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Introduction

The question of how the geometry of a projective variety is determined by its
hyperplane sections has been an attractive area of algebraic geometry for at least a century.
A century ago Picard's study of hyperplane sections led him to his famous theorem on the
'regularity of the adjoint '. This result, which is the Kodaira vanishing theorem in the
special case of very ample line bundles on smooth surfaces, has led to many developments
to this day. Castelnuovo and Enriques related the first Betti number of a variety and its
hyperplane section. This and Picard's work led to the Lefschetz hyperplane section theorem
and the modern work on ampleness and connectivity. A large part of the study of
hyperplane sections has always been connected with the classification of projective varieties
by projective invariants. Recent new methods, such as the adjunction mappings developed
to study hyperplane sections, have led to beautiful general results in this classification. The
papers in this proceedings of the L'Aquila Conference capture this lively diversity. They
will give the reader a good picture of the currently active parts of the field. The papers can
only hint at the friendly 'give and take' that punctuated many talks and at the mathematics
actively discussed during the conference.

The success of this conference was in large part due to the Scientific and Organizing
Committe: Professor Mauro Beltrametti (Genova), Professor Aldo Biancofiore (L'Aquila),
Professor Antonio Lanteri (Milano), and Professor Elvira Laura Livorni (L'Aquila). The
publication of this proceedings would not have been possible except for the efforts of
Professor E.L.Livorni.

Andrew J. Sommese
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INFINITESIMAL DEFORMATIONS OF NEGATIVE
WEIGHTS AND HYPERPLANE SECTIONS

Lucian Badescu

Introduction

Consider the following:

Problem. Let (Y,L) be a normal polarized variety over an algebra-
ically closed field k, i.e. a normal projective variety Y over k toge-
ther with an ample line bundle L on Y. Then one may ask under which
conditions the following statement holds:

(#) Every normal projective variety X containing Y as an ample
Cartier divisor such that the normal bundle of Y in X is L, is isomor-
phic to the projective cone over (Y,L), and Y is embedded in X as the

infinite section.

Recall that the projective cone over (Y,L) is by definition the
projective variety C(Y,L) = Proj(S[T]), where S is the graded k-algebra

oo
S(Y,L) = @@ H°(Y,L') associated to (Y¥,L), and the polynomial S-algebra
i=o ;
s[T] (with T an indeterminate) is graded by deg(sT') = deg(s)+i when-

ever s €S is homogeneous. The infinite section of C(Y,L) is by defini-

tion the subvariety V+(T), and it is isomorphic to Y.

This problem has classical roots (see [3] for some historical
hints). In [1], [2], [3] and [4], among other things, we produced seve-
ral examples of polarized varieties (Y,L) satisfying (#). If Y is smo-
oth of dimension 2 2, and if Ty is the tangent bundle of Y, Fujita sub-
sequently proved in [6] the following general criterion: (Y,L) satis-
fies (#) if H‘I (Y,TY®Li) = o for every i< o.

In this paper we prove two main results. The first one (whi%h is
in the spirit of [4]) considers the case where Y has singularities, and
is a criterion for (Y,L) to satisfy (#). This criterion (see theorem 1
in §1) improves a result of [4} and involves the space of first order
infinitesimal deformations of the k—algebra S(Y,L). In §2 we apply it
to check that the singular Kummer varieties of dimension 23 and the
symmetric products of certain varieties satisfy (#) with respect to any

ample line bundle. In §3 we make a few remarks when Y is smooth and sta-



te an open question. It should be noted that in the first two sections
the Schlessinger's deformation theory (see [18], [19]) plays an essen-
tial role.

The second main result (see theorem 6 in §4) shows that if Y is
a P™-bundle (n>1) over a smooth projective curve B of positive genus,
and if X is a normal singular projective variety containing Y as an am-
ple Cartier divisor, then X is isomorphic to the cone C(Y,L). The case
B = P! was discussed in [3], while the case when X is smooth (and B of
arbitrary genus), in [1] and [2]. Putting these results together, we
get a complete description of all normal projective varieties contai-
ning a P"-bundle over a curve as an ample Cartier divisor (see theorem
7 in §4).

Unless otherwise specified, the terminology and the notations

used are standard.

