e R T = 2

> . - - & —

v o o 4 - - : AR RETEL.

;
. .
>

F 4 -, n -

_...

:

.

< o

A Unifying Framework for
Structured Analysis and

Design Models:

An Approach using
Initial Algebra Semantics
and Category Theory

I
I

E9162027
T.H. Tse, M.B.E.
University of Hong Kong
il [h
2 I The right of the
o R University of Cambridge
il to print and sell
T 1 1F 11 1l man) of book.
L ed vt Sy

e i NS Henry VIII in 1534.
'&T) 3 % %éb The University has printed
i

2 and published continuously
4

since 1584.
—
.

CAMBRIDGE UNIVERSITY PRESS
Cambridge
New York Port Chester Melbourne Sydney

Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge CB2 1RP

40 West 20th Street, New York, NY 10011, USA

10 Stamford Road, Oakleigh, Melbourne 3166, Australia

© Cambridge University Press 1991

First published 1991

Printed in Great Britain at the University Press, Cambridge

Library of Congress cataloguing in publication data available

British Library cataloguing in publication data available

ISBN 0 521 39196 2

To Teresa

Preface

Structured analysis and design methodologies have been recognized as a popular and
powerful tool in information systems development. A complex system can be
specified in a top-down and graphical fashion, enabling practitioners to visualize the
target systems and communicate with users much more easily than by means of
conventional methods. As a matter of fact, the structured methodologies have been
designed by quite a number of distinct authors, each employing a number of models
which vary in their graphical outlook. Different models are found to be suitable for
different stages of a typical systems life cycle. A specification must be converted
from one form to another during the development process. Unfortunately, however,
the models are only derived from the experience of the authors. Little attempt has
been made in proposing a formal framework behind them or establishing a theoretical
link between one model and another.

A unifying framework is proposed in this book. We define an initial algebra of struc-
tured systems, which can be mapped by unique homomorphisms to a DeMarco algebra
of data flow diagrams, a Yourdon algebra of structure charts and a Jackson algebra of
structure texts. We also find that the proposed initial algebra as well as the structured
models fit nicely into a functorial framework. DeMarco data flow diagrams can be
mapped by a free functor to terms in the initial algebra, which can then be mapped to
other notations such as Yourdon structure charts by means of forgetful functors. The
framework also provides a theoretical basis for manipulating incomplete or unstruc-
tured specifications through refinement morphisms.

Since flow diagrams are used for problem analysis and communicating with users
during early systems development, they are problem-oriented and are not necessarily
structured. Some detection mechanism must be available for us to identify unstruc-
turedness in the flow diagrams before we can convert them into structure charts or any
other structured models. As a further illustration of the theoretical usefulness of our
formal framework, we have derived a single criterion which is necessary and sufficient
to identify unstructuredness in tasks. Namely, a connected task is unstructured if and
only if there exist partially overlapping skeletons. As an illustration of the practical
usefulness of our framework, we have developed a prototype system to implement the
structured tasks. It enables users to draw a hierarchy of DeMarco data flow diagrams,
review them to an appropriate level of detail, and zoom in/zoom out to lower/higher
levels when required. It stores them internally as structured tasks, and transforms
them automatically into Yourdon structure charts and Jackson structure texts.

viii Preface

This work originated from my Ph.D. research at the London School of Economics,
University of London. I would like to express my sincere thanks to my supervisors
Professor Ian Angell and Professor Ronald Stamper (now with the University of
Twente) for their guidance throughout the doctoral programme. I am particularly
indebted to Professor Joseph Goguen of the University of Oxford for his most
encouraging comments and suggestions right from the very beginning of the project,
and his endless advices ¢ri how to transform the thesis into the present work. I am
grateful also to my exterhal gxéminers Professor Bernie Cohen of the University of
Surrey (now with Rex Thompson and Partners) and Professor John Campbell of
University College London for their fair evaluation of the research. In addition, I will
not forget the contributions of my former supervisor Professor Frank Land, now with
the London Business School, without whose motivation this project would not have
started in the first place.

Special thanks are due to Dr Haya Freedman of the Department of Mathematics,
London School of Economics, for her knowledge base on initial algebra and category
theory, to Mr Daniel Pong, now with the Bank of Montreal, Canada, for his technical
assistance on requirements specification languages, and to Professor Francis Chin and
other colleagues at the University of Hong Kong for their continuous interactions and
support. My thanks should also go to Dr Peter Breuer and Dr Paritosh Pandya of the
University of Oxford, Professor Rod Burstall of the University of Edinburgh, Dr Derek
Coleman of Hewlett-Packard Laboratories, Professor Joe Davis of Indiana University,
Professor Dr Hartmut Ehrig of Technische Universitaet Berlin, Professor Jim Emery of
the University of Pennsylvania, Dr Kit Grindley of Price Waterhouse, Dr Don
Sannella of the University of Bremen and Dr Sami Zahran of ICL Dataskil for their
encouraging feedbacks.

The research would not have been successful without the study leaves granted by the
University of Hong Kong, a Commonwealth Academic Staff Scholarship and a
CICHE Visitorship at the University of London, a SERC Visiting Fellowship at the
University of Oxford, a Fellowship of the International Conference on Information
Systems, a Grant from the International Conference on Software Engineering, a Hong
Kong and China Gas Co. Research Grant and a University of Hong Kong Research
and Conference Grant.

Finally, I would like to mention a word of & to my wife, children and other
members of the family for their patience, love and care throughout the duration of the
project.

CONTENTS

RS 121, TRTTTTUU TR U OO PP PSPPSRI vil
List of Tables and FigUIes...........cccociiiiiiiiiiiiiei e s ix
Chapter 1: INtroduCtion............oovoiiiiiiiiii s 1
Chapter 2: Desirable Features of Systems Development Environments
D15 TATOAICTION cxusississssnmsmmossssnssssonssosinsss qasssasissEassassumsessdosstnsasss sansssont ses SeRHE SRS HOTIHEIETINS 4
2.2: Abstraction of the real WOIld........cocverireriiicsiiinnniniiirieeieesississsseeseseessssesstessssssssnes 5
2.2.1 User familiarity of the specification language..........c..cooeveniniiiiiiinininininn. q
2.2.2 Language StYLe.......ccociviniminiiniiiiiiieis 7
2.2.3 Multi-1evel aDSIIACION . ciicuureinmsassnorsanersssissssissivisssssssssssvsasisassansasasssnns ssonssasasssoss 8
2.2.4 FeedbDaCK 10 USETS...uveerreeeireiereessnessrorsatesssesssstsssssissansssnsssansassassssnassassssnsssssssssssss 9
3.0 5 WIOATTADTIIEY:: o mi e i 5o osnevasd s 4 5 AP v 4 SV S R SR T A S s em e 10
2.3: Manipulation Of TePreSentations.coeuerieueereesentsisietsie et 10
2.3.1 Tools of MANTPULALION ...ccvssirsussvessivsmssssssassmsssssssnsassassasunsneannensaserasssmsssssssssasessiss 10
P 00, B I ;) 1123 6] 0 001 1110, o ORI e R ST npnye 111
P33 VAl A0 smrssmvsimmmitsssmrmsssssmmunosss e i T T os Ges s ass pmsansns SR AT IRVEES 11
2.3.4 Independence of design and implementation..........ccoeceeenienieenenninenennicines 13
2.4: Construction Of @ 1Al SYSEML......cccusvcssursrusmssrssuesanssesssassssisisssiissnsssssssassnsasus ssnasamssassas 13
4.1 COMPUIADIIIEY: sousesssvsus sssssssusssrssnnmomerussussnamasassss syesnesusonsorasvuansosessnssnsssassasansios 13
2.4.2 Verification of implemMentation i...ususssissssssssssesssmsorsssasssnassmsnsessssssssisnssesasssas 15
255 CONCIISION, js50vsmmes s umasa s smsssssssmsssan o s et AEs o5 e Saseh s nsswmnio s i SRR SR HERTAARR S 16

Chapter 3. A Comparison with Related Work

3.1
3.2
3.9
3.4:
3.5;
3.6:
3.7;

