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PREFACE TO SIXTH EDITION

The two senior authors are glad to welcome as coauthor in this edition
Professor T. A. Rouse, who has been much interested in and concerned
with the preparation of the last several revisions of this manual.

The changes in the present revision are the most extensive of any since
those of the third edition. Thirteen outmoded or seldom used experi-
ments have been dropped and seven new ones added. Several other
experiments have been completely or partly rewritten and a great many
minor improvements have been made. Most of the added experiments
have to do with the more recently developed fields of physics. There is
always a nice question as to how much material of the sort one usually
associates with advanced or at least second-year texts can be included in a
general physics course. However, in view of the intimate relationship
of some of the instruments and techniques used in these experiments to
the striking new developments in physics—matters in which literally
everyone is interested—it is difficult to see how they can be left out of
any physics book which makes any pretense of being up to date. It may
be added that, since these experiments will be of interest mainly to the
better students, it has not seemed necessary to include as much detail in
describing the procedure. In other words, the student is expected to
rely more on his own ingenuity.

In preparing this revision we have, for the first time, made a serious
effort to get in touch with every instructor using this manual in his
classes and ask for criticisms. The result has been a veritable flood of
welcome suggestions, and, while it has proved possible to incorporate
only a fraction of them, they have all been given careful consideration.
We take this opportunity to express our thanks to these many friends
for such evidences of their interest and good will.

L. R. IngeErsoLL

Mabprson, Wis, M. J. MarmnN
ScueNEcTADY, N.Y. T. A. Rouse
MiLwaAUKEE, Wis,

March, 1953



PREFACE TO THE THIRD EDITION

In the preparation of the present edition of this manual the book in its
previous form has been completely rewritten and almost forty per cent
of new material has been added. All the best of the former experiments
have been retained, however, with only relatively minor changes in pro-
cedure so that laboratories accustomed to the former edition will experi-
ence no inconvenience with the present one; but most of the descriptions
have been recast. A particular feature is the brief digest of the under-
lying theory which accompanies each experiment and serves to bridge
the gap between formal class work and laboratory exercises. The
instructions are somewhat more specific and clear-cut than formerly,
but we have kept continually in mind the dangers of being over-specific.
The aim has been to strike a satisfactory mean between the one extreme
of giving directions so sketchy that the student is unable to make head-
way, and the other of providing cookbook-like instructions which leave
nothing to his ingenuity.

Since the book is designed for use with both general and technical
courses, it will be found to contain a rather wide variety of experiments
ranging from relatively simple ones to those of a more exacting nature.
Nearly one-fourth of the experiments are new, and a number of these
make use of improved forms of apparatus which have recently been
developed and put on the market. We feel sure that these new experi-
ments, as & whole, will come to be regarded at least as highly as any of
the older ones. In general it will be found that they are slightly more
involved than the others, but they are usually divided into parts so that
the instructor can make a suitable selection for a particular class of
students. In the same way a choice may be made of the questions and
problems, The occasional question marked as difficult by an asterisk
may serve to stimulate the outstanding student.

It is not easy to avoid a certain amount of local color in a manual.
This has been reduced to a minimum, but in those few cases where it
has been necessary we have frankly specified that certain instructions
are for University of Wisconsin students. To adapt the book to the
needs of the average user, almost all of the apparatus called for is standard
and each experiment is accompanied by a statement of the apparatus
requirements. In the few instances where special equipment or assembly
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viii PREFACE TO THE THIRD EDITION

is required, we have tried to make the arrangement clear so that it can
be duplicated if desired. All the new experiments have been tested
with many groups of students and we hope that this has resulted in the
elimination of inaccuracies and ambiguities, but we shall be glad to have
any such as remain called to our attention. h
We wish to acknowledge our indebtedness to the following apparatus
and instrument companies for the use of illustrations or other material:
Central Scientific Company, Gaertner Scientific Corporation, General
Electric Company, Leeds and Northrup, and the W. M. Welch Scientific
Company. We also wish to express our thanks to the staff of physical
laboratory instructors of the University of Wisconsin, and particularly
to Dr. T. A. Rouse and L. T. Earls, for continuous assistance during the
preparation of the book.
L. R. IngERsOLL
M. J. MaRTIN

Mapison, Wis.
MiLwaukes, Wis.
July, 1932.



INTRODUCTION

1.'Initial Instructions. Laboratory work in physics is designed to
familiarize the student with the fundamental laws and principles of the
subject and to acquaint him with the methods of making physical meas-
urements. The success of experimental work depends upon the exercise
of thoroughness and care and upon the originality and ingenuity of the
experimenter. It is quite possible—and, in fact, frequently the case—
that two students will perform the same experiment in the same way with
identical apparatus and yet obtain widely different results, owing to the
fact that one exercises care and originality while the other merely follows
the instructions mechanically. So while specific directions are given for
each experiment, it cannot be too strongly impressed on the student that
satisfactory experimental work means more than the mere following of
such instructions. It means that the student should at each stage of the
procedure know just what he is doing and why he is doing it.

Accordingly, before beginning an experiment the student is asked to
read carefully through the instructions and, as far as possible, to familiar-
ize himself with the theory. In many cases it will be desirable to look up
the subject in a general text. Descriptions of particular instruments,
special technique, ete., will be found in Appendix I and should always be
read when they apply to the experiment.

2. Measurements. Data. All measurements are to be recorded
directly in the laboratory notebook, or on data sheets if so directed by
the instructor (he may also ask that a carbon copy of the data sheet be
left with him). If, as is customary, two students work together on an
experiment, each must keep his own complete record of the data. The
date, student’s name, and partner’s name should head the data sheet for
each experiment. If any data entered in a student’s record is actually
the work of his partner, credit and responsibility should be shown by
having the partner initial such data.

The data should contain all the measurements and must never be
altered nor recopied. Do not make erasures;if a mistake is made, cancel
with a line and write the correct value nearby. Establish the habit of
tabulating the data in a well-organized manner. In many cases it will
be useful to rule the paper so that this tabulation can be done neatly.
Each student should take his turn at reading the instruments, and care
should be taken to state the units in which the measurements are made.

1



2 EXPERIMENTS IN PHYSICS

At the conclusion of the experimental work the instructor will initial the
data sheets if the work has been satisfactory and file his copy. Unfinished
data must not be taken from the laboratory.

While many of the measurements made in the physical laboratory are
within the scope of everyday experience (e.g., the use of a rule in measur-
ing lengths), there are certain requirements in scientific work which may
be new to the student but with which he must become acquainted at the
earliest opportunity. The first of these is the number of determinations
to be made in any particular measurement. It is a fundamental law of
laboratory work that a single measurement is of little value because of the
liability not only to gross mistakes but also to smaller errors. Accord-
ingly it is customary to repeat all measurements so that the total number
of observations of a particular quantity is seldom less than 3 and in some
cases even 10 or more. The average of these readings is obviously of a
greater probable accuracy than any one could possibly be alone. The
number of readings to be taken is usually specified in the earlier experi-
ments, but it is expected that the student will soon accustom himself to
this requirement and will always take his measurements in sets of three or
more, whether this is explicitly specified or not.

Requirements of accuracy demand that each measurement be made as
carefully as possible, and to fulfill this requirement it is universal practice
in physical measurements to estimate the reading of a scale to tenths of
the smallest division. Thusif a scale is divided into millimeters, as is the
ordinary meter stick, the reading will be expressed in tenths of a milli-
meter, e.g., 4.3 mm., 27.42 cm. In case the reading falls exactly on a scale
division, the tenths are expressed by 0, e.g., 6.0 rom., 48.50 cm.