§1. The first main result

In the set-up and notations of the above problem, the graded k-
algebra S = S(Y,L) is finitely generated because L is ample (see e.g.
[8], chap. III). Let A be a minimal system of homogeneous gene-
rators of S/k, and denote by k(T1,...,Tn] the polynomial k-algebra in
n indeterminates T1,...,Tn, graded by the conditions that deg(Ti) =
= deg(ai) = q; for every i = 1,...,n. Then S is isomorphic (as a graded
k-algebra) to k[T1,...,Tn]/I in such a way that a;
Timod I for every i = 1,...,n (where I is the kernel of the homomor-

corresponds to

phism mapping Ti to ai). Let f1""'fr be a minimal system of homogene-

ous generators of I, and set:
(1) d = max(d1,...,dr), where di = deg(fi).

Theorem 1. In the above notations assume the following:

i) H1(Y,L1) = o for every ié& Z , or equivalently, depth(SS ) 2 3,
where s, is the irrelevant maximal ideal of S.

.'

11) T (-i) = o for every 1 i d, where d is given by (1), T. =
= T (s/k,S) is the space of flrst order infinitesimal deformatioJ; of
the k-algebra S, and TS = P Ts(l) is the decomposition arising from
i€z

the Gm—action of the graded k-algebra S (see [18], 'ﬁ7J).
Then the property (#) holds for (Y,L).

Proof. Let X be a normal projective variety containing Y as an

= L. Let t€H°(X,Ox(Y)) be a
global equation of Y in X, i.e. divx(t) = Y. Denote by S' the graded

ample Cartier divisor such that OX(Y)QDOY



oo

k-algebra S(X,OX(Y)) = 6 H°(X,OX(iY)). Then using the standard exact
i=o

sequence

0o ——> 0, ((i-1)Y)—F—> 0, (1Y) Lt -0,

the hypothesis i), and a theorem of Severi-Zariski-Serre saying that
H1(X,OX(iY)) = o for every i<< o, one immediately sees that S'/tS' = s
(isomorphism of graded k-algebras, where deg(t) = 1).

Then choose b1,...,bn€ S' homogeneous elements of degrees dqr--
<04y respectively, such that bimod ts' = a; i=1,...,n. Then S' =
= k[b1,...,bn,t]. Denote by P the polynomial k—-algebra k[T1,...,Tn,T]
in n+1 indeterminates T1,...,Tn,T, graded by deg(Ti) =4y i=1,..
e, and deg(T) = 1. For every m>1 set s™ = S'/tms', and consider
the surjective homomorphism Bm:P — > s™ such that Bm(Ti) = bi, i=
=1“.”n,mﬁBmW)=t',Mwm.mrewmyb€S'wehwedmwwdbyb'
the element b mod t"S'. Let F1,...
rators of the ideal J = Ker(Bm), and put e, = deg(Fi), i=1,...,s.

'Fs be a system of homogeneous gene-

Now, according to [18], §1 (or also [14]), we can consider:

- The s™-module Ex(sm/k,s) of all isomorphism classes of exten-—
tions of s™ over k by the s™-module § = Sm/t'sm . Recall that an exten-
tion of Sm/k by S is a k-algebra E together with a surjective homomor-
phism of k-algebras E ——— > s™ whose kernel is a square-zero ideal

of E, isomorphic as an Sm-module to S.

- The s™-module TT(Sm/k,S) defined by the following exact sequen-
ce

(2) Der, (P,S) %Homsm(smz ,8) ——> 1 (s"/k,5) —> o,

where Derk(P,S) is the S™-module of all k-derivations of P in S, and u
is defined in the following way: if Dé;Derk(P,S) then u(D) is the ele-
ment of Homsm(g/Jz,s) defined by the fes;riction D/J (which necessarily
vanishes on J%). It turns out that T (S /k,S) is independent of the
choice of the presentation P/J of s™.

Now, the point is that there is a canonical isomorphism of s™rmo-

dules (see [38], theorem 1, page 12, or also [14], page 410):
(3) :Ex (S%/k,S) —=— »1' (s™/k,S).

since s™ is a graded k-algebra, T1(Sm/k,s) has a natural grada-
tion T1(Sm/k,S) = &P T1(Sm/k,s)(i) arising from the Gm—action of s™
i€z
(see [12], page 19).
Coming back to our situation, consider the element of Ex(Sm/k,S)

given by the exact sequence



(a_) o——> 5 % t"s'/t

m+1SI m+1 m
m

S >S Ois

We need to compute u(am)e T1(Sm/k,s) explicitly. By the defini-
tion of the isomorphism p (see [18]), we need to consider the commuta-
tive diagram with exact rows

o T2 > p/J° p/J B

\'4 v'

m+1s.

e

s ?>Sm+1 m

o—>tMg'/t > S o

where v' is the map deduced from Bm' Thus V(Fimod Jz) = tmGi(b1,...
+1 .
./b_,t) mod t"''S', with G, (b,,...,b ,t)€ Se'i_m

e;-m. Then wcveSHomSm(J/Jz,S) corresponds to the vector (G{,...,Gé),

homogeneous of degree

with Gi = w(tmGi(b1,...,bn,t) mod tm+1s') = Gi(a1,...,an,o), and recal-
ling the exact sequence (2) we have u(am) = class of wovéﬂﬂ(sm/k,s).
According to the explicit description of the gradation of

T1(Sm/k,S) given in D?], page 19, the elements of T1(Sm/k,s)(j) of
degree j correspond to those elements of Homsm(J/Jz,S) given by vec-

tors (h1,...,hs) with hi€ Sei+j homogeneous of degree ei+j, 1 = 95:0s
.,S. Since deg(Gi) = e,-m, the foregoing discussion implies:
(4) u(am) 3 ! (s™/x,s) (-m) for every m7>1.
Now take m = 1. Since S1 = S, it follows that u(a1) = o by hypo-

thesis ii). But the trivial extension of Ex(S/k,S) is
o— szrs(r]/ (T?) —> s [r1/ (r*) ——>s[1]/ (T) =5 —>0,
and therefore there is an isomorphism of extensions

rs(T]/ (7?%) ——>s(T]/ (Tz)———->S[T]/(T) = s—so

n

o—>S

l l

~

2 2 {

o ——3S t's S S o

such that the vertical isomorphism in the middle maps T mod(Tz) into t,

Assume now that we know that for some m, 2&m&d, there is an
isomorphism S[I]/(Tl) = s* for every 1€ i m, which maps T mod (T') into
t' = t mod t'S'. Then recall that there is a general exact sequence
(see [18])

! (s™/s,5)——» 1" (s"/k,5)—— 1" (5/k,8),

where the maps are homogeneous and the second map corresponds to the



inclusion S<—»S™ obtained by composing the natural inclusion SC¢——
s[T]/(t™) with the isomorphism S[TJ/(Tm) = s™. Using this and hypothe-
sis ii) we infer that the map T1(Sm/S,S)(—m)——————'-T1(Sm/k,S)(—m) is
surjective, wich together with (4) implies that the extension (am)
comes from Ex (s"/s,S) 3'T1(Sm/S,S). In other words, Sm+1
bra and the canonical surjective map Sm+1——_____> Sm is a map of S-al-

gebras. Then we can easily define an isomorphism of extensions

is an S-alge-

n

™s{r]/ (™) —>s 1]/ (T™) — s(1]/ (T™) —> o

o —>S§

¢

o—»s = thg'/t™ g s™*1 i T >0
where the middle vertical isomorphism is the homomorphism of S—-alge-
bras mapping T mod(Tm+1) into t' = t mod tm+1s'.

Summing up, we have proved by induction on m that there is an

isomorphism of graded k-algebras S[TJ/(Td+1)‘? Sd+1 such that

T mod(Td+1) corresponds to t mod td+1s'. In particular, there is a com-
mutative diagram
h ,rsd+1 _ s'/td+1s'
id canonical surjection
S = S1
Choose homogeneous elements cieisé such that h(ai) = cimodtd+1s;
i=1,...,n. Then we claim that .
(5) fi(c1,...,cn) = o for every i =1,...,r.
Indeed, since fi(c1,...,cn) mod td+1s' = fi(h(a1),...,h(an)) =
= h(o) = o, it follows that fi(c1,...,cn)€td 1S‘ for every i = 1,.
.,xr. If for some i we would have fi(c1,...,cn) # o, it would follow
that d; = deg(f;(cy,...,c ))>d+1, a contradiction because d = max (d,
...,dr). {

Finally, using (5) we can construct a homomorphism of graded k-
algebras f:S——> S' by putting f(ai) = Cy i=1,...,n. The equa-
tions (5) show that this definition is correct. Then we get a unique
homomorphism of graded k-algebras g:S[Iﬂ———————a-S' such that g/s = £
and g(T) = t. Then it is clear that g is surjective, and hence an iso-
morphism, because both S[T] and S' are domains of the same dimension.

In other words, we have proved that X ¥ C(Y,L). Q.E.D.



Remarks. 1) Theorem 1 had been proved in [4] in the stronger hy-

pothesis that T;

projective spaces.

= o, where we had in mind an application to weighted

2) Unfortunately, the hypothesis i) of theorem 1 is quite res-
trictive. We do not know whether theorem 1 remains still valid if one
drops hypothesis i), even if one assumes for example that char(k) = o

{ .
and T (-i) = o for every i2 1.

Corollary 1. In the notations of theorem 1, assume that ii)

holds. Let X be a normal projective variety containing Y as an ample

Cartier divisor such that the normal bundle of Y in X is L and

H1(X,OX(iY)) = o for every i2>o. Then X is isomorphic to the projec-
tive cone CfY,L) and Y is embedded in X as the infinite section.

Indeed, the exact sequence from the beginning of the proof of
theorem 1 together with the hypothesis that H1(X,OX(iY)) = o for every
i>»o imply that S'/tS' ¥ S (in the proof of theorem 1 the hypothesis
i) was used only to deduce this isomorphism).

Another immediate consequence of the proof of theorem 1 is the

following purely algebraic result:

Corollary 2. Let S = k[T1,...,Tn]/I be an ﬁﬂ—graded k—-algebra,
where the polynomial k-algebra k[T1,...,Tn] in the indeterminates T1,.

..,Tn is graded by deg(Ti) = qi> o, i=1,...,n, for some fixed sys-
tem of weights (q1,...,qn), and I is the ideal generated by some homo-

geneous polynomials f1""’fr of positive degrees. Let S' be an [N-gra-

ded k—-algebra such that S'/tS' is isomorphic to S as a graded k-algebra

for some non-zero divisor t€ S' of degree 1. If T;(—i) = o for eve-

ry 1 iélnax(deg(f1),...,deg(fr)r, then S' is isomorphic (as a graded
k-algebra) to the polynomial S-algebra s[T] in such a way that t is

mapped into T.

§2. Applications of theorem 1

{

The tools for verifying hypotheses of type ii) of theorem 1 have
been developed by Schlessinger in [13]. The lemma 1 below (which is es-
sentially due to Schlessinger) provides examples of singular normal
polarized varieties (Y,L) satisfying the condition ii) of theorem 1.

Start with a smooth projective variety V and a finite group G ac-
ting on V. Denote by Y the quotient variety V/G and by f:V——>Y the
canonical morphism. Let L be an ample line bundle on Y and set M =

= f* (L). Since f is a finite morphism, M is also ample. Let S = S(Y,L)



and A = S(V,M) be the graded k-algebras associated to (Y,L) and (V,6M)
respectively.

Lemma 1. In the above notations assume the following:

i) Dim(V) 2> 3 and char(k) is either zero, or prime to the order
/G/ of G.

ii) G acts freely on V ouside some closed G-invariant subset of
V of codimension 2 3.

iii) H1(V,M_i) = o for every i2> 1 (in characteristic zero this
is always fulfilled by Kodaira's vanishing theorem).

iv) B (v,T, @M 1)
bundle of V.

1
Then TS

Proof. Since lemma 1 is not given in [19] in this form, we inclu-

= o for every i> 1, where T, is the tangent

v

(-i) = o for every i> 1.

de its proof for the convenience of the reader. From ii) we infer that
the singular locus of Y, Sing(Y), is of codimension 23, and that f is
étale outside Sing(Y). Using this, the normality of Y and [16], §7, it
follows that f*(Mi)G = Li for every i2 o. This shows that G acts on A
by automorphisms of graded k-algebras and that the kralgebra of inva-
riants AG coincides with S. Consider the cartesian diagram

U = Spec(S)-(s,) = W/G

. g
ql jp
v ke 53

with g and p the canonical projections of the Gm—bundles W and U res-
pectively (see [8], chap. II, §8). If F is the ramification locus of f,
then q_1(F) is the ramification locus of g, and hence g acts freely on

Spec(A)-(A+) =

= V/G

W ouside a closed G-invariant subset of W. In particular, the singular
locus z of U is of codimension >3 in U. Then by [19] and [20)] we get
_ G
that TU = g*(Tw) , where TU
count of hypothesis i) we infer that T

and in particular

is the tangent sheaf of U. Taking into ac-

y is a direct summand of ?*(Tw),

(6) H' (U,T,) is a direct summand of H' (U,g, (1)) = B (W,T)

On the other hand, it is well known that there is a canonical
exact sequence (see e.g. [14] or [21])

o *
o 'OW 'TW > gq (Tv)——>o

which yields the exact sequence

1 1 1
(7) H (W,Ow)—————>H (W,Tw)—>H (W,q*(TV))



One has the natural isomorphisms H1(W Ow)'" (&2 H1(V Ml) and

iezZ
H1 (W,g* (TV)) 9 H (v, T ®L ) » which give natural gradings on
i€z
H1 (W,OW) and on I-I1 (W,g* ('I' )) respectively. On the other hand, the

middle space in (7) has also a natural gradation H (W, T ) =

= 6 I'I (W, T ) (1) arising from the G —-action on W, and all these three
ieZ
gradations are compatible with the maps in (7). Therefore, using hypo-

theses iii) and iv) we get that H (W, T ) (1) = o for every i< o. There

) = 6 H' (U,T )(1) arising from
U ez
the G —action on U,and this gradation is compatible via (6) with the

is also a natural gradation H (u,T

gradatlon of H (w, T ). Consequently we get:
(8) H'(U,T,) (1) = o for every i<o

Since U has only quotient singularities in codimension 2> 3, by
[19] and [20] we infer that all the singularities of U are rigid, and
in particular, depth (T ) > 3. Then the exact sequence of local cohomo-
logy shows that the restrictlon map H (U, T )—»H (u-2,T ) is an
isomorphism.

Finally, since U has only quotient (and hence Cohen-Macaulay)
1

51ngu1ar1t1es and codimy(2z) 2 3, by (19] and [20] we get By =
H (U-2,T ) Recalllng (8) and the isomorphism H (U—Z,TU) = H1 (U,TU)
we get the conclusion of lemma 1. Q.E.D.
Now we illustrate how theorem 1 can be applied -via lemma 1 - on

some examples. First we apply theorem 1 to the singular Kummer varie-
ties of dimension 2 3. Recall that a singular Kummer variety Y is a va-
riety of the form V/G, where V is an abelian variety of dimension d>2
and GC Aut (V) is the subgroup of order 2 generated by the involution
u:V——> V defined by u(x) = -x for every x €V (where -x is the inver-
se of x in the group-law of V). If char(k) #)2, there are exactly 22d
points of order 2 on V (see [16]), and hence Y = V/G has exactly 22d
isolated singularities (which are all quotient singularities). Now we

have: {

Theorem 2. Let Y be a singular Kummer variety of dimension d >3

and let L be an arbitrary ample line bundle on Y. If char(k) # 2 then

the property (#) holds for (Y,L).

Proof. We first show that lemma 1 implies that T;(—i) = o for e-
very i21, with S = S(Y,L). Indeed, the hypotheses i) and ii) of lemma
1 are clearly satisfied, while iii) and iv) follow using the fact that
the tangent bundle of an abelian variety is trivial, together with the

fact that the Kodaira's vanishing theorem holds for an abelian variety



in arbitrary characteristic (see [16], §16).

It remains to check that H1 (Y,Li) = o for every ig¢ Z (which is
the first hypothesis of theorem 1). If f:V—— > Y is the canonical
morphism, then by [19], Li is a direct summand of f*f*(Li) because
char(k) # 2 = /G/, and hence H1 (Y,Li) is a direct summand of
a(y,f,e+t)) = 5l (v,exwl)). By [16], §16 the latter space is zero
for every i # o because f* (L) is ample. On the other hand, if i = o,
according to Schlessinger [1 9], page 24, we infer that H1(Y,OY) =
= H1 (V,OV)G, and G acts on H1 (V,OV) by t — -t. It follows that
H1 (Y,OY) = o. Applying theorem 1 we get the conclusion. Q.E.D.

Further examples of singular normal varieties satisfying (#) with
respect to any ample line bundle are the symmetric products of certain
smooth projective varieties. Let Z be a smooth projective variety of
dimension d>» 3, and let Y be the symmetric product Z(n) = V/G, where:
n>2 is a fixed integer, V = 2" (the direct product of Z with itself n
times), and G is the symmetric group of degree n acting on V by
g.(z1,...,zn) = (zg(1)""'zg(n)) for every g€ G and (z1,...,zn) cev.
Then the ramification locus of the canonical morphism f:V———> Y has

codimension d = dim(V) >3 in V.

Theorem 3. Let Z be a smooth projective variety of dimension d> 3

such that H1 (Z,M) = o for every line bundle M on Z, and let n2>2 be an

integer such that either char(k) = o, or n<char(k) if char(k) > o. Then
(n)

for every ample line bundle L on Y = Z the property (#) holds for

(Y,L).
Note. The simplest examples of varieties Z satisfying the hypothe-

ses of theorem 3 are all smooth hypersurfaces in PdH with d> 3.

Proof of theorem 3. The hypotheses imply in particular that

H1(Z,OZ) = o, and then the see-saw principle (see [16],55) immediately
implies that f*(L) ¥ pq(L1)®...@ PA (L), with L,,...,L € Pic(2z) and

p1:V—v Z the projection of V onto the i-th factor. Since L is am-
ple on Y and f is finite, f*(L) is ample on V, and hence Li is ample on
z for every i = 1,...,n. As in the proof of theorem 2, it will beg’ suf-

ficient to check the following:
H' (V,f*(Li)) = o for every ie Z , and
I-I1 (V,TV®f*(Li)) = o for every i<o,
in order to deduce (via lemma 1) that the hypotheses of theorem 1 are

satisfied. But these vanishings are easily checked using the Kiinneth's

formulae, the fact that Ty = p’1‘ (TZ)@ ...@pr’;(Tz) , the hypotheses of the

theorem, and the fact that Li is ample for i = 1,...,n (which implies
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that H"(Z,Lji) = o for every j¢o and i = 1,...,n). Then the conclusion
of the theorem follows from theorem 1. Q.E.D.

§3. A few remarks when Y is smooth

In this section we shall assume that Y is smooth and char(k) = o.
Then it is known that the space T;(i) can be computed in the following
way (see f23], page 337 and theorem 3.7). First, there is an exact se-

quence of vector bundles

o > OY > M > TY > 0,

which is the dual of the exact sequence

[e] >ﬂ1 >F ——-—>O —_—0

correspondlng to the image of L 1n H (Y, (1 ) via the canonical map
H' (Y,0%) = Pic(Y) —> al(y,ql ! 1nduced by the map 0% ——————*—111
given by f———> df/f. Then it is proved in loc. cit. that
; n .
(9) T;(i) = Ker (H' (Y,M®Ll)——->-H1 (v,® 1*"93)) for every i€Z,

j=1
where S = S(Y,L) and dqre--09, have the same meaning as at the begin-

ning of §1.

Using (9), the first exact sequence and the Kodaira's vanishing
theorem, it follows that the condition “T;(—i) = o for every i2 1" is
a consequence of the condition "H1(Y,TY§aL_i) = o for every i21". If
Y is smooth and char(k) = o, one can get rid of the unpleasant hypo-

thesis i) of theorem 1 because of the following:

Theorem 4 (See [6]). Let (Y¥,L) be a smooth polarized variety of
dimension 2 2 such that H1 (Y,TY®L_l
= o. Then the property (#) holds for (Y,L).

) = o for every i2>1 and char(k) =

Theorem 4 is proved in (6]; via a quick argument, it is also a
consequence of theorem 2 in [22]. Using theorem 4 and the main result
of [22] we prove the following: ¢

Theorem 5. Let (Y,L) be a smooth polarized variety such that:
char (k) = o, dim(Y)2> 2, H1(Y,TYé9L_i) = o for i = 1 and i = 2, and the
linear system |L| contains a smooth divisor. Then the property (#)
holds for (Y,L).

Proof. By theorem 4 it will be sufficient to show that
H1(Y,TYGDL-1) = o for every i>» 1. Let HE€ |L| be a smooth divisor of
|[L). Since dim(Y)> 2, H is also connected. If we denote by L. the res-

H
triction LQ@OH and by T, the tangent bundle of H, we have the canonical

H
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exact sequence

-i -i "
o———>TH®LH ——>(TY®L )®OH——>L;{ 1 .5,

which yields the exact sequence
(1o;)  H°(H,T ®L Y spe (H, (T L™ )®o ) —— H° (H, L1 Ay

For every i2 2 the last space is zero. On the other hand, by the
main result of [22] (which extends a theorem of Mori-Sumihiro), the
first space could be # o only if (H,LH) ?'(P1,O(1)) (and then i = 2),
in which case it follows easily that (Y,L) ?'(P2,0(1)), and hence the
property (#) holds for (Y,L) in this case. Thus we may assume that
H°(H,TH€>L;i) = o for every i>» 2. Then by (1oi) we get that the space
in the middle is zero for every i2 2. Finally, using this and the exact

sequence
(11,) o—=T ®L-1_1————>TY®L_1——> (T ®L'l)®oH——»—o,
we infer that the map H (y,T QDL l—1) ——————*—H (y,T ébL 1) is injec-

tive for every i= 2. Therefore H (y,T ®L l) =0 for every i2 1. Q.E.D.

Corollary. Let (Y,L) be a smooth polarized variety of dimension

d> 2 such that there is a smooth divisor He€ |L| for which the exact
sequence

(12) o )T T®O ——»LH——>0

is not split (in partlcular, H (H, T QbL ) # o). Assume moreover that
char (k) = o and H (y, Ty ®L ) = o. Then the property (#) holds for
(Y,L).

Proof. According to the proof of theorem 5, the exact sequence
(111) shows that it is sufficient to prove that H°(H,(TY8>L-1)QDOH) =
= o. The exact sequence (10 ) yields the exact sequence

(13)  H (H,T,@Ly)—= H® (H, (T, @L ) ®0,) —>H° (H,0,) =—>H' (1,T,®L1;")

By (22], the first space could be # o only in one of the follo-
wing cases: either (H L ) d_1,0(1)), or (H,L ) ?'(P1,O(2)) In the
first case (Y,L) & (P ,0(1)), and hence (Y,L) has the property (?) in
this case; the second case is ruled out because then H (H,T QDL = o,
and hence (12) splits. Therefore we may assume H° (H,T GDL 1 = o, and
then (13) shows that H° (H, (T ®L~ )GDO ) = o if and only 1f o(1) # o.
Since d(1) is the obstructlon in H (H, T GbL ) such that (12) be split,

we get the result. Q.E.D.

Remark. In a more special situation, L'vovskii proved in [55] a
better result than theorem 5 and its corollary. More precisely, assume

that YCP" is a smooth non-degenerate projective subvariety of p” of
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dimension > 2 and degree 2 3, such that H1(Y,TY(-1)) = 0 and char (k)=
= o. Let xc:Pn+1 be an irreducible subvariety of Pn+1 such that xNp"=
Y, and X is smooth along Y and transversal to Pn, where P"” is embed-
ded in P

skii has an even weaker assumption than H1(Y,TY(—1)) = o (loc. cit.).

as a hyperplane. Then X is a cone over Y. In fact, L'vov-

His proof uses completely different techniques.
Coming back to the above corollary, we may ask the following:

Question. Let (Y,L) be a smooth polarized variety of dimension
d>» 2 such that L is generated by its global sections. Find sufficient
conditions ensuring that there is a smooth divisor H€ [L|] such that the
corresponding exact sequence (12) is not split. Or, enumerate the si-

tuations when (12) is split for HE€ |L| general.

A necessary condition such that this question has a positive an-
swer is that H1(H,THQDL;1) # o for HE |L| general. Is it also suffi-
cient? In the case of surfaces, the pairs (Y,L) for which
H1(H,THGQL;1) = o for HE |L| general, can be easily enumerated. Indeed,
by duality and Riemann-Roch on the curve H one gets that this happens
if and only if (H,LH) = (P1,O(i)) with i=1, 2, or 3. And by a well-
known classical result, (Y,L) is isomorphic to one of the following:
(P2,O(1)), (P1xP1,O(1,1)), or any smooth hyperplane section of P1xP2C1
C?P5 via the Segre embedding (the latter surfaces are all isomorphic to

the projective plane blown up at a point).

§4. P’-pundles over an irrational curve as hyperplane sections

Let B be a smooth projective curve, and let E be a vector bundle
of rank n+1 on B, with n>1. Denote by Y = P(E) the projective bundle
associated to E, and by p:Y — > B the canonical projection. The main

result of this section is the following:

Theorem 6. In the above notations, assume that the genus of B is
positive and char (k) = o. Let X be a singular normal projective vériety

containing Y = P(E) as an ample Cartier divisor. Then X is isomorphic

to the projective cone C(Y,L) and Y is embedded in X as the infinite,

where L is the normal bundle of Y in X.

The motivation of theorem 6 lies in the fact that, combining it
with some results from [1], [2], and (3], we get the following complete
description of all normal projective varieties whose hyperplane secti~

n
ons are P -bundles over a curve:



