COMPUTERS IN
ADMINISTRATION

A FORTRAN IV INTHODUGTION ' ‘ | .

COMPUTERS IN
ADMINISTRATION

A Fortran 1V Introduction

ROBERT E. MALCOM

The Pennsylvania State University

MALCOLM H. GOTTERER

The Pennsylvania State University

FRANK LUH
Lehigh University

INTEXT EDUCATIONAL PUBLISHERS New York / London

SUBROUTINE RANDU, shown on page 315, is
reprinted by permission from SYSTEM/360 Scien-
tific Subroutine Package Programmers Manual,
H20-0205-2, page 77, © 1966 by International
Business Machines Corporation.

Watfor and Watfive messages, shown on pages
354-366, are reprinted by permission from /360
WATFOR Implementation Guide and /360 WAT-
FIV IMPLEMENTATION GUIDE © 1968 and
1969 respectively. Both are published by the De-
partment of Applied Analysis and Computer Sci-
ence, University of Waterloo, Waterloo, Ontario,
Canada.

Portions of this book have previously appeared in
Computers in Business, copyright © 1967 by
International Textbook Company.

Copyright © 1973 by Intext Press, Inc.

All rights reserved. No part of this book may be
reprinted, reproduced, or utilized in any form or
by any electronic, mechanical, or other means,
now known or hereafter invented, including photo-
copying and recording, or in any information stor-
age and retrieval system, without permission in
writing from the Publisher.

Library of Congress Cataloging in Publication Data

Malcom, Robert E
Computers in administration.

(Intext series in general business)

An updated version of Computers in business,
published in 1968.

1. FORTRAN (Computer program language)
I. Luh, Frank, joint author. 1. Gotterer, Malcolm
H., 1924- joint author. 111, Title.
HF5548.5.F2M3 1973 651.8°02’4658 73-749
ISBN 0-7002-2426-2

INTEXT EDUCATIONAL PUBLISHERS

257 Park Avenue South
New York, New York 10010

COMPUTERS IN
ADMINISTRATION

A Fortran IV Introduction

Preface

It is the authors’ belief that all persons preparing for a career in adminis-
tration—whether in the private or public sector—should have some under-
standing of the capabilities and usefulness of computers in their chosen
fields. A computer is more than a glorified calculating device. New
applications are being discovered every day, and the uses of computers are
limited only by the imagination of users. Therefore, the administrator
must learn how the computer may work for him, rather than how
computers are being used at present or what the capabilities of certain
systems are.

This does not mean that he has to become an expert programmer,
but it does mean that he should have some basic programming knowledge.
Computer programming requires a rigorous analysis and structuring of the
problem to be solved, which leads to an enhanced ability to recognize the
type of problem that may be solved by computer. We have emphasized
two aspects of programming that usually receive less attention in more
scientifically oriented tests.

(1) There is stronger emphasis on program documentation. The
flowchart especially is stressed as a major tool for both analysis
and documentation. In scientific applications, a few mathema-
tical formulas may concisely explain a program. In data pro-
cessing, a detailed explanation of many steps is more typical,
and is necessary for program control.

(2) There is also greater emphasis on programmed checks to assure
validity of results. In manual data processing equipment, many
data errors are recognized and eliminated on sight. In automatic
data processing, possible data errors must be anticipated by the
programmer, who must then provide for their elimination from

vii

the system. Such controls are especially necessary when large
volumes of data are to be processed.

The organization of this text differs considerably from many general
purpose Fortran introductions. The typical arrangement is to have chap-
ters on the basic functions—flowcharting, arithmetic instructions, input-
output instructions, control instructions, specification instructions, and
subprograms. We have tried to integrate most of these functions and to
present combined material in order of relative increasing difficulty.

The actual running of problems on the computer is highly desirable,
but very time consuming for both students and instructors. Programming
courses often include a laboratory period to allow for problem program-
ming activity. The authors’ preference is that no regular laboratory be
scheduled, but that released time for individual consultation be made
available as it is needed. It is recommended that a problem from each
chapter be successfully programmed by each student.

The illustrative examples and suggested problems are mostly drawn
from data processing applications. Both the examples and problems are
intended to illustrate the various programming concepts under discussion
at each stage of development, and they should not be interpreted as
models of the most appropriate procedure possible. Some background in
introductory accounting, algebra, and statistics will be helpful but is not
necessary. Many of the suggested problems intentionally do not have
suggested data. This has been done because development of data to test a
program’s correctness is considered a basic part of programming skill.

Some users may wish to study library functions before they are
covered in the text. Library functions are discussed in the first section of
Chapter 5. This section can be understood without too much difficulty
after Chapter 2 and with ease after the first half of Chapter 3. With this
exception, it will generally prove necessary to follow the regular order of
presentation for full comprehension. It is desirable, but not necessary, for
each student to have a reference manual of the Fortran system on which
any programs are to be run. The text is not intended to be a reference
manual, and only the most general instructions are included from the
dozens of Fortran dialects available. Instructions which do not conform to
U.S.A. Standard Fortran are relegated to appendixes, with the exception
of the popular single quote for Hollerith messages.

In many instances, specific instruction limitations for many compu-
ters are less restrictive than those detailed in this text. It is recommended
that the given text restrictions be followed if there is any possibility that
problems written may later be run on differing computer systems. (The
biggest differences will be found between Fortran systems for large- and
small-scale computers and between computer systems of various manu-
facturers.) Standard usage is generally the best policy.

A variety of more advanced and peripheral topics has not been
included, and a user may supplement the text in many ways. Discussions

viii PREFACE

of numerical error analysis, alternative number systems, magnetic tape
handling, disk-type storage devices, real-time processing, decision tables,
symbolic and absolute machine languages, feasibility studies, information
retrieval, typical hardware and software offerings from manufacturers,
symbolic logic, moniter systems, sorting and merging methods, report
generators, and overall system studies have not been included. It would be
impossible to cover all of these topics in meaningful depths in a program-
ming course, and the authors would be interested in reactions from users as
to what additions might be most helpful. We have included a chapter on
simulation as a basic computer-dependent tool in administrative analysis.
No new instructions are contained in it, however, so instructors may
consider this material optional.

The material in this text has been freely adapted from an earlier
book, Malcom and Gotterer: Computers in Business (International Text-
book Company, 1967. We feel that this book benefits from the under-
graduate and graduate courses we have taught at The Pennsylvania State
University and Lehigh University during the intervening years. Acknowl-
edgment is due many persons for making the courses and this text
possible. While it is impossible to name all those who have played a part in
the development of this book, we would like to thank the following
members of The Pennsylvania State University staff: Professor Preston C.
Hammer, Head of the Department of Computer Science; Ossian R.
MacKenzie, Dean of the College of Business Administration; Professor G.
Kenneth Nelson, Head of the Department of Accounting and Management
Information Systems; and Professor Donald T. Laird, Director of the
Computation Center. Members of the Lehigh University staff who made
important contributions are Professor Robert H. Mills, Chairman of the
Department of Accounting and Robert E. Pfenning, Lecturer in the
Department of Accounting.

Thanks are also due to several graduate assistants who have contri-
buted to the exercise and problem material and to colleagues and re-
viewers who have offered many helpful suggestions. Any shortcomings, of
course, are entirely the responsibility of the authors. Comments and
suggestions for improvements are welcomed from readers.

PREFACE ix

Contents

Introduction 1

1-1 Data Representation 5
1-2 Interpreting Data 13

Basic Programming 21

2-1 A Sample Fortran Program 22
2-2 Symbolic Name Construction 27
2-3 Arithmetic 34

2-4 Input/Output 38

2-5 Polishing Up the First Program 49

2-6 Basic Control 50
2-7 Input/Output Review 54
2-8 Problem Analysis and Documentation 55
2-9 Alternative Forms of Program Constants 58
2-10. Watfor and Watfiv Dialects 63
Illustrations 68

Loops and Subscripts 91

3-1 Basic Loops 91
3-2 Using Nested Loops 100
3-3 Finding Bugs and Garbage 103
3-4 DIMENSIONing and Subscripting 106
3-5 Variable-Length Records and Input/Output Extensions
3-6 Sequential Table Searching 120
3-7 Binary Table Searching 124
3-8 Variable Control Paths 127
Hlustrations 135

More Advanced Techniques 175

4-1 Single, Double, and Triple Subscripts 175
4-2 Type Specifications and Logical Operators 182

112

4-3
4-4
45
4-6
4.7
4-8

Exponent External Numbers 187

Mixed Mode Arithmetic 192

Internal Storage of Multiple-Subscripted Arrays
EQUIVALENCE Specification 200

Type Declaration Statements 205
Character Processing 206
Illustrations 209

Subprograms 247

5-1 Fortran Library Programs 247

5-2 Writing Subprograms 251

5-3 Subroutine Subprograms 252

5-4 Multiple Subprogram Calls 260

5-5 COMMON Variable Areas 262

5-6 BLOCK DATA Subprograms 264

5-7 Other Types of Subprograms 266
Illustrations 271

Simulation 301

6-1 Defining Simulation 301

6-2 Random Number Generator 302

6-3 Generating Arrivals 304

6-4 Servicing the Arrivals 307

6-5 Queues 308

6-6 Extension of the Model 310

6-7 Using the Model 311

6-8 Summary 313

Variables Glossary
Pseudorandom Number Generator Subroutine
Illustrations 316

Appendix A. Selected Flowchart Symbols
Appendix B. Watfor and Watfiv Messages
Illustration Index 367

[nstruction Index 368

Subject Index 372

vi

CONTENTS

193

315

351
353

1 Introduction

If there is one idea which | would like to leave with you today, it is that the
computer represents an important extension of the powers of the mind of man.
When the history of our age is written, | think it will record three profoundly
important technological developments: Nuclear energy, which tremendously
increases the amount of energy available to do the world’s work; Automation,
which greatly increases man’s ability to use tools; and computers, which multi-
ply man’s ability to do mental work. Some of our engineers believe that of these
three, the computer will bring the greatest benefit to man.’

As with all prophecies, only time will tell whether or not Mr.
Cordiner was right. Some of his contemporaries thought that half a dozen
or so computers would supply all the computing power the United States
could ever use, whereas others foresaw that, within a decade, all large
American businesses would be run virtually automatically by computers.
Already, both viewpoints are in error. Nevertheless, the computer industry
is one of the most dynamic in the world, and if the first decade was too
short a time to do away with business middle management, each succeed-
ing year has seen a dramatic change in the uses to which computers are
being put, in both business and science.

Basically, a computer may be thought of as a high-powered calculat-
ing machine, but, as the term is most commonly used, a computer has
three distinguishing characteristics. First, it has the ability to compare
values and thus to make decisions. Second, it has an internal memory
device to store both data and a program—a series of instructions about
what to do with the data. Third, it operates electronically at a very high
rate of speed. Unless the term is qualified, computers are also assumed to

1Testimc»ny of Ralph J. Cordiner, then President of the General Electric Company, before the
Subcommittee on Economic Stabilization, U.S. Congress Joint Committee on the Economic
Report, Automation and Technological Change. Hearings before the 84th Congress, 1955, p. 444.

be digital (as opposed to analog, which work with continuous rather than
discrete values) and general purpose (as opposed to special purpose ma-
chines, which can do only restricted jobs, such as handling inventory
counts).

The first machine to meet the above criteria is generally considered
the Eniac (meaning electronic numerical integrator and computer), an-
nounced by the U.S. Army on Feb. 16, 1946. Designed and constructed
the previous year, the machine was the development of J. Presper Eckert,
an electronics engineer, and John W. Mauchly, a mathematician, both of
the University of Pennsylvania. The computer really has no inventor, as
such, for it evolved from a series of contributions by several persons, over
a period of years.

The Eniac was built to compute firing tables for artillery pieces, a job
requiring hundreds of people working several months on desk calculators.
With the Eniac, 30 seconds were needed to compute the trajectory of a
shell, a computation requiring 20 hours under the former method.

The Eniac led to the development of the Univac (meaning universal
automatic computer). This was the first commercially available general
purpose machine and, for a time, was synonymous with the word com-
puter. The first Univac was delivered to the United States Bureau of the
Census in April 1951, for use in tabulating population data. Subsequent
machines were taken by the Air Force for budgeting purposes, by the
Army Map Service for transferring survey control points from a military
system to the universal earth-coordinate system, and by the Atomic
Energy Commission for scientific work.

A significant milestone in commercial data processing was reached by
General Electric on October 22,1954, when it began payroll processing on
a Univac computer. Although insurance companies had made earlier use of
computers, this was the first application to daily business operations with
repetitive deadlines to be met.

By today’s standards these computers were quite slow. The early
machines relied upon thousands of vacuum tubes in their electronic
circuitry, and sometimes upon semimechanical devices for their memories.
Typical instruction times were measured in thousandths of a second,
called milliseconds (msec). Memory size was measured in thousands of
characters. In retrospect, they are referred to as first generation com-
puters.

A most significant improvement came with the development of
transistors to replace the vacuum tube circuits. At the same time, mag-
netic core memories, also solid state in nature, were produced. Both of
these developments made computers faster and more reliable, and typical
second generation operating speeds were measured in millionths of a
second, called microseconds (usec). Memory units generally accomodated
several hundred thousand characters.

Currently, computers are in the third generation, and fourth genera-
tion machines are being developed. Transistors have been replaced by

2 INTRODUCTION

integrated circuits, an outgrowth of space research activities. Operating
speeds of the large machines are now measured in billionths of a second,
called nanoseconds (nsec). Memory units may contain millions of char-
acters. Whereas each computer manufacturer formerly had a line of
unrelated machines for large- and small-scale, business, and scientific use,
the new lines are interrelated and have similar instructions and operating
characteristics. This permits several machines to be more easily intercon-
nected into a large system, so computer systems can be enlarged by adding
more units rather than a completely different, larger machine (a building
block approach). More complex controls also allow priorities to be
assigned to different operations; thus computers may serve many users
simultaneously, by a process called time-sharing. Perhaps of even more
significance is the fact that as computers have been improved in design,
the cost of computation has declined sharply. Thus the use of computers
continues to grow at a very rapid rate.

A diagram of a computer memory unit is shown in Exhibit 1-1. The
unit is divided into many locations, each with a numeric label or address.
An analogy is often made between computer memory units and numbered
post office boxes serving as receptacles for letters. The number of the post
office box corresponds to the memory address, and the letters inside
represent the stored data. Although each location has a numeric address,
some other arbitrary label is often used for the convenience of pro-
grammers. Thus, in the diagram, location 1000 is arbitrarily assigned the
label A, and location 1005 is assigned the label X. These arbitrary
assignments can be made by the computer itself, so the programmer can
refer to locations in memory by a symbolic name, without ever knowing
the absolute numeric location used by the machine.

As shown in Exhibit 1-1, the instruction in the location labeled A is
“Read a number from a card and store it in a location labeled X.” The
next instruction says to read another number and store it in a location
labeled Y. Then subsequent instructions say to add these two numbers
together, label the answer Z, and print the answer on a paper form. These
instructions, as a group, constitute an example of a program.

Of course, a computer has more than just a memory unit. Logically,
computers usually consist of five elements: (1) an input section to get
data and instructions from external sources into the memory unit; (2) a
control unit to interpret the meanings of the instructions; (3) an arith-
metic device to carry out the instructions; (4) a main memory unit; and
(5) an output unit to communicate the answers from the machine to
humans.

Another special name is used for the control, arithmetic, and main
memory units. Collectively they are referred to as the central processing
unit, or CPU. This unit is diagrammed in Exhibit 1-2. (We are distinguish-
ing here the CPU memory unit from other input/output devices, which in
fact also store data, and are therefore memories.)

All of the units just described are referred to as computer hardware,

INTRODUCTION 3

Exhibit 1-1 A Computer Memory Unit

1
2
3
A 1000 | “‘Read a number from a card and store it in a location labeled X"
B 1001 | “Read another number and store it in a location labeled Y
C 1002 | “Add the number labeled X to the number labeled Y’
D 1003 | “Put the above answer in a location labeled Z”
E 1004 | “Print out the number in the location labeled Z”
X | 1005 | “5”
Y | 1006 [“3”
Z | 1007 | “8”
2000
2001
2002

Programmer Computer Symbols in Each Memory Location
Labels Labels Which Can Represent Instructions
for for To Be Performed or Data To
Memory Memory Be Manipulated
Locations Locations
(Arbitrary
Choice)

as they are physical entities. Computer hardware, however, does not
process data by itself. Complex sets of instructions or programs are
required to make it go. These programs are referred to as software. Much
software is furnished by the hardware manufacturers, but additional
software is also produced by the organization using the computer.

The computer component can perhaps be better understood by using
a common analogy. Consider a clerk using a calculating machine to
prepare payroll checks. Input data might be in the form of clock cards

4 INTRODUCTION

1-1
DATA REPRE-
SENTATION

indicating the time worked, the pay rate, and the foreman’s approval. The
control unit would be the clerk himself, interpreting which data were
hours and which were rates and what should be multiplied and what
should be added. The arithmetic unit would be the calculating mechanism,
performing additions, subtractions, multiplications, and divisions. To add
two numbers, the clerk would decide which buttons to operate (control),
and then the machine would do the work (arithmetic). The output might
be in the form of written checks and a log of the work performed. The
internal memory unit would be the keyboard and dials of the machine
(from which input data and answers were read), and the brain of the clerk
(in which the instructions were remembered).

Whereas, with the brain, humans can remember hundreds of different
characters or symbols and what they represent, computers understand
only two. For example, our decimal system uses 10 characters, called
digits, which are 0123456 789. The English alphabet uses 26 char-
acters, or letters, which are ABCDE... XY Z. We also use many
special characters, such as+—,.* () $="b/ (where b indicates a blank
space). All the characters just specified in fact constitute the character set

Exhibit 1-2 Computer Organization

Storage

A

Input Control Output

Arithmetic

Central
Processing
Unit (CPU)

DATA REPRESENTATION 5

used in the Fortran IV computer language.? The computer itself recog-
nizes only 1 and 0.

The unit which stores the 1 or the 0 in a computer is referred to as a
bit (for binary digit). It is the smallest level of data representation.
Generally, bits by themselves are not very useful, although in symbolic
logic problems the 1 may represent a true condition and the O a false
condition, and, for data representation, this is sufficient. Groups of bits,
however, may be developed into elaborate coding systems, so that as
many different characters as desired can be represented.

One widely used code is the Extended Binary Coded Decimal Inter-
change Code (EBCDIC). Selected character representations for this code
are shown in Exhibit 1-3.

The parity bit is not part of code, but a special bit used to check
computer accuracy. In Exhibit 1-3 each character always has an odd
number of 1s, or odd parity. Even parity is also used in some systems.

Note that with one bit only two characters can be represented. With
two bits there are 22, or 4, possibilities—00, 01, 10, 11. In the Fortran 1V
character set of 10 digits, 26 letters, and 12 special characters, 48 bit
combinations are needed, and the smallest power of 2 to handle this is 2°,
or 64 (as 2% is only 32, and not sufficient). A 6-bit binary coded decimal
notation (often abbreviated BCD) was in fact used with the first Fortran
language. The 8-bit code allows for encoding small as well as capital

Exhibit 1-3 Selected Character Representations for EBCDIC

Bit Number
Character Parity 0 1 2 3 4 5 6 7
A 0 1 1 0 0 0 0 0 1
B 0 1 1 0 0 0 0 1 0
C 1 1 1 0 0 0 0 1 1
D 0 1 1 0 0 0 1 0 0
X 1 1 1 1 0 0 1 1 1
Y 1 1 1 1 0 1 0 0 0
Z 0 1 1 1 0 1 0 0 1
0 1 1 1 1 1 0 0 0 0
1 0 1 1 1 1 0 0 0 1
2 0 1 1 1 1 0 0 1 0
8 0 1 1 1 1 1 0 0 0
9 1 1 1 1 1 1 0 0 1
+ 1 0 1 0 0 1 1 1 0
= 1 0 1 1 0 0 0 0 0
b 1 0 0 0 0 0 0 0 0

2 " - SR .

In some Fortran dialects the $ is arbitrarily treated as a letter rather than as a special character. It
is always permissible to use the $ as a special character, but it is not always permissible to use it as
a letter. It will be treated in this text as a special character.

6 INTRODUCTION

letters, as well as many other special characters. It also has unassigned
spaces for future expansion. Another widely cited 8-bit code is the U.S.A.
Standard Code for Information Interchange-8 (USASCII-8).3

Many other arbitrary coding schemes have been devised. Computers
sometimes do calculations with digits represented in some BCD form, but
often another representation is used for digits only. This involves changing
number representations from the decimal, or base-10, system, to the
binary, or base-2, system. This is illustrated in Exhibit 1-4.

Calculations can be done much faster in pure binary form, but the
data going into and out of the machine must be translated to decimal
form for most people to read. Decimal processing has therefore been most
widely used in business, where input and output are relatively large.
Binary processing has been used most widely for scientific calculations,
where input and output are relatively small. Many computers will operate

Exhibit 1-4 Number Representations

Decimal Binary

A =
n w 1
L N @
RN
o — > c
9 2 2 &£ L. w
S 3 22 & 2 an
T L S 3 3 3 Loz ™,
T g2 3 22 2 3 2 L ¢ Naw
s 2 n e 3 3 S & q = Il 1 I
= B 2] 3 by < 5 = > Py 8 Z & «»n wn
o = c =2 [[o [o =) £ S o Fot
< 2 o < c =2 2 € X = X ®»® 5 3 c
_ I = 2 O w - 0O v H v W w = D
1 2 0 5 1. 0 0 1 0 1 1 0 1 0 1
5X1 = 5 1X1 = 1
0X10 = 00 0X 2 = 0
2X 100 = 200 1X4 = 4
1 X 1000 = 1000 0X38 = 0
1205 1X16 = 16
E— 1X32 = 32
0X64 = 00
1X 128 = 128
0X 256 = 000
0X 512 = 000
1X 1024 =1024
1205

3The American National Standards Institute (ANSI) is an association promoting design uniformity
in many fields. It has formerly been known as the U.S.A. Standards Institute and the American
Standards Association (ASA).

DATA REPRESENTATION 7

on data in either form, and even binary computers can handle nonnumeric
data in coded form.

We have now compared information representation at two levels (bit
and character) for two media—the English language and the computer. Let
us now consider a third widely used medium in data processing—the
punched card. Several such cards are illustrated in Exhibit 1-5. They are
frequently called IBM cards or EAM cards. IBM refers to International
Business Machines Corporation, whose coding system is the most widely
used, and EAM to electric accounting machine, a noncommercial syn-
onym promoted by the federal government. Yet another name is Hollerith
card, after the originator, Herman Hollerith.

Punched cards are divided horizontally into 80 columns and verti-
cally into 12 rows, where holes may be punched to indicate information.
The 10 bottom rows are used to indicate the digits O through 9. The top
row is called the 12 or Y row, and the second row is called the 11 or X
row.

Numbers are represented in any column by punching out the hole in
the row of the desired value. Alphabetic characters are formed, in code,
by punching out two holes at a time in the same column. One hole is
always from the top three rows, sometimes called zone punches. Special
characters are represented by other combinations of punches, which are
not now completely standardized.

By taking a hole to represent a 1 and no hole to represent a O,
punched cards are seen as also coding data from binary bits. Thus, a
decimal 1 is represented in card coded binary (from top to bottom) by
000100000000, and a decimal 2 is represented by 000010000000. An A
is represented by 100100000000 (or 12 and 1), B by 100010000000 (or
12 and 2), L by 010001000000 (or 11 and 3), S by 001010000000 (or O
and 2), and Z by 001000000001 (or 0 and 9).

Card columns can be arbitrarily grouped together to form what are
called fields. Numbers or characters within a common field are treated as a
single unit. Field sizes may vary from a column to the entire card. In
Exhibit 1-5, the second card is split into five name and address fields—a
name field of columns 1 through 20, a street address field of columns 21
through 40, a city field of columns 41 through 60, a state field of columns
61 through 74, and a zip code field of columns 75 through 80. The third
card is split into eight numeric fields of 10 columns each. As can be seen,
fields 4, 5, and 6 run together. As long as it is precisely known where
fields begin and end, fields can be made continuous, without blank spaces
between them.

In the English language, we also group together related characters,
but the term word is used rather than fie/d, and words are separated by
blanks and punctuation rather than being allotted a certain physical space.
Note that English words and punched card fields do not necessarily have
exact correspondence. The last name, first name, and middle initial are
treated as separate words in the English language, but they comprise a
single unit name field on the punched card example.

8 INTRODUCTION

