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NONLINEAR SCIENCE THEORY AND APPLICATIONS

Numerical experiments over the last thirty years have revealed that simple nonlinear
systems can have surprising and complicated behaviours. Nonlinear phenomena in-
clude waves that behave as particles, deterministic equations having irregular, unpre-
dictable solutions, and the formation of spatial structures from an isotropic medium.

The applied mathematics of nonlinear phenomena has provided metaphors and
models Tor a vasizty of physical processes: solitons have been described in biological
macromolecules as well as in hydrodynamic systems; irregular activity that has been
identitied with chaos has been observed in continuously stirred chemical flow reactors
as well as in convecting fluids; nonlinear reaction dilfusion systems have been used
to account for the formation of spatial patterns in homogeneous chemical systems as
well as biological morphogenesis; and  discrete-time and  discrete-space nonlinear
systems  (cellular automata) provide metaphors for processes ranging from the
microworld of particle physics Lo patterned activity in computing neural and self-
replication genctic systems.

Nonlinear Science: Theory and Applications will deal with all arcas of nonlinear
science - its mathematics, methods and applications in the biological, chemical,
engincering and physical sciences.
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Preface and acknowledgements

Mechanical systems may be considered as an example of nonlinear science,
since the nonlinear effects can arise from a number of sources such as:

(a) geometric nonlinearities,
(b) nonlinear body forces,
(c) constitutive relations,
(d) kinematics and

(e) boundary conditions.

Research in classical nonlinear dynamics has had a long history. However,
it is now recognised that, in addition to classical nonlinear behaviour
represented by limit cycle, quasiperiodic motion, jump phenomena, etc., a
deterministic system may exhibit aperiodic motion reminiscent of the random
one. It has been suspected that examples of chaotic oscillations in mechan-
ical systems were observed before the current era of chaos but were either
ignored, were described as random or could not be explained at ail.

This book presents the general methods of investigation of chaotic behavi-
our such as Lyapunov exponents, the Melnikov method, Poincaré maps, etc.
These methods are then applied to nonlinear mechanical systems, where the
chaotic oscillations are present. Throughout this book I have tried to em-
phasise the equal importance of both mathematical preciseness as well as
mechanical systems applications. I hope that this material will be useful for
mathematicians who are interested in applications as well as for mechanical
engineers with an interest in the theory of oscillations.

I am deeply indebted to W. -H. Steeb, M. S. El Naschie and H. Isomiki
for their valuable suggestions during discussions of the many problems
treated in this book.

I would also like to thank J. C. Antoranz, A. S. Barr, P. Grassberger,
F. C. Moon, P. C. Miiller, R. Nielsen, H. Nusse, S. Schoombie, R. Seydel,
J. M. T. Thompson and others who discussed with me the idea of chaotic
dynamics after my presentations at a number of conferences and seminars.
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their hospitality during my visit 10 the Centre for Nonlincar Studies at Leeds,
where | had the opportunity to finish this work.
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Foundation, the. British Council and the King Abdul Aziz City of Science
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1 Introduction

1.1 General introduction

The great interest in chaotic systems began after Lorenz’s work on the model
of atmospheric convection. Edward Lorenz 1963, in his famous work *Deter-
ministic nonperiodic ow”, which was published in the Jouwrnal of Atmos-
pheric Science, presents a system of three differential equations, which are
deterministic but show very irregular (random-like) behaviour. It should be
mentioned  here that Poincaré  (1898) considered the possibility of such
systems, and many ol the modern ideas and developments in chaos theory
can be traced back to his classical work on celestial mechanics. He was the
first to point out that the unsiable motion of apparently simple systems can
be extraordinarily complicated, but unfortunately the methods of his day
could not solve the equations of motion of the solar system and other similar
“dynamical systems that he considered. He developed a new branch of
mathematics, topology. which has twrned out to be a powerful tool for
describing chaotic systems. Later, Birkhoff (1927) proved what Poincaré had
conjectured: the existence in the restricted planar three-body problem of
infinitely many periodic orbits. These important results of Poincaré and
Birkhoff are not readily applicable to problems in applied science, and so the
recent explosive growth of chaotic dynamics and its applications follows
from Lorenz’s work. Of course, the response of deterministic differential
equations describing a chaotic system cannot be random in the sense of the
theory of stochastic processes. The most important reason is that a system of
nonlinear deterministic ditferential equations has a unique solution for a
given set of parameters and initial conditions. After the work of Lorenz,
many other deterministic equations showing chaotic behaviour have been
obtained, both as simple, analytically theoretical mathematical systems and as
models of real physical, biological, or chemical systems. These include both
systems of nonlinear ordinary differential equations and maps.



2 Chaotic oscillations in mechanical systems

One of the simplest maps that exhibits chaotic behaviour is the logistic
equation:

XMI = rxn(l - X") 0< X" <1
5

The logistic map is described in detail in Chapter 4, and sample periodic
and chaotic behaviours can be illustrated on a pocket calculator. For r = 3.25
after a short transient iteration we obtain two values of v i iteration: for
r = 3.5 four values; and for r = 4 an irregular, nonperiodic sequence that
approximates a chaotic solution is obtained.

Many more simple deterministic models with chaotic behaviour have been
found (for example: May, 1976. Feigenbaum, 1978, 1980: Greborgi er al.,
1982; Jeffries & Perez, 1983; Yamaguchi & Sakai, 1983; Collet & Eckmann,
1980a,b; Nauenberg & Rudnick, 1981). Scientists from many different branches
of science. inctuding mathematics, physics. chemistry, biology, and mechani-
cal, electrical and civil engineering, are working on chaotic experimental
systems and models. and hence developing a new way of modelling the
phenomena in the real world.

In this book we describe chaotic oscillations based on some examples
from mechanical engineering. First, we will give fundamental information
about chaotic systems and later describe a number of chaotic systems with
applications in mechanics.

In §1.2 we explain the connection between stochastic and chaotic
processes, pointing out that the theory of stochastic processes has been
developed to describe irregular phenomena in deterministic systems that are
too complicated, or have too many variables, to be fully described in detail.
Poincaré maps, a powerful tool in the description of chaotic oscillations, are
introduced in §1.3.

In Chapter 2 we present the definition of an attractor and describe its main
properties. We define a chaotic attractor as one for which at least one
l.yapunov exponent is positive. We alsc present the example of a hyper-
chaotic attractor (one with two positive Lyapunov exponents) for a system of
two coupled oscillators.

The methods of identifying and quantifying chaotic behaviour such as
the calculation of Lyapunov exponents from explicitly known equations of
motion or experimental time series are presented in Chapter 3. Also, a new
method of estimating Lyapunov exponents based on the symbolic dynamics
method is presented. The Melnikov method of transverse homoclinic points
is described as one that allows us to obtain a necessary condition for chaos.
We describe it for systems with periodic and almost periodic perturbations
and a:so describe a new method of estimation of power spectra of near-
homoclinic motion. We also show here how spectral analysis can be useful
in the investigation of chaotic systems. i

Chapter 4 describes some typical routes to chaos: period doubling with its
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universal properties, intermittency and the quasiperiodic route associated with
the breaking of a torus. »

One of the moft popular oscillators considered among others in mechan-
ical systems, Duffing’s oscillator, is presented in Chapter 5. We describe the
first example of chaotic behaviour of this system that was found (Ueda’s
Japanese attractor) and later describe chaotic behaviour of the buckled beam
equation, quasiperiodically forced Duffing’s equation and systems with time
delay. The analytical conditions for chaotic behaviour, including a new one
based on Feigenbaum’s universal properties of period doubling cascade, are
presented.

The possibility of chaotic behaviour of another well known oscillator, Van
der Pol’s, is discussed in Chapter 6. First we present the condition for the
existence of a limit cycle in this system and later we show the route to
chaos in such systems.

Another classical oscillatory system. a mathematical pendulum, is de-
scribed in Chapter 7. We show that the chaotic behaviour of this system is
obtained after breaking the symmetry of motion. Finally, we compare the
behaviour of a pendulum with the behaviour of a circle map.

In Chapter 8 we present examples of chaotic behaviour of systems with
direct application in mechanical engineering, such as a rotor system. Freud's
pendulum, oscillators with dry friction, a piecewise linear oscillator and
oscillations of structures such as shells and arches. Irregular machine
vibrations, which are present in manufacturing processes, may be caused by
chaotic phenomena, as we have shown on a model of the culting process.
Finally, we show how to adopt the methods of stochastic processes to inves-
tigate the stability of a system forced by chaotic input.

In Chapter 9 we describe the properties of a new type of attractor, which
is strange but not chaotic, as its largest Lyapunov exponent is not positive.
We show that this type of attractor can occur in quasiperiodically forced
systems and discuss the route to chaos via strange nonchaotic attractors.

The properties of basin boundaries are discussed in Chapter 10. We show
that even when the system is not chaotic we cannot always predict its
behaviour, as small changes of system parameters can move the system to
another attractor.

Finally, in the Appendix we give more f{undamental information on
stability theory, averaging and Hopf bifurcation.

After a decade of extensive research in chaotic dynamics, its successes are
well documented in a great number of papers and several books (see
references).

The books can be divided into thiee groups:

(a) collections of papers or invited reviews,
(b) conference proceedings, and
(c) ‘monographs.
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Research in physics and fuid dynamics is well documented in 1wo
collections of papers (Hao, 1984: Cvitanovic, 1984). Collections of invited
reviews, mainly by physicists, can be tound in the series Directions in Chaos
(Hao, 1988). Reviews by mathematicians, physicists and biologists can be
found in Holden (1986).

In the last few years a great number ol conferences and workshops
devoted to chaotic dynamics have been organised. After somie of them, the
proceedings have becn published (for example: Salam & Levi, 1988: Helle-
man, 1980, Kawakami, 1990, Christiansen & Parmentier, 1989). In most of
them papers by researchers from various branches of science can be found.

Most of the monographs on chaos are written by mathematicians: Gueken-
heimer & Holmes (1983), Sparrow (1982), Steeb & lLouw (19%0), Lichten-
berg & Licberman (1982) and Ruelle (1989); or physicists: Berge et ol
(1984), Schuster (1984), Kancko (1986), Hao (1990) and Lee (1990). When
they consider mechanical examples (for example: Guckenheimer & Holmes,
1983) these are discussed from a mathematical point ol view. The only two
books that specially consider the chaotic dynamics in mechanical and engi-
neering problems are Moon (1987) and Thompson & Stewart (1986). where
a number of examples of applications are presented. Examples of applica-
tions of the methods of chaotic dynamics in noisy mechanical systems can
be found in Kapitaniak (1988¢), which considers the effect of rundom noise
on chaotic behaviour.

In this book equal attention is paid to the precise mathematical and
mechanical applications and that is why it is different from the others.

1.2 Chaotic and stochastic processes

First, consider the following example of tossing a fair coin. Most of the texts
on probability theory begin with it (Feller, 1964; Borowkov, 1972; Giliman
& Skorohod, 1974). Assume that we are tossing a fair coin three times. The
possible outcomes of this experiment are HHH, HHT, HTH, THH, HTT,
THT, TTH, and TTT, where H denotes heads and T denotes tails. Each
possible outcome of the experiment is calied an elementary event. Thus,
there are eight elementary eveants and it is by definition that the probability
of obtaining, for example, HHT is 1/8, but we cannot obtain HHT repeat-
edly. Each event H or T occurs ‘at random’ with equal probability. Even if
there are no external perturbations such as those produced by the circulation
of the air during our experiment, the response is stifl random. The reason is
that the response is ‘random’ because we cannot guarantee the same initial
conditions of the coin and the same direction and value of impulse acting on
the coin. So there is no mystery in our experiment and what we observe is a
system that has a sensitive dependence on the initial condition and system
parameter values.

Another system that seems to be typically stochastic is Brownian motion —
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the perpetual irregular motions of small grains or particles of colloidal size
immersed in a flud, which were first noticed by the British botanist Brown
i 1826, The arregular perpetual motion of o Brownian particle is the result
ol its collisions with molecules ol the surrounding  fluid. The collowdal
particle is much bigger and heavier than the colliding molecules ol the uid,
<o that cach collision has a neghigible effect, but the superposition of many
suiall interactions produces an observable etfect. The molecular collisions
ot a Brownian particle oceur in very rapid succession and their number is
tremendous. This trequency is too high and the small changes in the
particle™s path caused by cach single impact are too fine 1o be discerned by
the observer. Thus, the exact path of the particle cannot be followed in any
detail and this is the only reason why we have to consider this problem in a
stochastic way, so we again have a deterministic system that we cannot fully
describe.

Let us now wirn 1o mechanical systems. The vertical vibration ot a vehicle
moving on a nonsmooth surface is vsually given as a motivation of using
stochastic methods i mechanical systems. But why is this systen stochastic?
The answer is that we cannot drive twice on exactly the same line with
ientically the same vetocity, and it is much simpler 1o consider a stochastic
model.

Where else do we use stochastic processes in mechanical system? One
case is in modelling the responses of structures to earthquake, wind, ete., but
again we do not know the full mechanism of these processes and its
complete deterministic descriptions.

In all of the above examples of stochastic processes the sysiem has been
deterministic, and so in principle could be compictely described. In practice
we are using stochastic processes as an approximate description of a deter-
ministic system that has unknown initial conditions and may have high
sensitivity to initial conditions. )

When we try to identily and model real systems sometimes we obtain as
the result of the modelling process a model that shows very regular behavi-
our while the real system has very irregular behaviour. In that case we add
random noise to our model and this noise represents no more than our lack
of knowledge of system structure or inadequacy of the identification proce-
dure — see Fig. [.1.

This introduces the probability of the stability of a solution of a model to
the addative noise term. Let us describe one of the methods of stochastic
stability analysis that we will use in our future investigations.

We introduce a criterion pertaining to the almost sure stability (that is,
stability with probability one) of a linear system described by the following
equation:

g+ +10° +0(N]lg="0 (L.l

in which @(¢) is a stochastic (random) process.
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REAL SYSTEM Proposition

of its structure

IDENTIFICATION

MODEL I NOISE

Comparison of responses

Fig. 1.1 Noise as a component of modelling.

The following description is based on Infante (1968) and Ariaratnam &
Xie (1988). It will be assumed that the function ¢(r)

(a) is continuous on the interval 0 < 7 < oo with probability one,

(b) is weakly stationary (that is, the first and second moments are station-
ary). and '

(c) satisfies an ergodic property that guarantees the equality of time aver-
ages and ensemble averages with probability one.

The substitution of y = g exp (&r) into equation (1.1) resuits in the follow-
ing governing equation:
o' -8 +¢0)]y=0 (12)
Denoting y, = y and y, = v, consider the positive definite function
Vv = otzy,2 + y22 (1.3)

which is the square of the norm of the vector (oy,, y,). The parameter o is
to be determined. The derivative of v(r) along the solution trajectories of
equation (1.2) is given by

v= 200 +ET -0’ — d(D]yy,
and can be bounded as follows:
v lor + 8 —w - oI/ a)]v(e) (14

After integration along the time axis, we have
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() < v(0) cxp“lla" +& o’ - o(nl(1/a)] dr (1.5)
4 E
Also, by the given assumptions:

i ([’ + 8 - 0® = o(0l/a] dr = Ello? + E' — o' - (1)l/al

(1.6}

with probability one. Therefore, equation (1.5) will take the form:
V(1) S v(0) explrElia’ + & — o — o)l /al} (1.7

Employing the inverse transformation from y(¢) back 1o ¢(1): ’
EINS — o] < 258+ w - &2y (1.8)
for the almost sure asymptotic stability of the ftrivial solution ¢ = 0 in

equation (1.1). The Schwarz inequality is utifised in equation (1.8), resulting
in the following condition:

Elotn)] < 487 (d+ " &)~ 8" + 28E10(1)] (19)

Since 8 = o' + &' — o is yet to be determined by our choice of d, the right-
hand side of equation (1.9) can be optimised with respect to 8§ 10 obtain the
largest region of stability. This procedure gives the sufficient stability
condition

E19* (0} -~ {E1OO])? < 481w’ + Elon]} (1.10)

as determined by Infante (1968). Equation (1.10) provides a sufficient
criterion for almost sure stability of equation (1.1) and can be computed
explicitly if the mean-square value (variance) of ¢(¢) is known. Morever when
E[¢(n] = 0, then E[¢*(1)] is the mean-square value of the function ¢(t) and
can be calculated by

ELO (1= [Sf) & (L11)

where S(f) is the power spectral density function of ¢(¢).
This stability analysis will be used in Chapter 8.

1.3 Poincaré map

The theoretical base for Poincaré maps was introduced by Poincaré (sce
Poincaré, 1890; Marsden & McCracken, 1976). The widespread use of
compuiers with graphics facilities to examine chaotic behaviour in dynamical
systems (Lorenz, 1963; Ueda, 1979) has led to the method of Poincaré maps
becoming one of the most popular and the most illustrative method of
describing ‘strange attractors’.



