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PROLOGUE

This book is not meant as a "do it yourself" guide to membrane technology. nor is it a
comprehensive treatise. These aims could not be met in a single volume. Instead our objective
is to provide a book for those engineers and scientists who are coming across membranes for
the first time and are interested in looking under the "bonnet" to see whether or not the
membrane engine meets their requirements. Even with this restriction, decisions have had to
be made as to what to include, what to assume, what to leave out, what to approximate.
Inevitably a balance is achieved which reflects our personal assessment of the key aspects of
the technology. '

The diversity of membranes is immediately apparent to those who visit different companies or
talk to colleagues in different disciplines. A visit to a pharmaceutical company will engender a
different response to that of a doctor. an engineer in the water industry, or a process engineer
in the chemical industry. This diversity is reflected in the introductory chapters which range
over a number of membrane technologies. However, the focus of the book is on the membrane
process that has been most widely exploited - the filtration processes. For this reason the
examples given in the final four chapters are all examples of filtration processes.

Membranes are undoubtedly a successful technology, but they have failures. Such failures
occur because of over selling, over optimistic expectations, inadequate pilot testing, etc.
Failures usually occur in new applications where the technical problems have not been fully
resolved. This lack of robustness and simplicity of design has meant that certain groups have
shied away from membranes. However, environmental pressures on the wastewater and water
quality demands on potable water continue to change the separation landscape and drive
membranes along the technological and learning curves. After 30 years the technological
spotlight is once again on the application of membranes to potable water. The largest, and
lowest cost process industries in the world, have traditionally seen membranes as applicable
where water costs are high due to the lack of availability of low salinity water. This new wave
of plants is being driven by increasing water quality demands, and the increasing scarcity of
good quality supplies.

Membrane technology can be readily packaged as another chemical engineering unit operation.
To this end the early part of the book focuses on the more basic aspects that impact on the
design and operation of such processes. However, to divorce the technology from its
applications is like "learning history without the politics”". Many of the most successful
examples of membrane technology come from a more holistic approach, where the needs of
each process is considered in the context of the total process objective. For this reason the
latter half of the book illustrates several significant examples of membranes with the full
context in which they lie. In this way we hope to provide a greater understanding of the issues
than a pure distillate of experience.
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Chapter 1

OVERVIEW

Contents

1.1 Membrane Technology - What is it?

1.2 The Development of Membrane Technology

1.3 The Driving Forces of Separation

1.4 Purification, Concentration, Fractionation
1.5 Performance Limits

1.6 Membrane Structures

1.7 Quality, Productivity, and Life

1.1 Membrane Technology - What is it?

Membrane technology is devoted to the separation of the minutiae of particles ranging from bacteria
to atoms. To some people the concern is simply the removal of this detrious. To others the recovery
of the inhabitants of this sub-microscopic kingdom is the essential goal. In size its constituents span
some 4 orders of magnitude, and they are dominated by colloidal/molecular forces, rather than by
the gravitational forces of their larger brethren. The various inlet and outlet streams can be all
liquids, all gases or combinations. Not surprisingly membrane technology is not one technology but
many technologies with one common aspect; the use of a membrane which separates two streams
enabling materials to be selectively transported across it. As might be expected there is plenty of
commonality between these various membrane processes, but, equally, the diversity and range of
applications mean that there are significant differences. In recognition of these differences a
classification of membrane processes has developed.

Of the various membrane technologies, the class of membrane filtration is the largest and most
diverse. One of the commonest questions is where does conventional filtration end and membrane
filtration begin. In a similar vein where does ultrafiltration take over from microfiltration. To answer
this sort of question can be likened to defining where does the desert end and arable land begin; the
two are clearly different but there is obviously some arbitrariness in defining the boundary.
Nevertheless, a semantic definition provides a quick and expedient guide as to what to expect.
However, to focus too heavily on the boundary is to miss the point. Customers are not interested in

1-1
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whether something lies on one side or other of a boundary but on what that something can do for
them. The purpose of a classification is to convey the potential use.

Membrane technology is generally regarded as addressing the separation needs of sub-micron
particles. Selectivity comes through the interaction between the membrane and the surrounding
phases. Two factors contribute to selectivity, the partitioning of molecules and or particles between
the membrane and the surrounding phase, and the relative diffusion rates of these materials once in
the membrane. It is invariably the product of these two factors which contributes to the overall
selectivity of the membrane.

One feature that is common to many membrane processes, though not to all, is cross-flow.
Cross-flow involves moving fluid tangentially across the membrane surface (see figure 1.1) as well
as normal to it. The benefit is that particles/solutes that would otherwise accumulate at the
membrane surface are moved along, achieving a steady-state distribution of particles or solutes at
the interface, rather than the continually developing one that is seen in conventional filtration. The
consequence of cross-flow is that in continuous operation the flux through the membrane tends to a
constant while in conventional filtration the flux continues to fall. If higher fluxes are desired then
higher cross-flows are required.

5uruulon
Filter Cane
Thickness
Dead
Water
End Productivity
Module
Time———»
] Water
Productivity
Cross
Flow
Module v s
Permeate Time

Figure 1.1 Schematic illustrating difference between cross-flow and dead-end filtration.