3. Reports. The nature and extent of the final written report which is
to accompany the data sheet will be specified by the instructor. The
following outline lists suggestions:

1. Name and number of experiment. Name and number of student and partner.

2. Object of the experiment (to be stated in the student’s own words).

3. Apparatus used, with diagram; give numbers of apparatus when possible.

4. Description of how the experiment was performed.

5. Method of deducing results from original data.

6. Summary of results; be sure to specify units and, where possible, place side by
side with the results standard values as given in physical tables, for purposes of
comparison.

7. Curves, if required.

8. Physical interpretation of results and answers to questions (unless already
answered on the data sheet).

9. It is also frequently possible and profitable to include a discussion of sources of
error,
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When an experiment has been completed, the student should talk the
matter over with the instructor in order that any difficulties may be
cleared up. Later the instructor will make a more careful survey of the
report. If returned to the student for correction, such corrections should
be made at once. Good laboratory work involves writing up and com-
pleting the experiment as soon as possible after taking the data. In gen-
eral, full credit cannot be allowed for experiments in which there s unneces-
sary delay in the submission of the completed report.

The answers to the questions on each experiment constitute one of the
most important parts of the finished work. These should in every case
be written, generally at the end of the report. Also it is wise, as a rule,
to sketeh out the answers on the data sheet and talk them over with the
instructor at the time the measurements are completed. Questions or
problems marked with an asterisk are more difficult than the others and,
needless to say, are for the ambitious student who wants to make his work
as complete as possible.

4. Computations. Significant Figures. All but the simplest computa-
tions should be made with either slide rule or logarithms. Simple log
tables will be found in Appendix II, and half an hour’s study of the
instructions preceding them should render it possible for even the student
without previous experience with logarithms to use them.

When an equation involving a number of quantities is to be solved,
write the equation first in symbolic form; then rewrite it, substituting
experimentally determined quantities; finally write it a third time, reduc-
ing all quantities to simple numbers of one and two digits and powers of
10. This enables one to locate the decimal point readily and facilitates
checking over computations. Do not fail io state the units in which the
resull is obtained.

Nomatter tohow many decimal places the computation may be carried,
the accuracy of the result cannot exceed that of the data. If three suc-
cessive measurements with a meter stick give 48.25, 48.23, 48.22 cm., as
the length of a certain rod, the average might be expressed as 48.2333333
cm. But as the meter stick is divided only to 0.1 ecm. and the next figure
is obtained by estimating tenths, the result should not be expressed to
more than two, or at most three, decimals. By the term ““significant fig-
ures” is meant those figures in a result which are trustworthy and have
some significance. Obviously, the figures after the third decimal place in
the length just mentioned are of no value and so are not significant figures.

* The position of the decimal point in no way affects the number of these
figures; this number is determined entirely by the accuracy of the data,
Suppose three significant figures are to be retained in the following num-
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bers: 1,763,298.23 and 0.0003628. Then they should be written 1,760,000
and 0.000363 (or, better, 1.76 X 10¢ and 3.63 X 10—4).

In ordinary laboratory work it is usually unnecessary to have more than
four significant figures in the result, but the following rules may prove
useful :

1. In addition and subtraction do not carry the result beyond the first
column which contains a doubtful figure.

2. In multiplication and division the number of significant figures in the
result should be one greater than the smallest number of trustworthy
figures contained in any factor used in obtaining the result.

These rules give the number of significant figures which should appear
in the result, the last figure being always in doubt; but, in computing, it is
better to carry one more figure than they specify. The following exam-
ples illustrate the principles just mentioned:

4,567 + 1.48 + 0.0764 = 4,568.6
13.28 X 2.06 = 27.36
0.0735 X 0.002 = 0.00015

189,324,500 X 66 = 12,500,000,000 = 125 X 108

5. Errors. Absolute accuracy is, of course, unattainable in laboratory
measurements. Every result, no matter how carefully obtained, has a
certain “ probable error’’ which depends on the number of measurements,
their concordance, and some other factors. It should be the aim of the
student to make his measurements with the greatest accuracy attainable
with the given apparatus; in no case, however—except by accident—will
his results agree exactly with the true values of the quantities measured.

Errors are commonly listed as either absolute or relative. If a length of
400 cm. is measured as 398 cm., the absolute error is 2 em., while the rela-
tive error is 24 or 0.5 per cent. If quantities are to be added or sub-
tracted, it is the actual or absolute error which is of importance; if multi-
plied or divided, the relative or percentage error. In the latter case the
relative error of the separate quantities determines the error of the final
result, and for this reason small quantities should be measured with
special care to keep the percentage error low. 'This is particularly true
when a quantity is squared or raised to some higher power, in which case
the relative error of the result is multiplied by this power. Thus in experi-
ments on torsion the radius of the wire appears raised to the fourth power.
This means that if the wire is 1 mm. in diameter and the absolute error of
its measurement is 0.01 mm., this relative error of 1 per cent causes an
error of 4 per cent in the final result.

An indication of the trustworthiness of a result is given by the con-
sistency of the individual measurements. If these show only a small
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variation or deviation from the mean value, the accuracy of the final result
may be taken as correspondingly high. As an example consider the
following series of readings.

Readings, cm. Deviations, cm.
17.304 0.047
17.483 0.132
17 .266 0.085
17.325 0.026
17.379 0.028

5)86.757 5)0.318
17.3514 0.0636

The arithmetic average, 17.3514, is obtained as indicated. The deviation
of each reading from the average is given in the second column. The
average deviation is 0.0636 cm. This is frequently called the ““average
error.”’” In relative form it is 0.0636/17.3514 = 0.0035 or 0.35 per cent.

6. Averaging. Method of Differences. Since experimental values
involve errors, some averaging process is desirable in order to lessen the
final error. A result which is based on a large number of readings is more
accurate than one based on one or two readings. When several readings
are taken separately, the most nearly correct value of the quantity is

the ordinary arithmetic average. It

is to be noted that this is used only K ?{ ¢ j 7 Jf
when the readings are wholly inde- ;

pendent of each other. For example, Fig. 1-1. Illustration of ‘““method of
if several measurements are made differences.”

of the diameter of a wire, the most
dependable value to take would be the arithmetic mean of the individual
determinations.

Under certain circumstances this method is not satisfactory. This may
be seen from the following discussion: If the average width of a board on
the floor of a room is desired, several methods may be followed. The
obvious way would be to measure the total width of a certain number of
boards and divide this total by the number of boards included. The
result is dependent only on the two end readings; it would be more accu-
rate if a number of readings were involved.

Another method which at first appears more accurate is to lay a scale
across the floor, note the reading on the scale at the edge of each board,
subtract these readings in order to find the width of each board, and then
find the ordinary average of these differences.

In this case, however, the arithmetic average does not give the best
result obtainable from the data. In order to see its failure let the succes-
sive readings on the scale be a, b, ¢, d, ¢, f, as illustrated in Fig. 1-1.
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These readings are steadily increasing across the scale. The width of the
first board is then b-a; the width of the second is ¢-b; etc. If the arith-
metic average be taken, we should add the differences and divide by their
number:

b-a

c-b

d-c

e-d

f-e

f-a

Thus when the successive differences are added, the intermediate readings
are eliminated leaving only f-a. This is precisely the result obtained in
the foregoing method and shows the final result to be dependent only on
the end readings. The intermediate readings are therefore wholly useless
and may be in error by any amount without influencing the result. Sup-
pose, for instance, that a large error had been made in the second reading
and that this reading is represented by b” instead of . Obviously the
observed width of the first board is b'-¢ and that of the second board is
¢-b’, but the sum of the two differences is c-a just as before. Hence the
reading at b’ has no effect upon the result.

There is, however, a way of averaging—sometimes called the ‘“method
of differences’’—which makes use of these intermediate readings. Divide
the readings into two equal groups, a, b, ¢ and d, ¢, f. Subtract the first
reading in group A from the first in group B, 7.e., (d-a); then subtract the
second in group A from the second in group B, 1.e., (e-b); ete. Thus:

d-a
e-b
fc

Each of these differences represents three of the desired intervals. If the
differences are added, no readings will be eliminated, and the sum will
represent nine of the desired intervals, Finally, a single interval (in this
example the width of one board) is found by dividing the total by the
number of intervals represented. The effect of this method is to make
each reading the beginning point or the end point of some difference (using
in the example three differences with three boards in each) and thus make
the final result depend upon all readings instead of only two.

As an illustration this method of averaging will be applied to the
following data taken to determine the period of vibration of a certain
pendulum:
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Obs.er- V1_bra— Time Differences
vation | tion
h m s vib. m 8
1 0 2 35 50 |Fifth-first...... - 400 13 19
2 100 39 9 |Sixth-second............... I 400 13 21
3 200 42 29 |Seventh-third.............. 400 13 21
4 300 45 48 | Eighth-fourth.............. 400 13 22
5 400 49 9 Total.....o.ovverernnnn. 1,600 53 23
6 500 52 30 or
7 600 556 &0 3,203sec.
8 700 59 10
. Period is 3,203/1,600 = 2.002sec.

It is to be noted that this special method of averaging is to be used only
when the average of a number of successive differences is desired. For all
other cases the ordinary arithmetic average is satisfactory.

7. Plotting of Curves. In the plotting and discussion of curves the fol-

lowing terms are frequently used: y

The abscissa is the distance OA (Fig. 1-2)
measured along the horizontal line 0X. This
line is called the axis of abscissas or X axis.

The ordinate is the distanée OB measured P
along the vertical line QY, the axis of ordi-
natesor Y axis. These two distances OA and
OB are called the coordinates of the point P.

The origin is the point O, the intersection c
of the two axes. This point is called the /
origin only when the magnitudes plotted on X
the two axes have their zero values at this 2 4 A
point. F1a. 1-2. Coordinates, intercepts,

An idntercept is the distance measured and slope.
from the origin along one of the axes to the .
point at which the curve meets the axis. Thus OC is the Y intercept and OD the
X intercept for the curve in Fig. 1-2.

The slope of a curve is a measure of the angle which the curve makes with the

X axis. It is the trigonometric tangent of this angle; thus in the figure the slope is
AP/DA.

The following general rules should be observed in plotting curves:

a. Choice of Scales. Use, in general, only standard 15- by 20-em. coor-
dinate paper, or paper ruled 20 lines per inch. Choose such scales that
the curve will extend nearly the full length of the sheet in both directions,
but make them convenient; i.e., have each division equal to 1, 2, 5, 10,
etc., units. The scales need not be the same for both axes. Label the
main divisions, the numbers increasing from left to right and from bottom
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to top. It is customary to plot the independent variable as abscissa and
the dependent as ordinate.

b. Plotting. Locate experimental points by small, sharp dots. Draw
around each point a small circle in ink; crosses are also frequently used.
Draw a smooth curve, first in pencil and then in ink, passing through (or
near) as many of the points as possible, but do not make it irregular to get
in all the points and do not draw the final line through the circles (note the
way in which the curves in Fig. 1-3 are interrupted at the circles). The
curve should indicate the average trend of the data. It should never be

Reciprocal volumes, curve 2
(o] 0.2 03 04 0.5 06

220 I ]
200 0\
A\ /4
180 &
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{
= 160 30 Q(e//
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E 140 \?\ Q,IQ/ /
£ 120 AR <
« 100 / —
a
/) \
80 AR
// N s,
/o <0"e
60 A Q&5
Loy,
g 776 —
0 T

20 30 40 50 60 70 80 90
Volume,cc - curve |

Fia. 1-3. Typical graphs.

merely a series of straight lines connecting the points, except in certain
types of calibration eurves.

¢. Labeling Curve and Coordinates. Letter the title of the curve and
number of the experiment on the sheet, also your name. Along each axis
label the coordinates, stating the guantity plotted and the wnits in which
it is expressed (see Fig. 1-3). When two or more curves are on one sheet,
use different colors of ink if possible for the different scales and corre-
sponding curves, or else use dotted or broken lines.

d. Interpretation of Curves. This means to state what physical law or
conclusions may be drawn from such a curve. For instance, if a curve of
distances covered by a falling body plotted against squares of the times
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should come out as a straight line passing through the origin, the con-
clusion would be that the space covered by a falling body is directly pro-
portional to the square of the time.

8. Graphical Analysis of Data. Empirical Equations. Sometimesin a
physical problem the dependence of one quantity upon another can be
deduced theoretically, and sometimesit must be arrived at experimentally.
The mathematical relationship between two quantities may be determined
experimentally by observing a series of values of one of them correspond-
ing to various arbitrary values of the other (all other factors being kept
constant) and then subjecting the data to some kind of analysis. An
equation established in this way is called an empirical equation. One of
the most convenient and fruitful means of treating experimental data is
graphical analysis.

In the graphical analysis of experimental data, the straight line assumes
a fundamental role since it can readily be recognized, whereas the exact
nature of 2 nonlinear graph is often difficult to identify. If the data yield
a straight line when plotted in any one of several ways, the form of the
equation can be deduced and the numerical value of the constants
obtained from the graph. In making such an analysis, three types of
graphs are of particular importance: viz., Cartesian, logarithmic, and semi-
logarithmic graphs.

Cartesian Graphs. In a Cartesian graph the successive values of one
quantity are plotted against the corresponding values of the other on
rectangular coordinate paper in which each axis is graduated uniformly
(Fig. 1-3). The simplest relationship between two variables z and v is a
linear one expressible by an equation of the form

y = A + Bu, @

where A and B are constants. The graph of Eq. (1) on Cartesian paper
is a straight line (Fig. 1-2) with a slope equal to the constant B and a
y intercept equal to the constant 4. Thus, if a linear relationship is sus-
pected, its existence will be confirmed or denied by the form of the curve
resulting from a Cartesian graph of the data.

Logarithmic Graphs. A logarithmic graph is one in which the logarithm
of one quantity is plotted against the logarithm of the other. This may
be done either on Cartesian paper or on specially ruled logarithmic paper,
which will be described later. This type of graph is useful in demon-
strating the existence of a power function, i.e., a relationship in which one
quantity is proportional to some power of the other. The mathematical
statement of a power function is

y = Czn, (2)
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where C and n are constants. Taking the logarithm of both sides of
Eq. (2) yields
log y = log C + n log z. 3)

Comparison of Eqs. (1) and (3) shows that, if the relationship sought is of
the type expressed by Eq. (2), a logarithmic graph of experimental data
vields a straight line, the slope of which is the value of the constant n;the
numerical value of the constant C is obtained from the intercept on the
log y axis.

Semilogarithmic Graphs. A semilogarithmic graph is one in which the
successive values of one quantity are plotted against the logarithms of the
corresponding values of the other. This type of graph may also be made
upon Cartesian paper or upon specially prepared semilogarithmic paper.
The semilogarithmic graph is used in testing for an exponential funciion of
the form

y = k10, 4

or, since 10 = ¢%3%2% the equivalent expression
y = ke2.3026nz, (5)

where & and n are constants and e is the base of the natural system of
logarithms. In this discussion only logarithms to the base 10 are
considered.

An alternative way of writing Eq. (4) is

logy = nx + C, (6)

where C = log k. Comparison of Eqgs. (1) and (6) shows that, if the rela-
tionship is of the exponential form represented by Eq. (4), a graph of
log y versus z is a straight line of slope n.

Logarithmic and Semzilogarithmic Paper. The plotting of logarithmic
and semilogarithmic graphs is facilitated by the use of specially ruled
paper called, respectively, log and semilog paper. On the former, the
graduations of both coordinate axes are proportional to the logarithms of
the consecutive numbers instead of to the numbers themselves. On
semilog paper, one axis bears a uniform scale and the other a logarithmic
scale. Consequently, when data are plotted on either of these papers,
the values of the quantities are plotted directly, and it is unnecessary to
look up the logarithms.

Figure 1-4 is an example of a logarithmic graph plotted on log paper to
the scale of common logarithms. On log paper the origin is the point
z =1,y = 1instead of £ = 0, ¥y = 0, as in the case of Cartesian paper.
Consequently, the infercepts are measured from the origin along the lines
z=1landy = 1. Onlogarithmic paper like that illustrated in Fig. 1-4,
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the graduations from 1 o 10, 10 to 100, and 100 to 1,000, respectively, are
called cycles. If the data to be plotted lie within one cycle, they can be
plotted as in Fig. 1-4; if the values extend over more than one cycle, multi-
ple log paper, which contains two or more complete cycles for each coordi-
nate, must be used. In logarithmic plotting the origin cannot be located
arbitrarily but must be at the beginning of a cycle. If the range of the
data is such that the origin does not appear on the graph (as in Fig. 1-4),
it may be located by attaching one or more additional sheets and con-
tinuing the calibrations along the axes. If the eycle distance is the same
on both axes (as in Fig. 1-4), the slope of a curve on log paper is the ratio
of any vertical distance to the corresponding horizontal distance measured

100 7 o)\ T
80 - o1/
60 VA 8

40 4

v Y

30 y 1 3

20 7/ 2
10 J 1

| 2 3 4 56 8 10 0 0.2 0.4 06 0.8 1.0
x x

Fic. 1-4. Typical logarithmic graph, Fie. 1-5. Typical semilog graphs.
y = 3z

with the same uniform seale. It can, therefore, be measured with an
ordinary ruler. If the two cycle distances are not the same, the ratio of
the corresponding vertical and horizontal distances (apparent slope) must
be multiplied by the ratio of the cycle distance on the x axis to that on the
y axis to give the slope.

Figure 1-5 shows several curves plotted on semilog paper to the scale of
common logarithms. On semilog paper the origin is at the point x = 0,
y = 1. Thus, the constant C in Eq. (6) is determined from the intersec-
tion of the curve with the line x = 0. Inspection of Fig. 1-5 shows that 3
range of values on the logarithmic scale such as 1 to 10, 10 to 100, 100 to
1,000, etc., corresponds, respectively, to a range of 0 to 1, 1 to 2, 2 to 3,
etc., on the uniform scale. 1In each case the corresponding range of values
is called a cycle. From this definition, it follows that the measurement

of the slope obeys the same conditions as were described for logarithmic
graphs.
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Summary. When one quantity is plotted against another, a straight
line on Cartesian paper indicates a linear function represented by Eq. (1);
on log paper it indicates a power function of the type of Eq. (2), the value
of the exponent being yielded by the slope; and on semilog paper it indi-
cates an exponential function such as represented by Eq. (4).

9. General Laboratory Rules.

1. Be punctual; habitual tardiness will be counted as absence.

2. Absences must be made up. If possible, this should be done under the student’s
own instructor. In any case, the student should be sure that the instructor enters the
credit on his work card.

3. Follow the laboratory bulletin board.

4. Credit will not be given for experiments which have not been regularly assigned
or for which the data sheets have not been initialed by an instructor. Full eredit will
not be allowed when there is unnecessary delay in submitting the completed report on
the experiment.

5. Under no circumstances may a student use data in the taking of which he has not had
a part. 'This is particularly applicable when a student is absent and his partner per-
forms the experiment alone. Such data must not be used in any way by the absent
student.

6. Students are asked not to move apparatus about the room without permission.
Special cooperation is asked in keeping apparatus and laboratory in as good shape as
possible.



