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Preface

The papers in this volume were presented at the 1994 I[EEE 35th Annual
Symposium on Foundations of Computer Science (FOCS’94), sponsored by the IEEE
Computer Society Technical Committee on Mathematical Foundations of Computing.
The conference was held in Santa Fe, New Mexico from November 20-22, 1994.

The program committee met from June 26-28, 1994, and selected 70 papers from
the 235 extended abstracts submitted for review. The submissions were not refereed, and
many of them represent reports of continuing research. It is expected that most of these
papers will appear in a more complete and polished form in scientific journals in the near
future. In addition, Leonard Adleman, Manuel Blum, and Ravi Kannan were invited to
give plenary lectures, reprinted in these proceedings.

The committee selected the papers, “Efficient Oblivious Branching Programs for
Threshold Functions,” by Rakesh Kumar Sinha and Jayram S. Thathacher and, “An
Efficient Membership-Query Algorithm for Learning DNF with Respect to the Uniform
Distribution,” by Jeffrey Jackson, to receive the Machtey Award, given to the best
student-authored papers.

‘ The committee wishes to thank all of those who submitted papers for
consideration, as well as the individuals who helped with the process of evaluating the
extended abstracts. A list of the latter is given on the following page.

The program committee consisted of Avrim Blum, Anne Condon, Oded
Goldreich, Shafi Goldwasser, Johan Hiastad, Howard Karloff, Laszlo Lovasz, Yishay
Mansour, Friedhelm Meyer auf der Heide, Satish Rao, Raimund Seidel, Victor Shoup,
Eva Tardos, Moshe Vardi, and Mihalis Yannakakis.
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Approximate Graph Coloring by Semidefinite Programming

DAVID KARGER®
Stanford University

Abstract

We consider the problem of coloring k-colorable graphs
with the fewest possible colors. We give a randomized poly-
nomial time algorithm which colors a 3-colorable graph
on n vertices withmin{O(A3log*/® A), O(n'/*logn)}
colors where A is the maximum degree of any vertex. Be-
sides giving the best known approximation ratio in terms of
n. this marks the first non-trivial approximation result as a
function of the maximum degree A. This result can be gen-
eralized to k-colorable graphs 1o obtain a coloring using
min{O(A*~?/*), O(n*~3/{:+1))} colors. Our results are
inspired by the recent work of Goemans and Williamson
who used an algorithm for semidefinite optimization prob-
lems. which generalize linear programs. 1o obtain improved
approximations for the MAX CUT and MAX 2-SAT prob-
lems. An intriguing outcome of our work is a duality re-
lationship esiablished between the value of the optimum
solution 1o our semidefinite program and the Lovasz 9-
Jfunction. We show lower bounds on the gap between the
optimum solution of our semidefinite program and the ac-
wual chromatic number; by duality this also demonstrates
interesting new facts about the 9-function.

1 Introduction

A.legal vertex coloring of a graph G(V, E) is an as-
signment of colors to its vertices such that no two adjacent
vertices receive the same color. Equivalently, a legal coi-
oring of G by k colors is a partition of its vertices into k
independent sets. The minimum number of colors needed

*Current address: AT&T Bell Laboratories, Murray Hill. NJ 07974
(karger@@lcs.mit.edu). This work was done while the author was
at Stanford University and supported by a Herz Foundation Graduate
Fellowship and by NSF Young Investigator Award CCR-9357849, with
macwching funds from IBM, Schiumberger F Shell Foundati
and Xerox Corporation.

T Department of Computer Science, Stanford University. Stanford. CA
94305 (rajeevaecs.stanford. edu). Supported by an IBM Fac-
ulty Development Award, grants from Mitsubishi and OTL. NSF Grant
CCR-9010517, and NSF Young Investigator Award CCR-9357849, with
matching funds from IBM, Schlumberger Foundation, Shell Foundati
and Xerox Corporation.

}IBM Thomas J. Watson Research Center, Yorktowa Heights. NY
10598 (madhu@watson. ibm. com).

0272-5428/94 $04.00 © 1994 IEEE

RAJEEV MoTwaNI!
Stanford University

MADHU SUDAN?
IBM Research

for such a coloring is called the chromatic number of G,
and is usually denoted by x(G). Determining the chromatic
number of a graph is known to be NP-hard (cf. [19]).

Besides its theoretical significance as a canonical NP-
hard problem, graph coloring arises naturally in a van-
ety of applications such as register allocation [11, 12, 13]
and timetable/examination scheduling [8, 40]. In many
applications which can be formulated as graph coloring
problems, it suffices to find an approximately optimum
graph coloring—a coloring of the graph with a small
though non-optimum number of colors. This along with
the apparent impossibility of an exact solution has led
to some interest in the problem of approximate graph
coloring. The analysis of approximation algorithms for
graph coloring started with the work of Johnson [25]
who shows that a version of the greedy algorithm gives
an O(n/ log n)-approximation aigorithm for k-colonng.
Wigderson [39] improved this bound by giving an ele-
gant algorithm which uses O(n?~/(*=1)) colors to legally
color a k-colorablc graph. Subsequently, other polyno-
mial time algorithms were provided by Blum [9] which
use O(n/10g®® n) colors to legally color an n-vertex
3-colorable graph. This resuit generalizes to coloring a
k-colorable graph with O(n!=1/(k=4/3)10¢%/% 1) colors.
The best known performance guarantee for general graphs
is due to Hallddrsson [24] who provided a polynomial time
algorithm using a number of colors which is within a factor
of O(n(loglog n)?/ log® n) of the optimum.

Recent results in the hardness of approximations indicate
that it may be not possible to substantially improve the
results described above. Lund and Yannakakis [33] used the
results of Arora, Lund, Motwani, Sudan, and Szegedy [6]
and Feige, Goldwasser, Lovasz, Safra, and Szegedy [17] to
show that there exists a (small) constant € > 0 such that no
polynomial time algorithm can approximate the chromatic
number of a graph to within a ratio of n* unless P = NP.
Recently, Bellare and Sudan [7] showed that the exponent €
in the hardness result can be improved to 1/10 unless NQP
# co-RQP, and to 1/13 unless NP = co-RP. However,
none of these hardness results apply to the special case of
the problem where the input graph is guaranteed to be k-
colorable for some small k. The best hardness result in this
direction is due to Khanna, Linial, and Safra [26] who show



that it is not possible to color a 3-colorable graph with 4
colors in polynomial time unless P = NP.

In this paper we present improvements on the result of
Blum. In particular, we provide a randomized polynomial
time algorithm which colors a 3-colorable graph of maxi-
mum degree A withmin{O(A/3), O(n*/4logn)} colors;
moreover, this can be generalized to k-colorable graphs to
obtain a coloring using O(A=3/%) or O(n!=3/(¥+1)) col-
ors. Besides giving the best known approximations in terms
of n, our results are the first non-trivial approximations
given in terms of A. Our results are based on the recent
work of Goemans and Williamson [20] who used an algo-
rthm for semidefinite optimization problems (cf. [22, 2])
to obtain improved approximations for the MAX CUT and
MAX 2-SAT problems. We follow their basic paradigm of
using algorithms for semidefinite programming to obtain
an optimum solution to a relaxed version of the problem,
and a randomized strategy for “rounding” this solutionto a
feasible but approximate solution to the original problem.
Motwani and Naor [35] have shown that the approximate
graph coloring problem is closely related to the problem of
findinga CUT COVER ofthe edges of a graph. Our resuits
can he viewed as generalizing the MAX CUT approxima-
tion algorithm of Goemans and Williamson to the problem
of finding an approximate CUT COVER. In fact, our tech-
niques also lead to improved approximations for the MAX
k-CUT problem [18]. We also establish a duality reiation-
ship between the value of the optimum solution to our semi-
definite program and the Lovasz ¥-function (22, 23, 31].
We show lower bounds on the gap between the optimum
solution of our semidefinite program and the actual chro-
matic number; by duality this also demonstrates interesting
new facts about the J-function.

Alon and Kahale {4] use related techniques to devise a
polynomial time algorithm for 3-coloring random graphs
drawn from a “hard” distribution on the space of all 3-
colorable graphs. Recently, Frieze and Jerrum [18] have
used a semidefinite programming formulation and random-
ized rounding strategy essentially the same as ours to obtain
improved approximations for the MAX k-CUT problem
with large values of k. Their results required a more so-
phisticated version of our analysis, but for the coloring
problem our results are tight up to poly-logarithmic factors
and their analysis does not help to improve our bounds.

Semidefinite programming relaxations are an extension
of the linear programming relaxation approach to approxi-
mately solving NP-complete problems. We thus present our
work in the style of the classical LP-relaxation approach.
We begin in Section 2 by defining a relaxed version of the
coloring problem. Since we use a more complex relaxation
than standard linear programming, we must show that the
relaxed problem can be solved; this is done in Section 3.

We then show relationships between the relaxation and the
original problem. In Section 4, we show that (in a sense
to be defined later) the value of the relaxation bounds the
value of the original problem. Then, in Sectioas 5, 6, 7,
and 8 we show how a solution to the relaxation can be
“rounded” to make it a solution to the original problem.
Combining the last two arguments shows that we can find a
good approximation. Section 3, Section 4, and Sections 5—
8 are in fact independent and can be read in any order after
the definitions in Section 2. In Section 9, we investigate
the relationship between vector colorings and the Lovasz
¥-function, showing that they are in fact dual to one an-
other. We investigate the approximation error inherent in
our formulation of the chromatic number via semi-definite
programming in Section 10.

2 A Vector Relaxation of Coloring

[n this section, we describe the relaxed coloring problem
whose solution is in turn used to approximate the solution
to the coloring problem. Instead of assigning colors to the
vertices of a graph, we consider assigning (n-dimensional)
unit vectors to the vertices. To capture the property of
a coloning, we aim lor the vectors of adjacent vertices to
be “different” in a natural way. The vector k-coloring
that we define plays the role that a hypothetical “*fractionai
k-coloring” would play in a classical linear-programming
relaxation approach to the problem. Our relaxation is re-
lated to the concept of an orthonormal representation of a
graph (31, 22].

Definition 2.1 Given a graph G = (V, E) on n vertices.
a vector k-coloring of G is an assignment of unit vectors
u; from the space R™ (o each vertex i € V. such that for
any two adjacent vertices i1 and j the dot product of their
vectors satisfies the inequality

1
(i ;) < P o1
The definitionof an orthonormal representation (31, 22
requires that the given dot products be equal to zero, a
weaker requirement than the one above.

3 Solving the Vector Coloring Problem

In this section we show how the vector coloring relax-
ation can be solved using semidefinite programming. The
methods in this section closely mimic those of Goemans
and Williamson (20].

To solve the problem, we need the following auxiliary
definition.