The benefits of cross-flow do not come without a penalty, which is the energy required to move the
fluid across the surface. Fortunately, the additional cost is small compared to that required in
conventional filtration to push the fluid through a filter cake. A key factor in this effect is the ratio
of the cross-flow to the permeate flow. Not surprisingly, this ratio is a key aspect underlying the
design of membrane elements, and selecting optimal operating conditions.

1-2
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Another consequence of cross-flow is that the system is basically designed to remove only a small
proportion of the feed. Thus a feature of most membrane plants is how to design systems to
overcome this limitation (see Chapter 8).

In the last few years the boundary between conventional filtration and membrane filtration has been
further blurred with the development of hybrid processes. These processes allows some-build up of
material at the membrane surface but then the material is dislodged by passing water or air back
through the membrane. By repeating this process at frequent intervals (circa 15 min) a reasonable
flux through the membrane can be maintained. In this way the deposits on the surface have limited
effect and the membrane remains the controlling factor.

1.2 The Development of Membrane Technology

Membrane technology grew out of a 19" century endeavour to investigate a kingdom of particles
too small to be seen. With no way of seeing these sub-microscopic constituents, membranes proved
to be a useful tool to probe these invisible components. The resulting exploration that ensued
provided key ingredients in the development of molecular theory of matter, which burst onto the
scene at the start of the 20" century. In contrast it took nearly a 100 years to engineer membranes
from a scientific tool to an industrial tool.

The Early Years - A Scientific Tool

A significant contributor in these early years was Thomas Graham, a Scottish chemical physicist and
Master of the Mint. In 1861 he discovered that substances like salt and sugar rapidly passed through
parchment, whereas material like gum arabic and gelatin would not pass. Materials that permeated
he called crystalloids, since these materials could easily be crystallised. Those materials which did
not pass, typified by glues, which at the time he believed did not crystallise, he called colloids after
the Greek word for glue (Kolla). Graham showed how colloidal material could be purified from
crystalloid contamination by putting the colloid in a porous container which was then placed in
running water. The crystalloids pass through and the colloids remain. This process he called dialysis
and the transport through - esmosis.

Thomas Graham made another important contribution as a result of studying the diffusion of gases
through flat rubber membranes. In explaining his results he regarded the rubber as a liquid in which
the gas dissolves and then diffuses due to a concentration gradient. This is the so called
solution-diffusion mechanism which is an important element in the molecular theory of transport in
some of the membrane technologies.

Another early contributor was Thomas Fick, of Fick's law fame. In 1855 he made a membrane by
dissolving collodion (cellulose nitrate) in ether/alcohol solution which he then coated onto a ceramic
thimble. This enabled him to dialyse biological fluids.

Membranes Coming of Age - A subject of scientific investigation

The first half of the twentieth century saw membranes themselves become the topic of investigation.
Bechold provided the first systematic study, and coined the term "ultrafiltration" [1]. He pointed out
that in addition to particle size effects adsorption processes play a role in the degree of separation
that is achieved. This was perhaps the first clear recognition that membrane filters frequently involve
more than a mechanical basis of separation i.e. one depending purely on size. In 1911 Donnan
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published his work on the distribution of charged species across a semi-permeable membrane[2].
Teorell[3] and Meyers and Sievers [4] were able to build on this and provide a model for the
behaviour of charged membranes which is the basis of much of our understanding of electrodialysis
membranes.

By 1927 membranes were in sufficient demand for Sartorius to start selling ultrafiltration and
microfiltration membranes. This commercial reality though was largely aimed at those who used
membranes as a laboratory tool rather than an industrial tool.

Table 1.2.1 Some early contributions in the development of membranes

Development Contributors Year
Laws of diffusion Thomas Fick 1855
Dialysis Thomas Graham 1861
Solution-diffusion transport mechanism Thomas Graham 1866
Osmotic pressure Van't Hoff 1887
Affinity effects in ultrafiltration Bechold 1906
Distribution of ions Donnan 1911
Pervaporation Kober 1916
Membrane potential Teorell, Meyer and Sievers 1935

Research into the nature of the microporous structure of membranes was severely hampered by a
lack of tools to investigate these structural aspects. A significant development came in the 60's with
the application of electron microscopy which allowed an understanding of the relationship between
manufacturing variables and membrane morphology. At last the science that underpinned the
empirical development of membrane manufacturing processes became understood, and meant that
new manufacturing processes could be quickly developed the new generation of synthetic polymers
such as the polysulphones could be exploited.

The Development of Membrane Technology - Commercialisation

Large scale commercial application of membrane technology started in the 50's, with the
development of electrodialysis membranes for the desalination of brackish water[5]. The next major
development was by Loeb and Sourirajan who successfully modified an ultrafiltration cellulosic
membrane to create a viable reverse osmosis membrane for desalination of brackish water[6]. This
opened the door, and by the mid 60's a number of companies had developed systems. Most notably
to General Atomic (now Fluid Systems) who by 1965 had manufactured and built the first large
scale reverse osmosis plant[7]. This industrialisation catalysed other membrane applications and
developments. In particular it spurred on the development of ultrafiltration membranes for industrial
usage, with applications like paint recovery in the electrocoat process. A process which is now used
throughout the automotive industry. Another development of the 60's was Nafion. As part of a study
into fuel cell technology by NASA, DuPont developed a hydrophilic type of PTFE by grafting onto
the extremely hydrophobic polyfluoroethylene backbone, side chains with charged groups[8]. It was
quickly recognised that this material could be exploited in the extremely challenging application of
the production of chlorine and caustic from salt. The 70's and 80's saw a number of chemical
companies trying to use their more advanced synthetic polymers and skills to enter the membrane
market. One chemical company which had an initial success was Monsanto who developed the Prism
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membrane, based on polysulphone, for gas separation [9]. The interest of chemical companies
waned in the late 80's and many who had entered in the 70's and 80's exited in the 90's as they
sought to streamline their businesses.

A major development of the late 70's was the development of the composite membrane by Cadotte
et al (see ref [10] for history of development). They had recognised that conventional reverse
osmosis membranes were limited because different regions of the membrane had to carry-out the
duties of mechanical support, and separation. They reasoned that if the separation layer and the
mechanical support could be manufactured from different materials and tuned to the demands of
each function, it should be possible to create a higher performing membrane. After many false starts
they eventually succeeded in generating a good interfacial composite membrane that surpassed many
others and laid the foundations for Film Tec which was later bought up by Dow in the late 80's.

As products have become established, suppliers have tried to open up new markets with varying
degrees of success. The 90's brought a new factor into the equation, that of the environment. This
has impacted on both the waste and supply side. Perhaps the largest single development has been the
developing ultrafiltration and microfiltration technology for use in the municipal production of
potable water to deal with cysts, bacteria, and viruses. What characterises many of these
developments is not the universality of the technology but how the technology has to be developed
for each application segment.

Table 1.2.2 Approximate dates for commercialisation of membrane technology for various applications

Industrial Applicati C ialisati Technology
Desalination of brackish water 1952 Electrodialysis
Desalination of brackish/sea water 1965 Reverse Osmosis
Paint recovery (Electrocoat) 1965 Ultrafiltration
Chlorine/caustic production 1972 Electrosynthesis
Hydrogen recovery 1979 Gas separation
Alcohol removal from water 1979 Pervaporation
Softening of hard water 1990 Nanofiltration
Filtration of potable water 1994 Microfiltration

As table 1.2.2 highlights different applications demand different membrane technologies (see table
1.2.3). Sometimes different membrane technologies can be used to solve the same problem. For
example both reverse osmosis and electrodialysis can be used to produce potable water from sea
water. In the former water is passed through the membrane , while in the latter the salts are
removed. A comparison to determine which is best inevitably depends on the customers
requirements, and circumstances. Despite the obvious differences in the various membrane
technologies there are many common features at a fundamental level (see Chapter 2 and 3).
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Table 1.2.3 List of various membrane technologies and abbreviations used

Technology Abb Technology Abb Technology Abb
Reverse 0smosis RO |Gas Separation GS  |Gas Contacting GC
Nanofiltration NF |Membrane Distillation MD |Dialysis D
Ultrafiltration UF  |Pervaporation PV  |Haemodialysis HD
Microfiltration MF  |Electrodialysis ED |Haemofiltration HF

Electrosynthesis ES |Membrane Bioreactors MBR

1.3 The Driving Forces of Separation

For processes like crystallisation, distillation, adsorption, the separation achieved is related to the
thermodynamic stability, with kinetics serving to dictate the time and size of plant required. In
contrast for membrane processes separation is determined by the relative kinetics of permeation,
with thermodynamics providing the time-scale and size of plant required.

Irreversible thermodynamics provide the framework for understanding membrane separations. The
driving force for separation comes from gradients in thermodynamic variables. Commercial
separation processes are governed by the differences in 1 or more of four thermodynamic factors

Pressure

- Concentration

«  Electric Potential
Temperature

that exist between two phases being separated by the membrane. In response to these forces there
are flows of mass, heat, electricity. At a local level the relationship between the forces, X, and
fluxes, Jj, is a linear one of the general form

Ji=Z; LyX; (1.3.1)

where the L, are phenomenological coefficients to be provided either by experimentation or
molecular theories. These coefficients occur in a variety of problems and many have been given
names (see table 1.3.1). In the application of these principles to membranes the problem frequently
becomes more complex in that the coupled sets of equations have to be solved over regions.
Nevertheless the linear nature of the equations means that the fluxes are in general related to the
differences in the thermodynamic properties of the two phases on either side of the membrane.

Table 1.3.1 Relationship between thermodynamic driving forces and fluxes

FLOWS DRIVING FORCE
Pressure Concentration Potential Temperature
Volume Flux Filtration Osmosis Electro-osmosis Thermo-osmosis
Solute Flux Piezodialysis Dialysis Electrodialysis Thermo-dialysis
Tonic Current Streaming  Reverse Electrodialysis lIonic conduction ~ Thermo-electricity
Heat Flow Thermal osmosis Thermo-potential ~ Thermal conduction
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