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INTRODUCTION

Since writing the first edition of Computer Optimization Techniques, the power-
ful multi-stage Monte Carlo optimization technique has been developed. Therefore,
this revised edition includes multi-stage Monte Carlo optimization in Chapters 7
and 8. Many more multi-stage Monte Carlo optimization (MSMCO) examples are
also referred to in the Suggested Reading section.

The two interesting research areas in MSMCO today are the applications and the
answer to the question, “Does the mean, median and/or mode of several MSMCO
approximate optimals converge to the true but unknown optimal in very difficult
optimization problems?” So let’s begin by trying to simplify optimization. Computer
science has advanced to the point where it is possible to greatly simplify integer
programming. This book is an attempt to do just that.

This simplification takes many forms. It frequently allows us to solve integer,
linear, and nonlinear programming problems that were solvable before in a much
easier fashion. The technique is easier theoretically, easier on the programmer, and
cheaper in actual dollars. The simplification also allows us to solve integer, linear,
and nonlinear programming problems that were heretofore unsolvable. These solu-
tions are as easy to obtain as those from theoretically solvable problems. The
complexities or nonlinearities of the objective and/or constraint functions will not
make any difference to the computer, even though they completely ruin the tradi-
tional simplex algorithm approach.

How difficult is this approach and how useful is it? These are valid questions
which should be answered. It is necessary to have a knowledge of FORTRAN (we
used FORTRAN IV) up to the point where the programmer understands DO-loops.
A knowledge of subscripted variables would also be helpful, especially for the opti-
mization problems with hundreds of variables.

No mathematical background is required other than knowing that an equation is
something with an equals sign and variables connected in some fashion through
addition, subtraction, multiplication, and division signs. It is never necessary to
analyze the particular equation to see if it meets certain conditions such as linearity.
The system of equations and constraints never needs to be tested for redundancy or
cycling as in traditional methods. In fact, the less a person knows theoretically



X Introduction

about the system to be optimized, the better. That way, there won’t be the tempta-
tion to try other methods.

This does not mean to imply that the very considerable, elegant and useful
mathematical programming theory developed to date is not useful. On the contrary,
this area has been one of the most useful and practically productive areas of mathe-
matics for years. Certainly, anyone who is an expert in these techniques should
continue to use and develop them. However, this book can help the expert by pro-
viding a method for obtaining a good answer quickly to the numerous theoretically
unsolvable problems that arise in applications.

Also, the computer technique that is explained and illustrated in this book should
make available optimization solutions to people who have little or no time to de-
velop theoretical expertise in mathematical programming, specifically business
managers, beginning business students, advanced business students whose expertise
is not in quantitative areas, engineers who do not concentrate on optimization,
administrators, accountants, scientists, researchers, small businessmen, decision
makers working on a quantitative project, and people who never liked mathematics
because it was too difficult.

This book is not an attack on theoretical mathematics but merely the result of a
realization that computer technology has made possible, in just the last few years,
the simplification and advancement of an extremely complicated and useful area of
applied mathematics by taking a different philosophical approach to mathematical
programming.

The book is divided into two parts. Conceptually, they are almost the same.
Part One allows us to solve problems with a small number of variables, while
Part Two allows us to deal with problems that have a great many variables. We will
write many programs in Part One to illustrate the technique and obtain the solutions
to our stated questions. This will also serve to reinforce the technique and show a
variety of applications. However, it is really only necessary to understand one prob-
lem somewhere along the way because the technique is the same in each case. We
are letting the computer do the difficult work. The same is true in Part Two. One
really needs to understand only a few programs (dozens are presented) to under-
stand the technique.

Lastly, an attempt is made to explain everything completely, thoroughly, and
repeatedly. This is to make the book and the solution of mathematical program-
ming problems accessible to most everyone. Therefore, readers having an extensive
background in mathematics and programming can just move at their own pace
through the discussion.

In fact, it is quite possible to understand this book completely in a short period
of time. In these days of increasing sophistication and complication, maybe this will
be helpful. I hope so.
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CHAPTER 1

Optimization
in the
Computer Age

Mathematically, at least in our context, optimization means to find the maximum of a
function or process that we want to maximize or to find the minimum of a function or
process that we want to minimize. For example, we might wish to maximize a profit
function or an output function of a process. Or, we might wish to minimize a cost
function. Let’s look at a few examples.

