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Preface

The theory of fields is one of the oldest and most beautiful subjects in
algebra. It is a natural starting point for those interested in learning algebra,
since the algebra needed for the theory of fields arises naturally in the theory’s
development and a wide selection of important algebraic methods are used.
At the same time, the theory of fields is an area in which intensive work on
basic questions is still being done.

This book was written with the objective of exposing the reader to a
thorough treatment of the classical theory of fields and classical Galois
theory, to more modern approaches to the theory of fields and to one approach
to a current problem in the theory of fields, the problem of determining the
structure of radical field extensions.

I have written the book in the form of a text book, and assume that the
reader is familar with the elementary properties of vector spaces and linear
transformations. The other basic algebra needed for the book is developed in
Chapter 0, although a reader with very little background in algebra should

" also consult other sources. Exercises varying from quite easy to very difficult
are included at the end of each chapter. Some of these exercises supplement
the text and are referred to at points where readers may want to see further
discussion. Others are used to cover in outline form important material
peripheral to the main themes in the book.

Chapters 1-4 give a comprehensive treatment of the more classical side of
the theory of fields and Galois theory. Chapter 1 and 2 are concerned with
the general structure of polynomials and extension fields. Galois theory is
developed extensively in Chapter 3. Chapter 4 covers the fundamental
theorems on algebraic function fields and relates algebraic function fields
and affine algebraic varieties.

In Chapter 5, I discuss three modern versions of Galois theory, in which
the Galois group of an extension is replaced by a ring, a Lie ring and a biring
respectively. In Chapter 6, I describe the structure of radical extensions and
their associated birings in terms of tori.

In Appendix S, I introduce the language of sets and describe the set theory
needed for the book. Witt vectors are needed in 3.10, and their properties
are developed in Appendix W. Tensor products are used quite often in
Chapters 5 and 6, and are discussed in Appendix T.

In order to put the material of Chapters 5 and 6 in the proper formal
framework, I have included a fairly thorough treatment of algebras, coalgebras
and bialgebras in the appendices. In Appendix A, the structure of finite
dimensional commutative algebras is determined. In Appendix C, I discuss
coalgebras and develop the structure theory of cocommutative coalgebras.

vid



viii Preface

In Appendix B, I develop a theory of K/k-bialgebras which generalizes the
usual theory of k-bialgebras. Y

To those already familiar with the theory of fields, some further remarks
may be of interest. In Chapter 2, the proof that the set kg, of separable
elements of a finite dimensional field extension of & is a simple field extension
of k is simplified by a theorem on conjugates (see 2.2.10). At the beginning of
Chapter 3, a generalization of the Dedekind Independence Theorem is
proved (see 3.1.1). This is used to prove a theorem on Galois descent (see
3.2.5) which is then used to prove the Galois Correspondence Theorem
(see 3.3.3). In 3.4, the proof of the Normal Basis Theorem is simplified
by a theorem on conjugates (see 3.4.1). In Chapter 4, I prove that a p-basis
of an arbitrary separable extension K/k is algebraically independent (see
43.17), which greatly simplifies the proofs of theorems on separating tran-
scendency bases. In (".hapter 5, 1 give a new treatment of the Jacobson-
Bourbaki Correspondence Theorem (see 5.1.7) and an accompanying descent
theorem (see 5.1.10), and of the Jacobson Differential Correspondence
Theorem (see 5.2.6) and its accompanying descent theorem (see 5.2.9), inspired
by work of Pierre Cartier and Gerhard Hochschild. In 5.3, 1 develop a Galois
theory of normal extensions based on the biring H(K/k) of an extension
K/k. The structure of K/k is related to the structure of H(KJk) (see 5.3.20), a
Biring Correspondence Theorem is proved (see 5.3.12) and a radical splitting
theorem for H(K/k) is proved for finite dimensional normal extensions
(see 5.3.21). This theory is parallel in some respects to a powerful Galois
theory of normal extensions based on the universal cosplit measuring k-
bialgebra of an extension K/k, developed by Moss Sweedler [20], but has the
advantage that the biring H(K/k) consists of linear transformations of K/k
and is therefore more easily studied. In Chapter 6, I discuss in detail the
structure of finite dimensional radical extensions K/k and their birings
H(K/k), in terms of tori. Tori are then used in proving a fairly deep generaliza-
tion of a theorem of Jacobson on finite dimensional Lie rings of derivations
of K (see 6.4.2). In Appendix B, I develop a formal theory of K/k-bialgebras,
which reduces to the usual theory of k-bialgebras when K = k. I then define
and discuss the K-measuring K/k-bialgebras and their k-forms, and determine
the structure of the finite dimensional conormal K-measuring K/k-bialgebras
and their cosplit k-forms. The theory thus developed places the material of
Chapters 5 and 6 in a formal framework *within which the structure of
H(K/k) can be more effectively studied.

Other approaches to the theory of radical extensions are outlined in E.5 and
E.6in the form of exercises. An outline of the proof of a theorem of Murray
Gersterihaber on subspaces of Der K closed under pth powers is given (see
E.5.8). Higher derivations are introduced, and a sketch of the proof of Moss
Sweedler’s theorem characterizing in terms of higher derivations those finite di-
mensional radical extensions which are internal tensor products of simple ex-
tensions is given (see E.6.11, E.6.14). Moss Sweedler’s universal cosplit
measuring k-bialgebra is introduced and discussed in E.6.21 and E.6.22. The
Pickert invariants of a radical extension are discussed in E.6.24 and E.6.25.
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Reflected in this book are the ideas of many people who ave influenced
me dijrectly and through their work in my thinking about ields. T would
particularly like to mention George Seligman, with whom I first studied
fields, Nathan Jacobson, whose work on fields is the basis fo 1 large part of
this book and Mgss Sweedler, whose work on coalgebras, bia :bras and field
theory is reflected in the last part of this book. Since a refle ion is not real
substitute for an original idea, readers are urged to expldre _he books and
papers listed in the reference section, especially [2], [5], [9], 101, [11], [i2],
[181, [19], [20].

Much of this book is based on a course on bialgebras and courses on field
theory given at the University of Michigan in 1969, 1971 and 1972. Most of
the material of Chapters 5 and 6 and of Appendix B is the outgrowth of
preliminary research described at the 1971 Conference on Lie Algebras and
Related Topics at Ohio State University. N

I would like to take this opportunity to express my thanks to my friend
and former student, Pedro Sanchez, whose lecture notes to my courses made
casier the writing of parts of this book, and to Hershey Kisilevsky, who
showed me the irreducible polynomial used in proving 3.12.2. I also wish to
thank the National Science Foundation for their support of research de-
scribed h're, and to express my appreciation to the California Institute of
Technology, whose genegous support during the academic year 1972-3
enabled the remaining research to be completed at this early date. Finally,
I would like to express my thanks to Catherine Rader and Frances Williams,
whose superb typing made as painless as pos.ible the job of preparing the
manuscript. =

Ann Arbor, Michigan and ; .
Pasadena, California, March 1, 1973 David J. Winter
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0 Introduction

In this chapter, we give a brief but fairly self-contained introduction to
abstract algebra, in order to develop the language, conventions and basic
algebra used throughout the remainder of the book. Our notation for sets
of objects and for operations on sets is given in Appendix S.

We begin with basic matgrial on groups, rings and fields. We then briefly
discuss transformation groups. Finally, we discuss the Krull Closure in a
group in anticipation of its role in Chapter 3

0.1 Basic algebra i

A product on a set S is a mapping from S x S to S, which we may denote
(x,y) > x o y. A subset T of a set S with product x o y is closed (or closed
under x o y) if x o y€ T forall x, y e T. A product x o y on S is associative if

. (xoy)oz = xo(yoz)forx,y,z€S. An element e of a set S with product

xoyisanidentityof Sife o x = xce = xforxeS. One shows easily that Shas
at most one such e (see E.0.1). If such an e exists, S is said to have an identity .

A monoid (or semigroup with identity)is a set S with an associative product
x o y such that S has an identity. A submonoid of a monoid S is a closed subset
T of S containing the identity of S. Such a T together with the product x o y
(x, y € T) is a monoid. For any element x of a monoid S, we let x° be the
identity element of S and x" = xexo---ox(n times) for any positive
integer n. In particular, x* = x for x € S. For x € S, the set T consisting of
x% x1,... is a submonoid of S and x™*'" = x" o x", {7 = "t 10T Al
nonnegative integers m, n (see E.0.4). In a monoid S, an inverse of an element
x €S is an element ye S such that xoy = yox = e, e being the identity
element of S. For each x € S, ¥ has at most one inverse y (see E.0.2). If
x € S has an inverse, then we say-that x is a unit or an invertible element of S,
and we denote the inverse of x by x~. The set $* of units of S'is a submonoid
of S and (xoy)~ =y ox~, (x7)” =x for x,yeS* (see E.0.3). For
x € S*, we define xX~™ = (x~)" for any positive integer n. In particular, x ! =
x~ for x € S*. We call x" the nth power of x with respect to the product o.
For x € S*, the set consisting of x% x~, x*, x "2, x% ... isa submonoid of S
and x™*" = x™ o x", (x™)® = x™ for all integers m, n (see E.0.4). Elements
x, y of monoid S commute if x oy =y o x. A monoid § is Abelid (or com=
mutative) if x oy = yox for x,ye S. If S is an Abelian monoid containing
elements X,,..., Xn, we let T[]7x; denote Xx; o---ox, and then have
(e x)™ = [I7 (x)" for any nonegative integer n (see 200 =

A group is a monoid S every element of which is a unit. Thus, a groupisa
monoid S such that S = S*. For any monoid S, S* is a group called the
group of units of S.A subgroup of a group Sisa submonoid T of S such that

1



2 Introduction

x~ € Tforall x e T. A subgroup T of a group S with product x o y (x, y€ S)
is a group with product x o y (x, ye 7). A group S is Abelian if it is Abelian
asamonoid. If x,, . . ., x,, areelements of an Abelian group S,then (I ['x) =
[TF €x)~ and (TT7 x)* = 7 (x;)" for any integer n (see E.0.5).

A ring is a set A with two products x + y and xy, called a:'ition and
multiplication respectively, such that 4 with addition is an Abelian grouy, 4
with multiplication is a monoid and x(y + z) = Xy + xz,(x + y)z = xz +
yzforx, v, z€ A. A subring of a ring A is a subset B of 4 which is a subgroup
of A with addition and a submonoid of 4 with multiplication. A subring B

of a ring 4 together with the addition x + y and multiplication xy (x, y € B).

is a ring. The identities of a ring A with respect to addition and multiplication
are denoted 0 and e respectively. The element e is the identity of the ring 4.
For x € 4, x" is the nth power of x with respect to multiplication. We let
—x be the additive inverse of x in A4, so that x + (—x) = 0, and we let
Y—x=y+ (—x)forx,yc A. Wethendefine0-x =0, n-x = x +---+ x
(n times) and (—n)-x = n-(—x) for any positive integer n, so that n-x is the
nth power of x with respect to addition. In particular, 1-x = x for x€ 4.
One easily proves the basic equations x0 = Ox = 0, (=x)y = —(xy) =
X(—y) for x,ye 4 and the basic equations (m + n)-x = m-x + n 5 o

m-(n-x) = (mn)-x, m-(x + y) = m-x + m-y for x, ye A and any integers

m and n (see E.0.4). :

A ring A is commutative if the monoid A4 with multiplication is commuta-
tive, that is, if xy = yx for x, y € 4. An element x of A is a unit of the ring
A if x is a unit in the monoid 4 with multiplication. The group of units of
A is denoted A4*.

A ring A is an integral domain if A iscommutativeand 4 — {0} is nonempty

and closed under multiplication xy. In an integral domain, e # 0 (see -

E.0.7). A field is an integral domain K such that the group of units K* is
K — {0}, that is, such that each nonzero element is a unit. Every subring of a
field is an integral domain. A subfield of a field K is a subring k of K such that
xek — {0} = x~' e k — {0}. A subfield of a field X is a field. Every integral
domain A4 is a subring of some field K such that K = {xy~'|xe 4, ye A — {0},
and such a field K is a field of quotients of A (see E.0.10). Any two fields of
quotients of A4 are essentially the same (see E.0.11).

A homomorphism/isomorphism from a monoid or group S with product
x o y and identity e to a monoid or group S’ with product x’ o’ y’ and identity
e’ is a mapping/bijective mapping ffrom Sto S’ such thatf(x o y) = f(x) o f{y)
and f(e) = e¢'. If an isomorphism from S to S’ exists, S and S’ are isomorphic.
An automorphism of S is an isomorphism from S to S.

A homomorphism/isomorphism from a ring or field 4 to a ring or field 4’
is a mapping/bijective mapping /from A to 4" such that fis a homomorphism/
isomorphism of monoids from 4 with addition to A’ with addition and from
A with multiplication to A" with multiplication. If an isomorphism from
A to A’ exists, A and A’ are isomorphic. An automorphism of A is an iso-
morphism from 4 to 4.

An ideal of a ring A4 is a nonempty subset 7 of 4 closed under addition such
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that xy € I for xe 4, ye I and for x € I, y € A. The sets {0} and A4 are ideals
of A. In a commutative ring A, the set x4 = {xa|aec 4} (xe 4) is an
ideal of A called the principle ideal generated by x. If A is an integral domain
and every ideal of A4 is principal, 4 is a principle ideal domain.

Suppose that S is an Abelian group with product x + y and that Tis a
subgroup of S. We let x + T'={x + y|yeT} for xeS. Then xex + T
and x + T is the coset of T'in S containing x. Two cosets x + Tand x" + T
are equal if and only if x — x'e T If x — x"¢ T, x + Tand x' + T are dis-
joint (see E.0.17). Thus, an element x is contained in precisely one coset,
namely x + 7. We let S/T be the set {x + T'| x € S} of cosets of Tin S. We
can define a product (x + T) + (y + T) = (x + y) + Tin T, and S/T with
this product is an Abelian group (see E.0.17).

Next, let 4 be a ring and 7 an ideal of 4. We can also define a product
(x + I)(y + 1) = xy + I, and A/I with the so defined additive and multi-
plicative products is a ring (see E.0.18). The mapping f(x) = x + I (x € A) is
a homomorphism from A4 to A/I. The ring A/I is the quotient ring of A by I, f
the quotient homomorphism.

If f: A— B is a homomorphism from a ring 4 to a ring B, then the set
Kernel f = {a€ A | f(a) = 0} is an ideal of A called the kernel of f. The set
Image /' = {f(a) | a € A} is a subring of B called the image of f. There is an
isomorphism from A4/Kernel f to Image f which sends a + Kernel f'to f(a) for
ac A (see E.0.19). In particular, f'is injective if and only if Kernel /' = {0}.

Now suppose that 4 is a commutative ring and let 7 be an ideal of 4. Then
I is maximal if I # A and the only ideals of 4 containing / are / and 4. One
shows easily that 4 is maximal if and only if A// is a field (see E.0.23). If 4/1
is an integral domain, then / is a prime ideal. Equivalently, 7 is a prime ideal
if I # A and xy ¢ 1 for x ¢ [ and y ¢ 1. The kernel of any homomorphism f
from A into an integral domain is prime.

We now let K and L denote fields and let 1 denote the identity of K. Then
K has no ideals other than {0} and K, since K/{0} is a field.

0.1.1 Proposition. Every homomorphism f from K to L is injective.

Proof. Kernel f is an ideal of K. Since f(1) # 0, Kernel f # K. Thus,
Kernel f = {0} and f'is iniective. []

For a,,...,a,e K, we let Sta, X' = aoX® + ... + a,X" denote the
infinity-tple (aq, . . ., a,, 0, .. .) (all entries are 0 after the (n + 1)-st). This is
called the polynomial with coefficients a,, . . ., a,. The polynomials aX°(a € K)
are the constant polynomials, or the polynomials of degree 0. The degree of a
nonconstant polynomial >3 @, X, denoted Deg >7 a, X", is the integer d such
that @, # 0 and @; = 0 for i > d. The leading coefficient of 3% a; X" is a,
where d = Deg > a, X". If the leading coefficient of 37 a, X" is 1, we say that .

ta; X' is monic. One shows easily that two polynomials >% ¢, X' and
28 b X*are equal if and only if @, = b, for I < i < n. The set of polynomials
with coefficients in K is denoted K[X]. We let

Sax+ Sbxi =3 @+ by
0 0 0



4 ‘ : Introduction
m n m+4n
(Z a,X‘) (z b,X,) = Z o X®
0 0 0

where ¢, = 3., ;- @b;, define addition and multiplication in K[X]. One

easily shows that K[ X] with these products is a commutative ring. Note that
Deg (f(X)g(X)) = Degf(X) + Degg(X) for nonzero f(X), g(X) e K[X]
(see E.0.24). It follows that K[X] is an integral domain. It is convenient to

“identify”’ a with aX° for ae K and 1 with X° (see E.0.9). Then K is the
subset of constant polynomials and K is a subring of K[X]. The group of
units of K[X]is K* = K — {0} (see E.0.25). :

0.1.2 Proposition. K[X]isa pi‘inciple ideal domain.

Procf. Let I be a nonzero ideal of K[X]. Take f(X) to be a nonzero
element of 7 of least degree, g(X) a nonzero element of /. What we must
show is that g( X) is a multiple f(X)h(X) of f(X) (for some A(X) € K[X)).
Suppose not, and take the degree of g(X) to be minimal such that g(X' yel —
{0} and g(X) is not a multiple of /(X). Choose X' such that Deg (f(X)X"' —
(an/b,)g(X)) < Deg g(X) where a,, b, are the leading coefficients of f(X),
g(X) respectively. By the minimality assumption, f(X)X* — (an/b,)g(X) is a
multiple of f(X). But then g(X) obviously is also a multiple of f(X), a
contradiction. Thus, every g(X) € [ is a multiple of fAX). 0

The group of units of K[X] is K*. Elements f(X), (X)EKIX] are
associates if f(X) = cg(X) for some unit ¢ e K*. Equivalently, f(X) and
g(X) are associates if f(X) divides g(X) and g(X) divides f(X), where we
say that f(X) divides g(X) if g(X) = f(X)h(X) for some h(X)e K[X].
If f(X) is not a unit and if only units and associates of f(X) divide f(X), then
S(X) is irreducible. ;

0.1.3 Proposition. The following conditions are equivalent, for
f(X) e K[X]. '

1. f(X) is irreducible;

2. the ideal f(X)K[X] is maximal;

3. the ideal f(X)K[X] is prime.

- Proof. Let I = f(X)K[X]. Suppose that f(X) is irreducible and that
Jis an ideal of K[X] containing I. Then the generator g( X) of J divides f(X)
and is either a unit or an associate of f(X), Thus, J = 4 orJ = I is maximal.
Suppose next that / is maximal. Then 4/1 is a field, so that /is prime. Finally,
let I be prime and let f(X) = g(X)h(X). Then g(X) €l or h(X) e I Thus,
f(X) divides g(X) or h(X). But g(X) and A(X) divide F(X). Thus, g(X) or
h(X) is an associate of f(X) and A(X) or g(X) a unit. []

0.1.4 Proposition. Let f(X) be irreducible and suppose that X)
divides g(X)h(X). Then f(X) divides g(X) or A(X).

Proof. Let d(X) be the generator of the ideal 1= {f(X)a(X) +
g(X)b(X) | a(X), b(X) € K[X]} of K[X]. Then d(X) divides each element of
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I Since f(X), g(X) € I, d(X) divides f(X) and g(X). Since f(X) is irreducible,
d(X) is a unit ¢ or d(X) is an associate of f(X). In the latter case, f(X)
divides g(X) since d(X) does. In the former case ¢ = f(X)a(X) + g(X)b(X)
for some a(X), b(X) € K[X]. Then ch(X) = AX)a(X)(X) + g(X)h(X)b(X).
Since f(X) divides g(X)h(X), f(X) divides ch(X), hence divides A(X). [

0.1.5 Theorem. A nonconstant polynomial f(X) e K[X]can be factored
into f(X) = [I7 g(X) where the g(X) are monic irreducible elements of
K[X]. Moreover, the factors /,(X) of any other such factorization f(X) =
[12 h(X) with h(X) € K[X] irreducible can be rearranged to f(X) =[]t
ho(X) so that g,(X) = hy(X) ..., gulX) = ha(X) (in particular, m = n).

Proof. The existence of the factorization is seen by a simple induction
on Deg f(X). The uniqueness follows easily from 0.1%4 (see E.0.39). [

0.1.6 Proposition. Let R be a commutative ring containing x and con-
taining the field k as subring. Then there is precisely one homomorphism
e: k[X]— R such that e(a) = aforaek and e(X) = x. -

Proof. Since each nonzero f(X) € k[X ] has the form 33 a, X' (a, # 0)
where n and the @, are uniquely determined by f(X), we may define e by
e(Sh a; X') = 3 ax'. We leave the remaining details to the reader. []

The homomorphism e described in 0.1.6 is the evaluation homomorphism
from k[X]to R at x. It isconvenient to denote e(f(X))by f(x) for f(X) € k[ X].

Commutative rings isomorphic to k[ X] also have the properties described
for k[ X]in the last few paragraphs. Such rings are used often in this book and
are referred to as follows.

0.1.7 Definition. Let R be a commutative ring containing x and con-
taining the field & as subring. Suppose that the evaluation homomorphism
f(X) —f(x) from k[X] to Ris an isomorphism. Then we say that x is an inde-
terminant over k and R is a polynomial ring over k in the indeterminant x,
and we denote R by k[x].

We now consider a polynomial ring k[x] over k in an indeterminant x and
its field of quotients k(x). The elements of k[x] are of the form f(x) = >3 ax'
(a; € k for all i) and the elements of k(x) are of the form u(x)/v(x) where
u(x) € k[x] and p(x) € k[x] — {0}. Let k(x)[X ] be the polynomial ring over the
field k(x) in an indeterminant X, and let k[x][X] be the subring of k(x)[X]
consisting of the polynomials in X of the form * a,(x) X' where the a,(x)
are elements of k[x] for 1 <.i < n.

0.1.8 Definition. An element f(X) = 3§ a(x)X" of k[x][X] is primitive
if no irreducible element of k[x] divides a,(x) for all i.
_For any f(X) € k(x)[X], one can write f(X) = a(X)f*(X) where f*(X) is
a primitive element of k[x][X] and a(x) € k(x).
0.1.9 - Proposition. - Let a(x)f*(X) = b(x)g*(X) where *(X), g*(X) are
primitive elements of k{x][X] and a(x), b(x) € k(x) — {0}. Then f*(X) =
dg*(X) for some dek. i v
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Proof. Let a(x) = s(x)/t(x) and b(x) = u(x)/v(x) where s(x), t(x), u(x),
v(x) € k[x]. Then s(x)o(x)f*(X) = t(x)u(x)g*(X). By 0.1.5, the coefficients
in k[x] of the left hand side s(x)v(x)f*(X) have a comimon divisor m(x) of
greatest degree, which is unique up to a constant multiple. Since f*(X) is
primitive, s(x)u(x) is such a common divisor, so that s(x)u(x) is a constant
multiple of m(x). The same argument applies to the right hand side of the
equation. Consequently, s(x)v(x)d = #(x)u(x) for some d € k. It follows that
S(o(x)f*(X) = s(x)o(x)dg *(X) and f*(X) = dg*(X). [

0.1.10  Proposition. Let f*(X) and g*(X) be primitive elements of
k[x][X]. Then f*(X)g*(X) is a primitive element of k[x][X].

Proof. Let f*(X) = 3¢ a(x)X' and g*(X) = Sib,(x)X’. Let c(x) be an
irreducible element of k[x], and let a,(x) and b,(x) be the first coefficients of
S*(X) and g*(X) respectively which are not divisible by c(x). Then the
(i + /)th coefficient of f*(X)g*(X) is a(x)b(x) + Si; @ (x)b,.,(x) +
2i-1a, (x)b;_(x), which is not divisible by ¢(x) since the latter two sums
are divisible by c(x) and a,(x)b(x) is not divisible by c(x) (see 0.1.4). [

0.1.11 Theorem. Let f(X), g(X), h(X)ek(x)[X] and let f(X) =
a(x)f*(X), g(X) = b(x)g*(X), h(X) = c(x)h*(X) where f*(X), g*(X),
h*(X) are primitive elements of k[x][X]. Then if f(X)g(X) = h(X), we
have f*(X)g*(X) = dh*(X), for some de k.

Proof. Let f(X)g(X) = h(X). Then we have a(x)b(x)f*(X)g*(X) =
c(x)h*(X). Since f*(X)g*(X) and h*(X) are primitive, it follows that
[¥(X)g*(X) = dh*(X) for some de k, by 0.1.9. [

The observations that we have just made show that k[x][X] has a unique
factorization property analogous to the unique factorization property of
k(x)[X] described in 0.1.5. More generally, the integral domain k[X, . . ., X,]
= (...((kK[XiD[X2))...[X,]) (constructed by iterating the construction of
k[x][X] and called the polynomial ring over k in the n indeterminants X7, . . .,
X,) has such a unique factorization property. (see E.0.49).

0.2 Groups

We now let G_be a group with identity element e. It is often convenient to
denote e by 1 and the subgroup {e} by 1. If'S is a collection of subgroups of
G, then (Mues H is a subgroup of G. If S < G and S is the collection of sub-
groups of G containing S, then (S)> = (s H is the subgroup of G generated
by S.If S = {5y, ..., 5.}, wadenote (S)> by (s, . . ., s,). In particular, (g > is the
subgroup of G generated by g. If G = (g), then G is cyclic with generator g.
The order of G is the cardinality (number of elements) of G and is denoted
|G|. The order of an element of g of G is the order of {g) and is denoted | g|.
The mapping o : Z — { g defined by «(m) = g™ for m € Z isa homomorphism
from Z as additive group onto {(g). (See E.0.4). The kernel of « is an-ideal
I of Z, so that I = {0} or I = Zn (set of multiples of n) for some positive
integer n (see E.0.30). Thus, {g) is isomorphic to Z or to the additive group
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{0,1,...,n — 1} of integers modulo n. (See E.0.38). It follows that if |g| is
infinite, then {(g) = {g™|m = 0, +1, +2,...} and the powers g™(m € Z) are
distinct. And if |g| is finite, then (g) = (g% g%, ..., g"~ !> where |g| = n
and where n is the least positive integer such that g* = e. Moreover, g™ = eif
and only if n divides m.

Let H be a subgroup of a group G and let x € G. We let xH denote the
set {xh|h € H} and call xH the left coset of H in G defined by x. The set of left
cosets of H in G i$ denoted G/H. Left cosets xH and yH are equal if and only
if x“'ye H.If x~'y ¢ H, the xH and yH are disjoint (see E.0.68). Thus, each
element x of G is contained in precisely one left coset of H in G, namely xH.
The index of H in G is the cardinality (number of elements) |G/H| of G/H
and is denoted G: H. The index G:1 of 1in G is the order of G. Since the cardi-
nality of xH is H:1 for all x € G, we have the following theorem.

0.2.1 Theorem. Let G be a group, H a subgroup of G. Then G:1 =
(G:H)(H:1). In particular, the order H:1 of any subgroup H and the order
|g| of any element g of a finite group G divide the order G:1 of G. []

If Gy, ..., G, are groups, the set G; x ... x G, together with the product
(815 8y, ...y hy) = (g1hys . . ., guhy) is a group called the outer direct
product of Gy,..., G, and denoted [} G, (outer direct product). If G is a
group and if Gy, ..., G, are subgroups of G such that the mappingf: [ G,
(outer direct product) - G defined by f(g,...,8,) = g:... g, is an iso-
morphism, then we say that G is the inner direct product of G, ..., G, and
write G = [} G; (inner direct product). Note that |[[]; G,| = [} |G| for
any inner or outer direct product [ [} G,.

Suppose that G is a finite Abelian group. For any prime number p, the
set G, = {g€ G | g = e for some f} is a subgroup of G. The order of Gyisa
power of p, as we now show by induction on the order of G,. If |G,| = 1,
the assertion is trivial. Otherwise, let g be an element of G, — {e} and let
H = (g>. Since G is Abelian, we may pass from the group G, to the group
G,/H. By induction, its order G,: H is a power of p. Since the order of
H = (g is a power of p, the order G,:1 = (G,: H)(H :1) is a power of p.

We claim that G = [} G,, (internal direct product) where |G| = [ ]2 p//s.
To see this, consider the homomorphism £: [ ]? G,, (outer direct product) — G
defined by f(g1, ..., &) = &1, ..., &:. We must show that Kernel f = 1 and
Image f = G. Let p be.a prime and let (g4, .. ., g,) be an element of IBE 5
(outer direct product) of order p. Then g;” = e for all j. Since 8 € Gy, we
have g; = e for p # p;. But then p = p, and f(g,, ..., g,) = g; has order p
for some i, so that (g,,..., g,) ¢ Kernel £, If Kernel f # 1, then one sees
easily that Kernel / would contain an element (g, .. ., g,) of prime order,
which we have just seen to be impossible. Thus, Kernel f = 1. Next, let
g € G and note that the order of g is of the form |g| = [I§p5, by 0.2.1.
Since the integers |g|/p,*,. .., |g|/p. have greatest common divisor I,
we can express 1 as a linear combination 1 = m,(|g|/p1%) + --- +
my(|g|/pan) where my,...,m,€Z (see E.0.41). Letting g = g% where
d = m(|gl/p), we have g=g!=g2l4=[tg, and gP" =e for
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1 <i<n Thus,g = f(g1 ..., &) and g € Image /. We have now shown that
G = Image fand 1 = Kernel £, so that G = []{ G,, (inner direct product).

The assumption in the preceding paragraph that G be a finite Abelian
group can be replaced by the much weaker assumption that G be a finite
nilpotent group, that is, that the subset G, = {g = G | g” = e for some f} be
a subgroup of G for every prime p. For then each G, is a subgroup of G whose
order is a power of p (see 0.3.2). And one sees easily that for any two distinct
prime numbers p and g, the elements of G, commute with the elements of G,
(see E.0.70), so that / is a homomorphism. The remainder of the discussion
goes through as in the Abelian case, and again we have G = [z G,, (inner
direct product). We state this for future reference.

0.2.2 Theorem. Let G be a finite nilpotent group. Then G = [} G,,
(inner direct product) where G:1 = []f p;° is the prime decomposition of the
orderof G. [

A basis for a finite Abelian group G is a set of distinct nonidentity elements
21 ..., &m of G such that G = {g;> - -{gn> (internal direct product). For
distinct nonidentity elements g, . . ., £ Of G to be a basis for G, it is necessary
and sufficient that G = <gi, ..., 8> and that ]} g = e if and only if
g = efor 1 <i < m,the e being integers for 1 < i < n.

Every nontrivial finite Abelian group G has a basis. To prove this, we
first note that since G = [} G,, (internal direct product) where G:1 = |BLGAL
is the prime decomposition of G:1, it suffices to consider the case where
G = G,and G:1 = p*, p being a prime number. We now procede by induction
on G:1. If G:1 = p, then G = {g) for any g€ G — 1. Suppose that G:1 =
p° > pand let G* = {g? | g € G}. Then G 2 G, as one easily verifies, and we
may assume that G” = 1 or G” has a basis g;,..., g In the former case,
the argument is as for vector spaces—in fact, Abelian groups G such that
G = 1 may be regarded as vector spaces over the field {0,1,...,p — I}
of p elements (see E.0.38). In the latter case, let £, . . ., A, be elements of G
such that h? =g, for 1 <i <r,and let H = {hy,..., h,). Then hy, ..., h,
is a basis for H. For suppose that [T} 4% = e. We must show that 2% = e
for 1 < i < r. Taking pth powers, we have [} g% = e, so that g = e and
ple, for 1 < i < r. Letting ¢, = pf;, we have e = [T1 A% =[] g/i. Thus,
e =g/iand e = k% for I < i < r. Note that there is nothing more to prove
if G = H, so that we may assume G 2 H. Letting ¥ denote the coset x/ for
x € G, we choose, by induction, a basis %,,...; % for G = G/H. Since
G? = H?, there exist uj,...,u;€ H such that x? = for 1 <j<s.
Letting y, = x,u,~%, we have 7, = X, and y? = eforl <j < s We claim
that Ay, ..., h, y1,..., ¥, is a basis for G. It is clear that G = o h,,
Yi, ... ¥>. Suppose that e = [T A% 1§ »/s. Then & =TI 7/, so that
& = j/randp|f;forl < j < 's.Butthene = y/s,sincee = yf,forl <j<s.
Thus,e = [ heande = heforl < i < r.Thus, by, ... By Yy oo s Vs isa
basis for G. We state this theorem for future reference.

0.2.3 Theorem. Every nontrivial Abelian group G has a basis. []
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Transformation groups [

The exponent Exp G of a finite group G is the least integer m such that
gn=-eforallged.

0.2.4  Theorem. Let G be a ﬁmte nilpotent group. Then G has an
element of order Exp G,

Proof, 'We know that G = [} G,, (internal direct produet) (see 0.2.2).
Since the elements of G, all have orders which are powers of p, (see 0.3.2),
G,, has an element g; whose order is the exponent of G,. Letting |g,| = p;
the element g = [ ]2 g has order [} p, and one easily sees that ['[f p;* is
the exponent of G. ]

We now turn to an arbitrary group G. For x€ G, we let Int x(g) =
xg = xgx~'for g € G. Then Int x: G — G is an automorphism of G, called the
inner automorphism of G determined by x. Note that Int e: G — G is id; and
Int(xy) = Int x o Int y. Thus, Int is a homomorphism from G to the group of
bijections from G to G (see E.0.82). We let IntG = {Intg | g€ G} and
C(G) = {xeG|Intx = inte} = {xeG | xg = gx for all geG}. The sub-
group C(G) of G is called the center of G.

A subgroup H of a group G is normal in G if Int x(H) = H forall x € G.
For a subgroup H of G to be normal, it is necessary and sufficient that

= Hx for all x € G, where Hx = {hx | h € H}. If H is a normal subgroup
of G, then the product (xH)(yH) = (xy) H (x,y € G) is well defined and
G/H = {xH | x € G} together with this product is a group, called the quorient
group of G by H (see E.0.69). For any normal subgroup H of a group G, the
mapping f: G — G/H defined by f(x) = xH (x € G) is a surjective homomor-
phism with Kernel H, and is called the quotient homomorphism from G to G/H.

If £ is a homomorphism from a group G to a group G, then Kernel f =
{x € G| f(x) = e} is a normal subgroup of G, Image /' = {f(x) | xeG}isa
subgroup of G’ and there is an isomorphism from G/Kernel f to Image f
mapping x Kernel £ to f(x) for all x € G. In particular, f is injective if and
only if Kernel /' = 1. ;

If N and H are subgroups of a group G and if N is normal in G, then

= {xy | x€ N, y € H} is a subgroup of G and N is a normal subgroup of
NH. Furthermore, N N H is a normal subgroup of A and there is an iso-
morphism from NH/N to H/N n H mapping xN to x(N N H) for all xe H
(see E.0.71).

A tower in G is a chain 1 < G, < --- < G, = G of subgroups, of G. If
G,isnormal in G, , and G,,,/G;iscyclicforl <i<n — 1, then this tower
is cyclic. If G has a cyclic tower, G is solvable. If N is a normal subgroup of
G, then G is solvable if and only if N and G/N are solvable (see E.0.76).

0.3 Transformation groups

- Let Gbea group, e the identity element of G. A G-space is a set X together
with a product 7: G x X — X, denoted (g, x) —> gx for-ge€ G, x e X, such
that ex = x and (gh)x = g(hx) for g, he G, x € X. A G-space X detersaines
a homomorphism from G into the group F(X, X)* of bijective functions from
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the sel X to itself (see E.0.82). The kernel of this homomorphism is N =
{geG | gx = xforxe X}, and is called the kernel of G on X. If N =1,
then X is faithful.

A G-morphism from a G-space X to a G-space Y is a mapping f from X
to ¥ such that f(gx) = gf(x) for ge G, xe X. A G-isomorphism from
X to Y is a bijective G-morphism from X to Y. A G-automorphism of
X is a G-isomorphism from X to X. The set of G-morphisms from X
to Y/G-isomorphisms from X to Y/G-automorphisms of X is denoted
Homg(X, Y)/Isomg(X, Y)/AutsX.

A subset Y of a G-space X is G-stable (or stable under G) if g(Y) = Y
for g € G. Such a Y together with 7|y is a G-space called a G-subspace of X.

For x € X, we let Gx denote {gx | g € G} and call Gx the G-orbit of x
(or the orbit of x under G, or the orbit of G containing x). A subset Y of X
is G-stable if and only if ¥ = J,y Gy. We let X¢ = {xe X | Gx = {x}}
and call X the set of fixed points of G in X.

We may regard G together with the group product G x G— G as a G-
space. More generally, G/H with the product G x G/H — G/H given by
g(xH) = gxH (g € G, x € G) is a G-space for any subgroup H of G.

We let G, = {ge G| gx = x} and call G, the isotropy subgroup of x.
Then there is a G-isomorphism from G/G, (as a G-space) to Gx (as G-space)
mapping gG, to gx for ge G. In particular, G:G, = |Gx| (the cardinality
of Gx) for xe G. If X = Gx for some (or every) x € X, we say that G is
transitive on X (or X is a transitive G-space). If Gx = X and G, = 1 for
some (or every) x € X, we say that G is simply transitive on X (or X is a
simply transitive G-space). Thus, G is simply transitive on X if and only if
the mapping f.: G — X sending g to gx for g€ C is a G-isomorphism for
some (or every) x € X. Also, G is simply transitive on X if and only if for
any x, y € X, there exists a unique g € G such that gx = y.

A G-group is a group H together with a product G x H — H with respect
to which H is a G-space such that g(xy) = (gx)(gy) for g€ G, x,y€ H.
For g € G, the mapping x > gx on a G-group H is an automorphism of H.
Thus, products with respect to which a group H is a G-group correspond tc
homomorphisms from G to the group Aut H of automorphisms of H. We
carry over to G-groups the terminology kernel, faithful, G-morphism, G-
isomorphism, etc. which we introduced for G-spaces. Note that if H is a
G-group, the set H¢ of fixed points of G in H is a subgroup of H.

A very important instance of a G-group is the group G itself, together with
the product G x G — G defined by (g, x)+>x = g x g *(g€G,x€G). In
this case, the orbit of xeG is %x = {gxg~*|ge G}, and is called the
conjugacy class of x in G. The elements of ¢x are the conjugates of x in G.
For %x to consist of the single point x, it is necessary and sufficient that x
be an element of the center C(G) of G. For a finite group, we therefore have
the decomposition G'= C(G) U %x; U--- U %, (disjoint union) where
X, ..., %x,, are those distinct orbits of G having two or more elements.
Since |°x| = G:G, for x € G, this yields the class equation G:1 = C(G):1 +
G:Gy, + -+ + G:G,, of G. The subgroup G, occurring in the class equation