T O AU GO s psvsiunssssssuamssness nussmussmns soswesmmisssTR TR e Ts SaRas St ass s mansms aneom e SORAS VAT SRR AT SuE 055 19
PSL/PSA. and METAJGA ..cconssicomsermmossorsassnsssosssnssossssssssss ssoressssssisisiasossasesvnsssnssoss 19
ADS/SOD Au.isssmmsisisvssinmimmsnsmosssmessesnseeis s sasesgsisdmssisssiiesnsn smnns sesivssmassosdss iR 22
SADTIEDIIA. s s siiswissssssssnsnssssassssmissnsesss s s5ess 5o0sssssssiss soRes s iaassaiissssass svoew 23
SAMMYSTG S\ ..o vcsvsmmisvusassos sustuasnstosnssnnmsnsmarosssssnsssssssssiatsssasTamTT 0 43R s ST maore TS TS 26
RET/SREM «viioommiosmmnasmossssmmmsssssossmmssas o s b s s ness eon sy oo ussastsostusosi o 28
Comparison and coNCIUSION.... . .ssssmrmusiisissemsiisssmsmmmsissnesisosiasssmessss ssnsssees ovessess 31

vi

Chapter 4. An Initial Algebra Framework for Unifying the Structured Models

A1 INTEOAUCTION conusnommomumsms sanmnmmsssissmum o §oss e s9ss 6oy SN Ee S ER o PR HT A LSS RE IS 58 S O SRR S
4.2 ALZEDTAS ..o
4.3: INItIAl AIZEDTASeiiiiriiiiiiieiectec et
4. 4: Yourdon SErUCtULe CRATES s umsiuamsissiuss ssasessass isiss ivevs iass s imnis soasons tommiesass sissssssiovasn
4.5: DeMarco data flow diagrams........cccceiiiuiiriiiiiiiinie ettt
4.6; JAcKSON STUCHUTE TEXES suuesoussessuvonenvsinssisessinmsssossssisssses sraesssssssanss susssvunssrsnss sieisvaenssass
4.7 CONCIUSION ..ttt ettt s e st e e sateesateessaesssaeensaeessaeesaannne

Chapter 5. A Functorial Framework for Unifying the Structured Models
5.1 INrOAUCTION ...ttt ettt ettt e b e s saeete e te e beenneessesasennas
5.2: A brief introduction to category theOrY.........cceeuieiiieiiieieriereceeeeeeeeere e
5.3: Category of De-Marco LiKe PrOCESSES . ciususimmmnsomsminsorsnmessossassnsassesssrsasossnssnsosrosses
5.3.1 ODBJECIS ..ottt ettt ea e e r e et ereeae et ae e
5.3.2 MOTPRISITIS.cuiiiiiiiiieiieieeteseee ettt st ettt eae et ene e enneas
5.4: Category of De-Marco 1ike tasksccceecieieriirieniiniiececreeeecceceeee e
5.5: Other categories of structured MOAELScooveviivriirieiiiciciceceeeeeeeeee e
5.6: FUnCrors aid TrEENESS wesmsermmensnsimisissners issse ssaiessasestr igobonns sroksssanssnsesessoswesossssheseoss
5.7: CONCIUSION ...ttt ettt ettt ettt ee e eneee et eneenens

Chapter 6. The Identification of Unstructuredness
6.1: INTTOQUCHION. ...c.uiuiiuiiiieiiiteie ettt ettt ettt et e e et e et et e e eeens
6.2: Connected tasks and SKEIELONS.......c.cvuivuiiuiirieeieieeeeeceeceeeeeeeeeeeee et
6.3: MiInimal SUDLASKS.coveieuirtirieietirteieeetet ettt ettt et et e e e e e e e eneaes
6.4: Defining UNSITUCIUTEANESScoeeveuieuiiiiieeietie ettt ettt e e e e e e eeseens
6.4.1 An entry in the middle of a selection or parallel connection..........................
6.4.2 An exit in the middle of a selection or parallel connection
6.4.3 An entry in the middle of an Iterationcoveeeeeeseeereeeeesereereeeeeeeeeen,
6.4.4 Non-unique exit in an erAtiONcveeuierieeiiieieeeceeeeeeeeeee e ee e e,
6.5: Identification of multiple Iteration €XitSceciveeiivieeeeieeeeeeeeeeeeeeeeeeeeeeereaas
6.6: Partially overlapping SKelEtONSccveuieviveiieriereeerieteisteceeeeeeeee et ee e,
[CRTE @ o) 1Tcd 10 (o] 1 U USROS S

Chapter 7. A Prototype System to Implement the Unifying Framework

712 INOAUCTION....c.veieiiriiieieeeete ettt et e e e eneeea SRR S

7.2: Example on an application of the SYSteML.............ccoivveereieeeeeeeeeeeeeeer e

7.3 SyStem ChATACIETISTICSvuuieiiririeieieieietstet ettt sttt et enenes
7.3.1 Choice of development language...............ccuevivveeeeeeeereeeeeeeeeereeeeeer e e,
7.3.2 Components of the prototype SYStEM............c.euveveueeeeeeeeeeeeeeeeeeereeerererersenns
7.3.3 Examples of algorithims........ccoueueururuiiiieieeereiceccceceeee e,

Chapter 8. ConCIUSIONcoouiuiiiiieiieiceceeeeeeeeeeeeeeeeeee e oo

BUBEOBPAPIR 1osssosssrmommmnnmessiss s s i mmmmm——————— S

Contents

LIST OF TABLES AND FIGURES

j * \‘-:‘l
?- fw ,:’ = ey ‘;1
\ i NEY e

List of Tables :) ,.»'!
Table 2.1 Features of unifying framework for structured modelscocoeveuennene... 17
Table 3.1 A comparison of the features of related Work..........ccocceeveveiiecieeiesiecieenn, 32
Table 4.1 Mapping of sorts to carriers in structured SYStemscccceveeevvreereerneennen. 43
Table 7.1 Software managers in the Macintosh User-Interface Toolbox 140
Table 7.2 Subprograms of the DeMarco program.............cccceeecuveecureeveeeeeeeveeseeenne 142
Table 7.3 Subprograms of the Transform program..............cccceeeueecveeeeseeceeeereeseennnens 145
List of Figures
Figure 2.1 Hardware and software COSt trendS.............couveeuieeeeeeeieeieicecceceee e 4
Figure 2.2 Schematic concept of an engineering ProCess «............oovvvevevvereereeseereeneeenens 6
Figure 3,1 Al oVEIVIEW Of PSLIPSA s v cssssvemsssssssssasisssisasssrasssssmmamssnpernssassssensessasss 20
Figure 3.2 Application of the META/GA system to generate a specific PSL/PSA

31 =3 1. T 21
Figure 3.3 An SADT fundamental building blOcKccooovvveiviieiieineeeeeeeeeeeeenn. 24
Figure 3.4 Decomposition of a box in a SADT diagram.............ccocoeveeveiveevreveeeeennnn. 25
Figure 3.5 Relationship between a context tree and an activity diagram in SAMM.....27
Figure 3.6 An overview of SIGS........ccccoevireennieeieeeeeeeeee ettt 28
Figure 3.7 An overview of SREM........cccooeiiimiiiiiiicicececccceeeee e 29
Figure 3.8 A TeQUITEIMENS MO, wuissussisissimmsosmmsmsmsmmresiassrasesesssmnssmsnenassssessssyssssiassses 30
Figure 4.1 Sample structure chart in Yourdon algebra................cocoeveveeeeeereeeeeerennnnn. 36
Figure 4.2 Sample data flow diagram in DeMarco algebra.................ccoevereeeeereeeenennn. 37
Figure 4.3 Sample structure text in Jackson algebra.............ccoeevevieveeeeeevereseeeeeeeenn. 38
Figure 44 ADJ diagram for the Signature booleanooeeeeeeeeeeeeeeeeerereveereenanns 40
Figure 4.5 ADJ diagram for the signature for structured models............cocoevvereevennnn.... 42
Figure 4.6 Sample term in initial algebra..........cooeevieiieeeeeeeeeeeeeeeeeeeeeeeee oo 47
Figure 4.7 Carriers of Yourdon algebracc.ovvevveeeieeeeeeeeeeeeeeeeeeeeeeees e 50
Figure 4.8 Operations in Yourdon algebra............cc.coeueeeueeeeeeseeeeeeeeeeeeeereeeesoeeeenn 52
Figure 4.9 Example of interpretation of graphical operations in Yourdon algebra53
Figure 4.10 Carriers of DeMarco algebrac.cecveveuiieeeuieeereeeeeeeeeeeeeeeeeee e S5
Figure 4.11 Operations in DeMarco algebra..............c.coeueeeeeeeeeeeeeeeeeereeeeeeeeeee 57
Figure 4.12 Example of interpretation of graphical operations in DeMarco algebra......59
Figure 4.13 Flat data flow diagram in DeMarco algebracocoeeveeeeevevereeerrnnn.. 61
Figure 4.14 Applying UMIST OBIJ to term algebra and Jackson algebra...................... 63
Figure 4.15 Example of term reWITtiNgc.ovovvereieceieeeeeereeeeeeeeeeesesese oo 65
Figure 4.16 Linking the structured models by term algebracocooveveveveveveeeee) 69

Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10
Figure 5.11
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5
Figure 7.6
Figure 7.7
Figure 7.8
Figure 7.9
Figure 7.10

Figure 7.11
Figure 7.12
Figure 7.13
Figure 7.14

Figure 7.15
Figure 7.16
Figure 7.17
Figure 7.18
Figure 7.19
Figure 7.20
Figure 7.21

Figure 7.22
Figure 7.23

List of Tables and Figures

Functorial relationships among structured modelscccccevveereeeereennenne. 71
Diagrammatic representation 0f ProCesSESceeverreeererreeeeeereereeeneesneenns 7D
Diagrammatic representation of structured tasks..........ccccoeveeeveiireereneenenee. 77
Comparison between DeMarco data flow diagrams and task diagrams......78
Graphical illustration of abstractionc.ceeeevevueeveriereeeerieiececeeeeee. 82
Graphical illustration of refinement..............c.ccevveeviiiieeeiiieeeeee e, 83
Example of refinement in Taskoceceeioieieieieeiieeeeeeeeeeeeeeeeeeeeeeen 84
Sample morphisms in the category Term...........oovvvivieeeeeeeeeeeeeeeeeeeeeeeenan 86
Sample morphisms in the category YOurdoncouueeeveeeeeeeeennnn, 87
Sample morphisms in the category JAckSONcooveeeeeeeveeeereerenennn, 88
Functorial relationships between Task and Term.............cccceeveceervevereevann.. 89
Example of unstructured task..........c.oeeieueieierieieiieeeeeeeeeeeeeeeee e 96
Example of an untructured task using simplified notation........................... 97
Adding extra process to form single entry in taskoccocooveeererinnnn. 98
Example of an unconnected task...........cocoeeeveuieioeieeeeeeeeeeeeeeeeeeeeeenn 100
An exit in the middle of a selection or parallel connection 106
Program to create DeMarco-like task diagrams...............cococoveveverererennnn.. 116
Creating the top window of a DeMarco-like task diagram........................ 117
Zooming into a child WindOWc.ceeuiiiieiiiieeeeeee oo, 118
Creating a bubble in a child WindoW...............cooveeveeeeeioeeeeeeoo 119
Inserting further bubbles in @ Windowccoveeeveeeeeesereeie. 120
Zooming further down a child Windowccoeveeeeeemeereee 121
Moving a window to a desired 10CatioNooevevemeeeeoeeeooe 122
Changing the size of @ WINAOWc.ovveeuivcieeeeeeeeeeeeeeeeeeeeeeee, 123
Zooming out of a child WindoWc.o.oeeeeeveeeeeeeeeeeeeoeoeoo 124
Linking up the bubbles of a child window with those of the current

WINAOW ..ttt 125
Moving a bubble to a desired location................ccooovoveeeeeeeeee 126
Separating the bubbles of a child window from its parent window........... 127
Deleting a bubble from a Window.................cccueueueveeeeeeeeeeeo 128
Program transforming DeMarco-like task diagrams into other structured
TEHOURS surcensscusasnsinios comsmnsnssnmomensmmesnrssvessy s s s B B AESE A R8RS mmmem s 129
Transforming into term algebrac.o.oeeueeeeeeeeeeeeeeeeeeeeooo 130
Transforming into Jackson Structure teXt..............ooovverevevoeoreooeooo. 131
Specifying the locations of boxes in Yourdon structure chart.................. 132
Zooming into a child WINAOWo.ovovivoeeeeeeeeeeeeeeeeeeeeeeeeoeoooo 133
Zooming further down a child Window................ocoeeeeeeoooo 134
Zooming out of a child WINAOWc.coemmeeemeoeeeoeoooo 135
Linking up the boxes of a child window with those of the current

WEITHOOW s s imansnarososmommsmsmerevvos us s s 335 HHAOR SEASSH RS b Somemmmmemmememeemssesrse e 136
Moving a tree to a desired 10CatON................ooovrerereroeoeooo 137

Separating the boxes of a child window from those of the parent
WINAOW .o 138

List of Tables and Figures xi

Figure 7.24

Figure 7.25
Figure 7.26
Figure 7.27
Figure 7.28
Figure 7.29

Figure 7.30

Example showing a second level window which is separated from the top

level but linked to the boxes in a third level window..............cccceenene.... 139
Algorithm for selecting a bubble in the DeMarco-like task diagram 148
Algorithm for inserting a bubble into a DeMarco-like task diagram......... 151
Algorithm for deleting a bubble from a DeMarco-like task diagram 156
Algorithm for drawing a Yourdon structure chartccccvevveeuennennn.n. 158
Algorithm for transforming a task structure into a term in the initial

Al T DT A overiinsssoe s T Hr oS T 548523500 sumes mmmasvan e s b sbo s oussmm e RS SRS e SRS 160

Algorithm for transforming a task structure into Jackson structure text....163

1 Introduction

The specifier constructs a theory and attempts to refute it
(hypothetico-deductive) while the knowledge engineer assembles
a mass of empirical rules whose verisimilitude is unquestioned
(empirico-deductive). The systems engineer, meanwhile, takes
the utilitarian approach: if it works, use it.

—Bernard Cohen et al. (1986)

There are existing formalisms for description ... which are clear
and well-understood, but lack the richness typical in descriptions
which people find useful. They can serve as a universal basis
Jor description but only in the same sense that a Turing machine
can express any computation.

—Terry Winograd (1979)

Structured analysis and design methodologies have been recognized as the most
popular tools in information systems development (Colter 1982). They are widely
accepted by practising systems developers because of the top down nature of the
methodologies and the graphical nature of the tools. A complex systems specification
can be decomposed into a modular and hierarchical structure which is easily compre-
hensible. They enable practitioners to visualize the target systems and to communi-
cate with users much more easily than conventional methods.

As a matter of fact, the structured methodologies have been designed by quite a
number of distinct authors, each employing a number of models which vary in their in
graphical outlook. These include data flow diagrams (DeMarco 1978, Gane and
Sarson 1979, McMenamin and Palmer 1984, Weinberg 1980), Jackson structure di-
agrams, Jackson structure texts (Jackson 1975), system specification diagrams, system
implementation diagrams (Cameron 1986, Jackson 1983), Warnier/Orr diagrams (Orr
1977) and structure charts (Page-Jones 1988, Yourdon and Constantine 1979).

Different structured models have been found to be suitable for different situations
depending on the characteristics of user requirements, the emphasis and the stage of
development. In other words, we need more than one of these models during the
development process of a typical system. If we provide practitioners with a
computer-aided means of mapping one model to another, the efficiency of systems
development can be greatly improved. Unfortunately, however, the models are only

2 Chapter 1 Introduction

derived from the experience of the authors. In spite of the popularity of these models,
relatively little work has been done in providing a theoretical framework for them. As
a result, the transition from one model to another, although recommended by most
authors, is arbitrary and only done manually. Automatic validation and development
aids tend to be ad hoc and model-dependent.

On the other hand, many attempts have already been made to computerize the systems
development environment. Some better known examples are ADS/SODA, EDDA,
ISDOS, SAMM and SREM. Most of these approaches, however, are developed
independently of existing structured analysis and design models. As pointed out in
Davis (1982) and Martin (1983, 1984), practitioners are rather hesitant to use such
new tools because they involve an unfamiliar formal language.

To solve the problem, we should not be designing yet another formal language from
scratch. Instead, we must recognize the popularity of existing methodologies and
apply mathematical theory to support them. In this book, we propose a unifying
framework behind the structured models, approaching the problem from the
viewpoints of initial algebra and category theory. We hope it will provide further
insight for software engineers into systems development methodologies, guidelines for
implementors of advanced CASE tools, and will open up a range of applications and
problems for theoretical computer scientists.

In Chapter 2 of the book, we review the desirable features of a systems development
environment. In Chapter 3, we examine the features of five related projects, thus
comparing the structured models with other tools which have a better formal
foundation but are less popular. In the initial algebra framework discussed in Chapter
4, we define a term algebra of structured systems, which can be mapped by unique
homomorphisms to a DeMarco algebra of data flow diagrams, a Yourdon algebra of
structure charts and a Jackson algebra of structure texts. In Chapter 5, we find that the
proposed term algebra as well as the DeMarco, Yourdon and Jackson notations fit
nicely into a category-theoretic framework. DeMarco data flow diagrams can be
mapped to term algebras through free functors. Conversely, specifications in term
algebras can be mapped to other notations such as Yourdon structure charts by means
of functors. The framework also provides a theoretical basis for manipulating
incomplete or unstructured specifications through refinement morphisms.

A further illustration of the theoretical usefulness of the concept of tasks is given in
Chapter 6. Since flow diagrams are used for problem analysis and communicating
with users during early systems development, they are problem-oriented and are not
necessarily structured. Some detection mechanism must be available for us to identify
any unstructuredness in the flow diagrams before we can convert them into structure
charts or any other structured models. We prove that a single criterion is necessary
and sufficient for identifying unstructured tasks. An illustration of the practical useful-
ness is given in Chapter 7, where we discuss a prototype system to implement the

Chapter 1 Introduction 3

structured tasks. It enables users to draw a hierarchy of DeMarco data flow diagrams,
review them to an appropriate level of detail, and zoom in/zoom out to lower/higher
levels when required.

The project has been presented in Computer Science and Information Systems journals
and conferences (see, for example, Tse 1986, 1987a, 1987b, 1987c, 1988). Feedbacks
on our approach are favourable and encouraging.

2 Desirable Features of Systems Development
Environments

2.1 INTRODUCTION

In the early days of stored program computers, the cost of software made up a mere
15 per cent of the total cost of information systems. But software cost has been
escalating ever since, and is currently estimated to be over 80 per cent of the total
(Boehm 1976), as illustrated in Figure 2.1. It is more alarming to note that more than
two-thirds of the money is spent on the maintenance of existing software and only
one-third on new developments.

In view of the escalation in software cost, research workers have been trying to
improve on the languages used in systems specifications and to design development
environments to support these languages. Quite a number of surveys on specification
languages and their supporting environments have already been published. Some
notable examples are Colter (1984), Jones (1979), Rock-Evans (1987), Wasserman

100
80 I
Hardware
Software
60 Development
Percentage
of Cost
40
Software
20 Maintenance
1 1
1955 1970 1985

Figure 2.1 Hardware and Software Cost Trends

2.1 Introduction 5

(1983) and Yau and Tsai (1986). Most of the authors (not excluding the present
author (Tse and Pong 1982)) propose in the papers a list of desirable features of
specification languages and/or development environments so as to provide a basis for
judgement. One must confess that it is virtually impossible to invent yet another list
of desirable features which would be better than those already proposed. Instead, we
shall in this chapter consolidate the features already suggested by various authors and
present them in the context of an engineering process. In the next chapter, we shall
then use the proposed features as the basis to examine some of the established
research in specification languages and their supporting environments.

Information systems development can be conceived as an engineering process. A
graphical representation is shown in Figure 2.2. We must first of all build a model,
which is a small-scaled abstract representation of the real world. All unnecessary
details in the physical world which are irrelevant to the engineering process are
removed. If the resulting model is still too complex, further abstractions may be
necessary, until the problem is reduced to a manageable size. The model is then
analysed and manipulated until a feasible solution is found. In engineering, diagrams
and mathematics are often used because they have been found to be more suitable for
manipulation than verbal descriptions. One representation may have to be transformed
into another so that the most appropriate model for a given analysis can be used.
When we solve an engineering problem, for instance, we may convert diagrams into
equations or vice versa. Finally, if the abstract solution is accepted by the customer, a
construction phase turns it into a real system.

A systems specification for the engineering process is important for several reasons:

(@) It serves as a communication medium between the user and the systems
developer. It represents in a systematic fashion the current state of the real world,
its problems and its future requirements.

(b) It enables the systems developer to turn real world problems into other forms
which are more manageable in terms of size, complexity, human understanding
and computer processability.

(c) It serves as the basis for the design, implementation, testing and maintenance of
the target system.

In order for a systems specification to be useful for the entire engineering process, the
specification language and its supporting environment must have the following
features to cater for the respective stages:

2.2 ABSTRACTION OF THE REAL WORLD

A systems specification language is the medium for users to make a model of the real
world and specify its problems and requirements. It is the bridge between a develop-
ment environment and the users, including systems analysts, designers and end users.
We must ensure that this interface is suitable to all concerned. The usual marketing

Chapter 2 Desirable Features of Systems Development Environments

§S9001d Sundduiduy ue jo 3daduo)) sneuwndyd§ gz dInJryg

waISAS ey

> PIIOM [B3Y

u0INLISUO) uo1IVIISqQY
[°POA [°PON
perelRg parrerRg
(s13s) pug
nuawourfoy | |wonomusqy [juusuify| | uouovusqy émmcm &owwmoa)
’ [BUY suIpnoul
EOﬁmﬁdmemz §438 () el
yim
[9POIN [°POIN tonInLJUT
1080SqQY 1080Sqy
uornpPeIISqQVy [PAS[-BNA UuonpeIsqy [PAI[-BINA
SPPON ddnpy

2.2 Abstraction of the Real World 7

phrase ‘‘user-friendliness’’ is a bit too vague to act as a useful guide. Instead, we
consider it essential for the systems specification language and its supporting environ-
ment to have the following properties:

2.2.1 User Familiarity of the Specification Language
It would be difficult for users to employ an entirely new specification language
because of several reasons:

(@) There is an inertial effect from the point of view of users. They are not willing to
try new methodologies which are not familiar, especially those involving formal
languages.

(b) From the management point of view, a methodology which has been well-tested
and which is being taught in various universities and polytechnics tends to be
more acceptable than a newly proposed technique. It is easier to recruit staff
members who are trained and experienced in an established method. It will be
easier to maintain standards if the same methodology is used throughout the
company. Managers in general find it safer to be old-fashioned than to try the
latest innovation and regret afterwards.

When we propose a new systems development environment, therefore, we should not
be inventing an entirely new language, with the hope that it will turn out to be the
best in the world. Instead, we should try to use a currently available specification
language which has most of the desirable features and, more importantly, has proven
popularity among practitioners.

2.2.2 Language Style

To facilitate the automatic processing of a systems specification, it may be thought
that the language used must be formal and mathematical in nature. A systems
specification in a formal language, unfortunately, will be very difficult for users to
understand. As pointed out in Davis (1982) and Martin (1983, 1984), practising
systems analysts are very hesitant to such languages. Instead, the language must be
easy to learn and easy to use. It must be close to the language employed by users in
their respective domains of application. It must be precise and concise, or in other
words, clear and to the point. Let us list out the possible classes of languages in order
to arrive at some reasonable choice.

(@) Textual language: When we consider the use of a textual language for systems
specification, we may like either a natural language or a more formal program-
like language. There is little doubt that natural languages provide a better means
of persuasion and more freedom of expression, especially in the early stages of
systems development when a certain degree of uncertainty is involved. It is also
more natural to the average end user and hence improves the user-understanding
of a new situation. (The current book, for example, can only be written in a
natural language, supplemented by graphics and other formal textual languages.)

