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Preface

The steady expansion of interest in electrochemical science and technology creates
the need for a monograph series of the highest standards for the experienced reader.
The purpose of the Advances in Electrochemical Science and Engineering series is to
provide high-quality advanced reviews of topics of both fundamental and practical
importance.

The current volume addresses issues of chemically modified electrodes. When-
ever bare surfaces do not fulfill the needs required, their chemical modification is a
most promising way out of the dilemma. Purposeful attachment of atoms, mole-
cules or even whole (nano)particles to the surface allows one to tailor the electronic
and structural properties of a surface and hence, its functionality over a wide range.
In the five chapters of this volume, internationally renowned scientists describe,
how to modify a surface and what to do with it.

M. Buck reviews in great depth the literature on self-assembled monolayers
(SAMs) of thiols on gold, a classic means of surface modification. The wide variety
of functional groups that is provided by synthetic chemists makes thiol-SAMs an
exciting playground for applications where the gap between two worlds, the inor-
ganic and the organic, needs to be closed. Examples are molecular electronics and
biochemistry.

M. Tagliazucchi and E.J. Calvo present another important and exciting means of
modification: by electrochemically active polyelectrolytes. Polyelectrolytes modify
surfaces by their inherent electric charges, which can be used, e.g., for constructing
multilayer films of opposite charge, or simply by changing the electrochemical
potential of reaction partners. Their role in many areas of chemistry, particularly
of electroanalysis and biochemistry, cannot be overemphasized.

Carbon nanotubes are increasingly recognized as a promising tool for surface
functionalization. M.]. Esplandiu presents a state-of-the-art overview of their appli-
cations in electrochemistry. As with SAMs of organic molecules the great potential of
carbon nanotubes lies, among others, in biochemical applications and in molecular
electronics.

Gold nanoparticles (NP) are just one of a variety of ways to modify the chemical
behavior of surfaces by entities that can be described by their solid-state rather than
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Preface

atomic or molecular properties. From D.A. Buttry’s chapter it becomes evident that
their potential is mainly in electrocatalysis, an area of vast practical importance.

J.J. Gooding et al. touch upon many of the above-described systems on their
exciting tour through the field of nanostructured electrodes with unique properties,
particularly for biochemical and sensor applications. Again, it is the intelligent
design of a bridge between measuring devices and the living world, which is
highlighted in this review.

The reader may notice many cross-references between the five contributions,
which support the view that chemical modification of surfaces, particularly the
nanostructuring, is not only interesting for its own sake, but also relevant to a
wide range of practice applications. Their seminal role in bioelectrochemistry, bio-
sensing, electrocatalysis and electroanalysis among others is clearly evident in this
volume.

Ulm, April 2009 Dieter M. Kolb
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Nanostructured Electrodes with Unique Properties
for Biological and Other Applications

J. Justin Gooding, Leo M.H. Lai, and lan Y. Goon

1.1
Introduction

Modifying the surface of electrodes to provide some control over how the electrode
interacts with its environment has been one of the most active areas of
research interest in electrochemistry within the last 30 years [1]. Whereas once the
performance of an electrode was limited to the solution it was placed into, the
material from which the electrode was made and the potential applied to the surface,
the ability to chemically modify electrodes has provided a powerful route to
tuning their performance. This has been particularly important to electroanalytical
chemistry [2, 3], where modification has provided routes to providing selectivity,
resisting fouling, concentrating species, improving electrocatalytic properties [4] and
limiting access of interferences in a complex sample [5], such as a biological fluid, but
has also had major impact for research into energy conversion [6, 7] and storage,
corrosion protection [8], molecular electronics [9-11], electrochromic devices [12] and
fundamental research into phenomena that influence electrochemical processes [9].
In recent years this revolution into tailoring electrode surfaces, such that the
electrode has unique properties, has continued at an even greater rate with unprece-
dented control over the modification process via advances in nanofabrication. Taken
in its broadest context, nanostructuring electrodes can be regarded as controlling the
architecture of an electrode at the nanoscale; whether it be using nanomaterials,
templating methods, organic monolayer modification of electrode surfaces or
hybrid modification layers involving organic monolayers and nanomaterials. These
different strategies for modifying electrodes provide opportunities to confer a unique
range of properties to electrode surfaces from ultrahigh surface areas achieved with
templated electrodes, to electrocatalytic properties with nanoparticles, strategies to
achieve electrochemistry in locations too small for conventional electrodes, such as
inside enzymes, and give electrodes with switchable properties.

Many of the unique properties that can be achieved with nanostructuring at the
nanoscale are due to the ability of the unique properties of the nanomaterials
employed, the ability to control the architecture of the electrode interface at the
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nanoscale or both. This nanoscale design of electrode interfaces potentially provides
spatial control vertically from the surface and/or laterally across the electrode surface.
In many ways self-assembled monolayers (SAMs) and templated methods offer the
greatest possible control over how an electrode interface is modified as the electrode
design and properties are tailored at something akin to the molecular level [13-15].
This spatial control is coupled with chemical control via the ability to incorporate
multiple chemical components into a single interface to provide the interface with a
range of properties. An example of such control is in the ion-channel biosensor where
up to 10 or more molecular components are incorporated into a lipid bilayer for
modifying electrodes where both lateral and vertical control are required to give one
of the most versatile and sensitive biosensing concepts ever developed [16]. It is this
molecular-level control with monolayer technologies that also forms the basis of
many unique nanostructured electrode concepts involving nanoparticles, nanotubes
and other nanomaterials where self-assembled monolayers form the linker between a
macroscopic electrode and the nanomaterial [14].

Itis the unique properties that can be conferred to an electrode by nanostructuring
using nanomaterials, self-assembled monolayers and templating methods, particu-
larly with regards to a biological context, that are the subject of this chapter.
The chapter is not intended to be a comprehensive review of all the work done on
nanostructuring electrodes but rather to cover some of the recent advances in
nanostructuring electrodes, which are important for using electrodes for biological
applications. Firstly, strategies to produce electrodes with high surface areas and their
applications in enhancing electrode sensitivity will be discussed. The discussion
of surface area will be followed by the structuring of electrodes with nanoscale
features that provide catalytic properties to the electrode. The third section will cover
the small size of features providing the opportunity to intimately interface electrodes
with proteins. This section will include using molecular wires to give blocked
electrodes where electrochemical communication is maintained through molecular
wires. The final section of the chapter will explore switchable surfaces where spatial
modulation of the electrode modification layer is exploited to radically alter the
properties of the electrodes. In all cases our emphasis will be on methods of electrode
modification that are highly controlled.

1.2
High Surface Area Electrodes

Incorporation of nanostructures onto the surface of electrodes began in the early
1990s. These structures were initially used to enhance electrochemical signals due
to their high surface-to-volume ratio. Gradually, work progressed to their application
into bioconjugated systems. The increase in electroactive surface area allows
for lower detection limits and higher sensitivity to analytes. This is demonstrated
in the detection of H,0, using films of nanoparticles in a three-dimensional
structure [17, 18]. In these studies, multilayers of nanoparticles were built up with
bridging molecules between the layers. The bridging molecules have redox-active
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centers, which are sensitive to H,0,. By having large areas of nanoparticle film,
the number of redox-active centers increases, providing a more sensitive sensor
compared with electrodes of the same material that do not comprise the nanoparticle
films. The main challenge in achieving a high surface area electrode is the control
over the size and distribution of the structures produced on the electrode surface. To
accomplish this, the four main strategies in producing high surface area electrodes
that have been employed are (1) the direct attachment of nanoparticles onto an
electrode, (2) templating with membranes such as polycarbonates or alumina, (3) the
use of lyotropic liquid crystals as templates and (4) colloidal templating. We will
discuss each of these in this section.

1.2.1
Attachment of Nanoparticles onto Electrodes

Increasing the electroactive surface area has been successfully achieved by the
attachment of nanoparticles onto an electrode. Natan and coworkers [19] pioneered
this approach, where the initial idea was to attach nanoparticles onto a platinum
surface to enhance electrode performance. In this first study the surface of a platinum
foil was coated with a polymer, (3-mercaptopropyl) methyldimethoxysilane
(MPMDMS). Subsequently, the modified electrode was placed into a solution of
15-nm diameter Au nanoparticles. The MPMDMS and Au nanoparticle-modified
layer was electrochemically active to the redox-active species, methyl viologen.
An important observation made by Natan and coworkers [19] in this work is
the electrochemistry was blocked when the Pt foil electrode was modified with the
MPMDMS in the absence of Au nanoparticles but was ‘switched on’ when the
nanoparticles were present. This demonstrates that the Au nanoparticles act as
electrodes. However, when the oxidation and reduction peaks in the cyclic voltam-
mogram (CV) were compared to a bare platinum electrode, the peaks in the CV of the
nanoparticle-modified electrode had a slight broadening. The broadening was
attributed to a closely spaced array of nanoelectrodes. Although this paper did not
explore the effect of multilayers of nanoparticle films, nor the enhancement of the
electrochemical signal provided by the increased surface area, this work paved the
way for further investigation into nanoparticle-modified electrodes in general and
for sensing in particular.

Following the lead of Natan and coworkers, further studies have demonstrated the
ability of nanoparticles to enhance sensitivity by constructing multilayer structures
composed of nanoparticles. Multilayers of nanoparticles linked together with
conductive species create large internal surface area, which can be accessible to
redox probes. The multilayered systems effectively create a porous network providing
much higher surface area than a monolayer. For example, Blonder et al. [20] have
modified indium tin oxide (ITO) electrodes with multilayers of Au nanoparticles.
In this example the ITO surface was first modified with triethoxy aminopropylsilane
in toluene, followed by the attachment of 12-nm nanoparticles (Figure 1.1).
This nanoparticle-modified layer was then further functionalized with N,N' -bis(2-
aminoethyl)-4,4" bipyridinium, a redox-active bridging molecule. Four layers of
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assembled onto the Au or Ag nanoparticle
monolayer. This step was repeated a number
of times to produce a three-dimensional array
of nanoparticles that has large internal surface
area and increased redox-active species
concentration. (Reproduced by permission

of The Royal Society of Chemistry from [20].)

attachment a redox-active bridging molecule was

nanoparticle films were constructed by repeating the exposure to Au nanoparticles
and the redox bridge. This study demonstrated that, as more nanoparticles were
placed on the electrode, an increase in peak current was observed for the oxidation
and reduction, when a cyclic voltammogram was taken in phosphate buffer at pH 7.
The increase in signal was attributed to two related factors. The first was the increase
in the number of redox molecules in the layer and the second was the increase in
electroactive surface area.

The main idea demonstrated by Willner and coworkers [20] is the ability to
construct multilayered nanoparticle electrodes, which are porous. In a related study
Patolsky et al. extended this idea further using biocatalysts to detect H,0, [18]. In this
example, the construction of the electrode is similar to the one described above but
the redox-active bridging molecule was replaced with microperoxidase-11 (MP-11).

MP-11 is an 11 amino acid long chain, with the heme center of cytochrome
¢ (Figure 1.2), which is produced by proteolytic digestion. It is an electrocatalyst and
biocatalytic unit for H,0,. By keeping the concentration of H,0, constant at 0.5 mM
and changing the number of layers of nanoparticles and MP-11, Willner and
coworkers [18] observed the enhancement of peak current as the number of layers
of nanoparticles and MP-11 deposited on the electrode was increased. Therefore,
Willner and coworkers concluded that the three-dimensional structure can provide
a tunable and sensitive sensing interface for H,0, by adjusting the amount
of nanoparticle layers present in the three-dimensional structure.

Electrodeposition is an alternative way to produce nanostructures on an electrode
surface from solution onto a surface. Using electrodeposition to construct
nanostructures allows for greater control over the amount of material deposited on
the surface due to the ability to precisely control the charge that is passed into the
system. Some control over the morphology is also afforded. For example, Liu et al.
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superstructure on ITO. (Reprinted with permission from Ref. [18].
©1999 Elsevier.)

demonstrated the production of pyramidal, rod-like and spherical Au structures on
Au foil [21]. The production of these nanostructures was simply achieved by
electrodeposition of gold from an aqueous solution of 0.1 M HCIO, and different
concentrations of HAuCl,. For example, to produce pyramidal structures 40 mM
HAuCl, was used and deposited at —0.08 V vs. Ag|AgCl, to produce rod-like
structures 4mM HAuCl, and —0.08 V vs. Ag|AgCl was used and finally spherical
structures were produced with 40 mM HAuCl, at —0.2V vs. Ag|AgCl. After the
formation of the nanostructures the surface was modified with Cu, Zn-superoxide
dismutase (Cu, Zn-SOD). The enzyme immobilization was achieved simply by
adsorption. The resulting electrodes were exposed to superoxide (O, ) and exhibited
an improvement in the direct electron transfer between the SOD and the gold
nanostructures compared with an electrode without nanostructuring. In particular
the spherical nanostructured electrode showed excellent analytical performance,
such as a wider linear range (0.2-200 uM), a lower detection limit (0.1 uM), a shorter
response time (4.1 s) and a higher stability compared with the pyramidal and rod-like
nanostructures.

The observation made by Natan and coworkers [19] that electrochemistry at a Pt foil
electrode modified with the MPMDMS was dramatically altered when nanoparticles
were present was also the first example where nanoparticles were used to alter the
resistance of polymer films. At a similar time, Murray and coworkers [22] used
nanoparticle films to explore the resistance properties of films relative to the length
of the species that were used to bind the nanoparticles together into films. In this first
study the modifiers were octanethiol, dodecanethiol and hexadecanethiols. The
modified nanoparticles were produce by the reduction of HAuCly in toluene followed
by extraction into toluene where a molar equivalent amount of the thiol was added.
The gold nanoparticles were flocculated to give a nanoparticle film. Conductivity
of the films was measured and Murray and coworkers [22] reported a significant
decrease in conductivity (150 times when compared between octanethiol and
hexadodecanethiol) as the length of the monolayer coating the gold nanoparticle
increase. This unique ability of the dependence on length of monolayers on
nanoparticle surface on resistance has been used to detect gaseous analytes.



