at some point, the result vector is stored back into main
memory frorh a vector register. It is usually desirable on this type of computer
to use data in the vector registers as much as possible while they are
available; several examples of this will be given in later sections)

Memory Hierarchies

Vector registers play somewhat the same role as cache memory on
conventional computers. More recent vector computers may have a more
complex memory hierarchy. For example, the CRAY-2, in addition to vector
registers, has a 16,000-word fast local memory in each processor. Other

jachines such as the CRAY X-MP series can have a back-up storage (the
Solid-State Storage Device), which is slower than main memory but con-
siderably faster than disk. And, of course, all the machines will have disk
units. The challenge is to use these various types of storage in such a way
as to have the data ready for the arithmetic units when it is needed.

Arithmetic Units

As discussed above, vector processors will have pipelined arithmetic
units to handle vector operations. The form of these may differ, however.
The CDC machines have used reconfigurable units in which a single pipeline
can perform the different arithmetic operations but it must be contgured
for a particular operation, say addition, before that operation can begin.
The CRAY machines, on the other hand, have used separate pipelines for
addition and multiplication, as well as other functions. A::-' some Japanese
machines (for example, the NEC SX-2) have multiple separate pipelines
(for example, four pipelines for addition, four for multiplication, etc.).
There may also be muitiple reconfigurable pipelines. For example, the
CYBER 205 allows 1, 2, or 4 pipelines, which are used in unison on a given
vector operation (rather than processing separate operations.)

Vector hardware operations are always provided for the addition of
two vectors, the elementwise product of two vectors, and either the element-
wise quotient of two vectors or the reciprocals of the elements of a vector.
There may also be vector instructions for more complex operations such
as the square roots of the elements of a vector, the inner product of two
vectors, the sum of the elements of a vector, sparse vector operations, and
so on. There may also be certain operations that can be handled very
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efficiently. A linked triad is an operation of the form a + ab, where a and
b are vectors and a is a scalar. Other forms of a linked triad are also possible
such as (a+ a)b, where a + a is the vector with a added to all of its
components. The CYBER 205 can perform these linked triad operations at
almost the same speed as a vector addition or multiplication operation. The
linked triad a + ab is also known as a saxpy operation, and this is the more
common designation, especially amongst CRAY users. We will, however,
use the term “linked triad.”

Mgshines with separate arithmetic pipelines usually allow the possibil-
ity of ch)aim'ng arithmetic units together so that results from one unit are
routed directly to another without first returning to a register. This is
illustrated in Figure 1.1-4 for a linked triad operation.

Most vector computers provide separate units for scalar arithmetic.
These units may also be pipelined but do not accept vector operands as
the vector pipelines do. They can run concurrently with the vector pipelines,
and usually produce scalar results 5-10 times slower than the maximum
rates of the vector pipelines.

S Vector Siart-up Times

fs

The use d' yéctor operations incurs an overhead penalty as shown in
the following approximate formula for the time T for a vector operation:

T=S+KN (1.1.1)

In (1.1.1), N is the length of the vectors involved, K is the time interval at
which results: are leaving the pipeline, and S is the start-up time. S is the
time for the pipeline to become full, and includes the time to initiate the
fetch of the operands. This is typically much larger for memory-to-memory
machines than register to register machines provided that the time to load
the vector registers from main memory is not included. S also includes the
time for configuring the pipeline on those machines with reconfigurable
pipelines.

The result rate K is closely related to the cycle time (also called the
elock period, clock time, or minor cycle time) of the machine. One resutt

i
> - ab 5 a+ab

b a

Figure 1.1-4. Chaining. :
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will leave a pipeline unit every cycle time once the pipeline is full. Hence,
on many machines K is just the cycle time. However, on those machines
with multiple reconfigurable pipelines, or multiple addition and multiplica-
tion units, K will be the cycle time divided by the number of multiple units.
For example, the cycle time of the CYBER 205 is 20 ns (nanoseconds = 10~°
seconds) so that on a two-pipeline 205, K is 10 ns for addition and multipli-
cation and 5 ns on a four-pipeline 205. Similarly, the cycle time of the NEC
SX-2is 6 ns and there are four units for addition and multiplication. Hence.
K =1.5ns for these operations. The value of K may be larger for more
complex operations such as square root or inner product.
From (1.1.1), the time per result is

Te=K+S/N (1.1.2)

which has the graph shown in Figure 1.1-5 as a function of the vector length
N. Figure 1.1-5 illustrates the need to use sufficiently long vectors so as to
amortize the start-up time over many results. Result rates on current vector
processors are on the order of a few ﬁanoseconds, while start-up times S
range from several tens of nanoseconds on register to register machines to
several hundreds of nanoseconds on memory to memory machines.

Another way of plotting the result rate is to use the number of resuits
per time unit given by

-1 N

R=Tx =m (1.1.3)

K+S

Te

1 10 10* 10° 10°
N

'Figure 1.1-5. Time per result relation.
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If S =0, 0oras N -, (1.1.3) vields

R, = (1.1.4)

1
K
which is called the asvmprotic result rate. This is the (not achievable)
maximum result rate when the start-up overhead 1s ignored. For example,
if K is 10 ns, then the asymptotic rate is R, = 10" results per second. or
100 mflops, where “mtlops™ denotes megaflops or one million fioaung point
operations per second. ‘}

The function R of (1.1.3) is plotted in Figure 1.1-6 as a function of N
under the assumption that K = 10 nsand S = 100 ns as well as S = 1000 ns.
As illustrated in Figure 1.1-6. both curves tend to the asymptotic result rate
of 100 mflops as N increases, but the approach is much more rapid initially
for smaller S.

A number of some interest is N, ., which is defined to be the vector
length for which half the asymptotic rate is achieved. For example, if
K =10ns, it follows from (1.1.3) that N,,, = 100 for S = 1000, while if
S =100, then N,,, = 10. Another important number is the cross-over point.
N., at which vector arithmetic becomes faster than scalar arithmetic. Sup-
pose that scalar arithmetic can be done at an average rate of 10 mflops.
Then the crossover point N, is ‘the',value of N for which R = 10 mflops.
For S = 1000, using (1.1.3), this is the minimum value of N for which

N

—— > 10 x 10°
(1000 + 10N)10

or N, =12. Thus, for vectors of length less than 12, the use of vector

R
100 I 5-100/—
S=1000
50
10 10? 10° 10*
N

Figure 1.1-6. Result rates in mflops.
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arithmetic is slower than scalar arithmetic. On the other hand, for S = 100,
N. = 2;in this case, vector operations are more efficient for all vector lengths
except the trivial case of vectors of length 1. Note that the cross-over point
is highly dependent on the scalar arithmetic rate. In the previous examples,
if the scalar arithmetic rate was only S mflops, then V. = 61f § = 1000 and
N =11f § =100

Vecrors

On vector computers, there are restrictions on what constitutes a vector
for purposes oi tector arithmetic operations. On register to I
machines, a vector for arithmetic instructions will be a sequence of con-
tiguous elements in 4 vector register, usually starting in the first element of

a register. An important consideration for these machines. then, is what
constitutes a vector in main memory for the purpose of loading a vector
register. This is essentially thc same consideration as what constitutes a
vector for arithmetic op- AR Memary 10 memaery computers.
Elements that are securnuaih a.idr‘“isa'“\e alwdys constitute a suttable
vector, and onwome machin - for example, C DO muachines) these are the
only vectors. In the seuuci, we

will use comtivuous as a synonym for

sequentially addressable, «ihouzh sequenually addressable elements are
usually not physically contguous o memory: r'xthcr, they are stored in
different memory banks. ( How=ver on CDC machines data are accessed

in “superwords™ of eight rds that are physically contiguous. Here, it is
superwords that are in ditferent memory bunks ) On cther machines, ele-
ments with a constant stride form a vector. By siride we mean the address
separation between elemcits. (iius, lcilichniis wiiil audresses a, a +5, a ~
2s5,...have a constant stride equal to s. In the special case that s = 1, the
elements are sequentially addressable.

For elements that are not stored with a constant stride, or for elements
stored with a constant stride greater than one on those machines for which
a vector consists only of sequentially addressable elements, it is necessary
to use auxiliary hardware or software instructions to retformat the data to
be an acceptable vector. A gather operation will map a given number of
elements specified by a list of their addresses into a vector. A merge operation
will combine two vectors into a single vector. A compress operation will
map elements at a constant stride into a vector. All of these operations, of
course, require a certain amount of time, which adds to the overhead of
the vector arithmetic operations. Moreover, after the vector arithmetic is
done, it may be necessary to store the results in a nonvector fashion. A
scatter operation, the inverse of gather, stores elements of a vector into
positions prescribed by an associated address list. A primary consideration
in developing algorithms for vector computers is to have the data arranged
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so as to minimize the overhead that results from having to use the above
data management operations.

Parallel Computers

The basic idea of a parallel computer is that a number of processors
work in cooperation on 4 single task. The motivauon 1s that if it takes one
processor an amount of time 1 to do a task, then p processors can do the
task in time ¢/ p. Only for very special situations can this pertect “speedup™
be achieved, however, and it is our goal 13 devise algorithms that can take
as much advantage as possible. for a given problem, of multiple processors.

The processors of a parallel computer can range from very simple ones
that do only small or limited tasks to very powerful vector processors. Most
of our discussions will be directed towards the case in which the processors
are complete sequential processors of moderate power, although attention
will also be paid to having vector processors.

MIMD and SIMD Machines

A first important dichotomy in paralle! systems is how the processors
are controlled. In a Single-Instruction-Multiple-Data (SIMD) system, all
processors are under the control of a master processor, called the controller,
and the individual processors all do th2 same instruction (or nothing) at a
given time. Thus, there is a single instruction stream operating on multiple
data streams, one for each processor. The Illiac IV, the first large parallel
system (which was completed in the early 1970s), was an SIMD machine.
The ICL DAP, a commercial machine introduced in England in 1977, the
Goodyear MPP, especially constructed for NASA in the early 1980s, and
the Connection Machine, a commercial machine of the mid-1980s, are also
machines of SIMD type, although the individual processors are relatively
simple 1-bit machines: 4096 in the DAP, 16,484 in the MPP, and 64,936 in
the Connection Mlachine. Vector computers may also be conceptually
included in the class of SIMD machines by considering the elements of a
vector as being processed individually under the control of a vector hardware
instruction. ‘

Most parallel computers built since the [lliac IV are Multiple-Instruc-
tion-Multiple-Data (MIMD) systems. Here, the individual processors run
under the control of their own program, which allows great flexibility in
the tasks the processors are doing at any given time. It also introduces the
problem of synchronization. In an SIMD system, synchronization of the
individual processors is carried out by the controller, but in an MIMD
system other mechanisms must be used to ensure that the processors are
doing their tasks in the correct order with the correct data. Synchronization
will be discussed more in later sections. o
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Shared versus Local Memory

Another important dichotomy in parallel computers is shared versus
local memory. A shared memory system is illustrated in Figure 1.1-7. Here,
all the processors have access to a common memory. (In the sequel, we
will use the terms ‘“‘shared memory™ and ‘“‘common memory™ interchange-
ably.) Each processor can also have its own local memory for program code
and intermediate results. The common memory would then be used for data
and results that are needed by more than one processor. All communication
between individual processors is through the common memory. A major
advantage of a shared memory svstem is potentially verv rapid communica-
tion of data between processors. A serious disadvantage is that ditferent
processors may wish to use the common memory simultaneously. in which
case there will be a delay until the memory is free. This delay, called
contention time, can increase as the number of processors increases.

An alternative to shared memory systems are local memory systems,
in which each processor can address only its own memory. Communication
between processors takes place by message passing,;in which data or other
information are transferred between processors.

Interconnection Schemes

Probably the most important and interesting aspect of parallel com-
puters is how the individual processors communicate with one another.
‘This is particularly important for systems in which the processors have only
local memory, but it is also important for shared memory systems since the
connection to the shared memory can be implemented by different communi-
cation schemes. We shall next discuss briefly a number of the more common
interconnection schemes.

Completely Connected. In a completely connected system, each pro-
cessor has a direct connection to every other processor. This is illustrated

Memory

* .Figure 1.1-7. A shared memory system.
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P

Figure 1.1-8. A complztely connected system.

in Figure 1.1-8. A completely connected system of p processors requires
p — 1 lines emanating from each processor, which is impractical if p is large.

Crossbar Switch. Another approach to a completely connected system
is through a crossbar switch as illustrated in Figure 1.1-9. As shown there,
each processor can be connected to each memory, in principle, through
switches that make the connection. This has the advantage of allowing any
processor access to any memory with a small number of connection lines.
But the number of switches to connect p processors and p memories is p?,
which becomes impractical for large p. One early parallel system, the C.mmp
developed at Carnegie-Mellon University in the early 1970s, used this
scheme to connect 16 PDP-11 minicomputers.

Bus and Ring. A bus network is illustrated in Figure 1.1-10. Here, all
processors are connected by a (high-speed) bus. An advantage is a very

M M M

Figure 1.1-9. A crossbar switch.
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Figure 1.1-10. A bus network.

Figure 1.1-11. A ring network.

small number of connection lines, but there may be contention (bus conten-
tion) for use of the bus by different processors; this can become a severe
problem as the number of processors increases.

A ring network is a closed bus network as illustrated in Figure 1.1-11.
Here data move around the ring and are available to each processor in turn.
Several parallel computers have used bus or ring connections of various
types. Some systems have used a bus to connect processors to a global
memory; an example of the mid 1980s is the Flexible Computer Corporation
FLEX/32, a system with 20 processors. Other systems have used a bus to
implement a local memory message passing system. An example was ZMOB,
an experimental system developed at the University of Maryland in the
early 1980s.

Mesh Connection. One of the most popular interconnection schemes
historically has been to have each processor connected to only a few
neighboring processors. The simplest example of this is a linear array
illustrated in Figure 1.1-12. Here, each processor is connected to two nearest
neighbors (except the end processors, which are connected to only one).

P, —1p, P, P,

Figure 1.1-12. A linear array.