Suppose a company manufactures two products, A and B. Let x be the number of
units of A produced and y the number of units of B produced. Suppose further that
each unit of A returns a profit of two dollars and each unit of B returns a profit of three
dollars. Therefore, the profit function would be written

P =2x + 3y

where P is the profit in dollars.

Now, the question might naturally arise, how do we maximize this equation?
Well, as stated the equation allows any values for x and y, therefore, it is only
necessary to produce as much of A and B as possible to maximize P. P becomes
infinitely large as either x or y or both go to infinity.
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However, let’s add a few restrictions to the variables x and y. Let’s assume that the
company’s position is such that x must be between 0 and 10 inclusive, and y must be
between 0 and 10 inclusive. In symbols this is 0 < x < 10 and 0 < y < 10. Let’s
further assume that x and y can only take integer values. This means that each
possible x and y value must be a counting number or the negative of a counting
number or zero. Equations to be optimized whose solution coordinates are restricted
to integers (usually nonnegative integers in practical problems) are called integer
programming problems. If we allow solutions that are not integer valued, like x =
.666,y = 7.5, then we have a linear programming problem or a nonlinear noninteger
programming problem. We, of course, can have a nonlinear integer programming
problem. This is a problem in which either the function to be optimized and/or the
constraints (conditions or restrictions) on the variables are nonlinear (they have
squared and cubed terms, etc.). Also, in a nonlinear integer programming problem
only integer coordinate solutions are allowed.

This book will deal mainly with integer programming problems (whole number
coordinates for the solutions). But, fortunately, most applied problems require integer
solutions. These are more difficult and sometimes almost impossible to solve
theoretically. Later we hope to present a case for using integer solutions even in most
cases where noninteger solutions are acceptable.

Getting back to our function to maximize, let us state the integer programming
problem as maximize P = 2x + 3y subjectto 0 < x < 10,0 < y < 10, and x and y
must be integers. Therefore, let’s look at the x and y pairs that are possibilities for the
optimum. The following points are the only ones that satisfy the constraints:

(0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (6,0) (7,0) (8,0) (9,0) (10,0)

©,1) (1,1 (2,1) (3,1) (4,1 (5,1) (6,1) (7,1) (8,1) (9,1) (10,1)

0,2) (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) (7,2) (8,2) (9,2) (10,2)

(0,3) (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) (7,3) (8,3) (9,3) (10,3)

0,4) (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) (7,4) (8,4) (9,4) (10,4)

(0,5) (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) (7,5) (8,5) (9,5) (10,5)

(0,6) (1,6) (2,6) (3,6) (4,6) (5,6) (6,6) (7,6) (8,6) (9,6) (10,6)

0,7 1,7) 2,7) 3,7) (4,7) (5,7) (6,7) (7,7) (8,7) (9,7) (10,7)

(0,8) (1,8) (2,8) (3,8) (4,8) (5,8) (6,8) (7,8) (8,8) (9,8) (10,8)

(0,9) (1,9) (2,9) (3,9) (4,9) (5,9) (6,9) (7,9) (8,9) (9,9) (10,9)

(0,10) (1,10) (2,10) (3,10) (4,10) (5,10) (6,10) (7,10) (8,10) (9,10) (10,10)
Let’s solve this problem by listing the 121 possible ordered pairs with their resultant P
value in each case and then merely select the one that gives the largest value for P.

Possible points (amounts of A and B to be made) are sometimes called feasible
solutions.
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Points P = 2x + 3y value Points P = 2x + 3y value
(0,0) 0 (continued) (continued)
(1,0) : 8,3) 25
(2,0) 4 ©.3) 27
(3,0) 6 (10,3) 29
(4,0 8 ©0,4) 12
(5,0) 10 (1,4) 14
6,0 12 2.4) 16
(7,0 14 (3.4) 18
(8,0 16 (4,4) 20
0.0) 18 (5.4) 22
0,9 20 (6,4) 24
0.1 3 (7,4) 26
(1,1) 5 (8,4) 28
@.1) 7 9,4) 30
G.1) 9 (10,4) 32
4,1) 11 (0,5) 15
5,1 13 (1,5) 17
(6,1) 15 2,5) 19
(7,1) 17 3.,5) 21
38,1) 19 (4,5) 23
9,1 21 (5,5) 25
(10,1) 23 (6,5) 27
0.2) 6 (1.5) 29
1,2) 8 (8,5 31
2,2 10 9,5) 33
3,2) 12 (10,5) 35
“,2) 14 0,6) 18
G2 16 (1,6) 20
(B:z) 18 2,6) 2
(:2) 20 (3,6 24
%) 22 4,6) 26
() 24 5,6 28
(10.2) 26 (6,6 30
©.3) 9 (7.,6) 32
(1,3) 11 (8,6) 34
23 13 9,6 36
3,3) 15 (10,6) 38
4,3) 17 0,7) 21
(5,3) 19 1,7 23
(6,3) 21 @, 25

D 23 3.7 27
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Points P = 2x + 3y value Points P = 2x + 3y value
(continued) (continued) (continued (continued)
“,7) 29 2,9 31
5,7 31 3,9 33
6,7 33 4,9 35
a,7 35 5,9 37
8,7 37 (6,9) 39
9,7 39 7,9) 41
(10,7) 41 (8,9) 43
0,8) 24 9,9 45
1,8) 26 (10,9) 47
2,8) 28 (0,10) 30
3.,8) 30 (1,10) 32
4,8) 32 (2,10) 34
5,8) 34 (3,10) 36
(6,8) 36 (4,10) 38
(7,8) 38 (5,10) 40
(8,8) 40 (6,10) 42
9,8) 42 (7,10) 44
(10,8) 44 (8,10) 46
0,9) 27 9,10) 48
1,9) 29 (10,10) 50

We can see that, as expected, the optimum solution (the one that maximizes the profit
is x = 10 units of A and y = 10 units of B.

This may seem like a lot of work to obtain this rather obvious result. However, it
should be noted that conceptually it is an easy approach, namely, just examine all
possible points. Also, it will always lead to the correct answer. This will be especially
useful when the function to be maximized or minimized and/or the constraints are
sufficiently complicated so that the solution is difficult to obtain either by inspection
or through mathematical theory. This is frequently the case in applications.

Of course, the approach we take, namely, listing all possible solutions, is
extremely tedious for people even though it is straightforward. However, a computer
just loves repetitive, tedious work and will produce the answer in seconds. And as the
speed and capacity of computers increase this technique will become more and more
practical.

Let’s look at another example. Try to minimize the cost equation C = 2x* — y* + xy
where x can take the values between 0 and 5 and y can take the values between 0 and
5, and x and y must be integers. The possible points meeting the constraints are as
follows:
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(0,0) (1,0) (2,0) (3,0) (4,0) (5,0)
0,1) 4,1 (2,1) 3,1) (4,1) (5,1)
0,2) (1,2) (2,2) 3,2) (4,2) (5,2)
(0,3) (1,3) (2,3) (3,3) (4,3) (5,3)
0,4) (1,4) 2,4) 3,4) 4,4) 5,9
0,5) (1,5) (2,5) (3,5) (4,5) (5,5)
Let’s list the possible points (combinations of x and y) along with the corresponding

C = 2¢* — y* + xy value and take the points which produce the minimum. There are
36 possibilities:

Points C = 2x> — y* + xy value  Points C =2 — y* + xy value

(0,0) 0 (continued) (continued)
(1,0) 2 (1,3) -4
2,0) 8 2,3) 5
3,0 18 3,3) 18
4,0) 32 4,3) 35
(5,0) 50 5,3) 56
©,1) -1 0,4) —16
(1,1) 2 (1,4) —10
2,1 9 2,4) 0
3,1 20 (3.4 14
4,1 35 4,4) 32
5,1 54 5,4) 54
0,2) -4 0,5) -25
1,2) 0 1,5) —18
2,2) 8 2,5) -7
3,2) 20 3,5) 8
4,2) 36 4,5) 27
5,2) 56 5.5 50
0,3) -9

We can see that the optimum solution (the one that minimizes the cost) is x = 0 and y
= 5. This yields a C value of —25.

Now, let’s try to maximize P = 3x* — 2y where x and y must be nonnegative
integers and, further, they must satisfy y < —.5x + Sandy < —2x + 10. A graph of
the related equalities is given in Figure 1.1. The shaded region shows the area that
satisfies the inequalities. Generally speaking, with an inequality of the form y < mx
+ b the solution is the half plane below the line y = mx + b. This is the case here.
Let’s now list the integer combinations that satisfy the constraints along with their
corresponding function values and take the coordinates that give us a maximum P
under the constraints:



