Path-Oriented
Program Analysis

J. C. Huang

Path-Oriented Program
Analysis

J. C. Huang
University of Houston, Houston, Texas

aaaaa

g Gavexencs ([N

E2009003559

CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo, Delhi

Cambridge University Press
32 Avenue of the Americas, New York, NY 10013-2473, USA

www.cambridge.org
Information on this title: www.cambridge.org/9780521882866

© J. C. Huang 2008

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without

the written permission of Cambridge University Press.

First published 2008
Printed in the United States of America
A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data

Huang, J. C., 1935—
Path-oriented program analysis / J. C. Huang

p. cm.
Includes bibliographical references and index.
ISBN-978-0-521-88286-6 (hardback)
1. Computer software — Development. 2. Computer software —
Development — Computer programs. I. Title.
QA76.76.D47TH83 2008
005.1 — dc22 2007026404

ISBN 978-0-521-88286-6 hardback

Cambridge University Press has no responsibility for

the persistence or accuracy of URLSs for external or
third-party Internet Web sites referred to in this publication
and does not guarantee that any content on such

Web sites is, or will remain, accurate or appropriate.

Path-Oriented Program Analysis

This book presents a unique method for decomposing a computer pro-
gram along its execution paths, for simplifying the subprograms so
produced, and for recomposing a program from its subprograms. This
method enables us to divide and conquer the complexity involved in
understanding the computation performed by a program by decompos-
ing it into a set of subprograms and then simplifying them to the furthest
extent possible. The resulting simplified subprograms are generally more
understandable than the original program as a whole. The method may
also be used to simplify a piece of source code by following the path-
oriented method of decomposition, simplification, and recomposition.
The analysis may be carried out in such a way that the derivation of the
analysis result constitutes a correctness proof. The method can be applied
to any source code (or portion thereof) that prescribes the computation to
be performed in terms of assignment statements, conditional statements,
and loop constructs, regardless of the language or paradigm used.

J. C. Huang received a Ph.D. in electrical engineering from the University
of Pennsylvania in 1969. He is a Professor Emeritus in the Department
of Computer Science at the University of Houston, where he served as
chair from 1992 to 1996.

His practical experience in computer software includes serving as the
chief architect of a software validation and verification system developed
for the U.S. Army’s Ballistic Missile Defense Command, and as a senior
consultant to the U.S. Naval Underwater Systems Center on submarine
software problems.

To my wife

Preface

Many years ago, I was given the responsibility of leading a large software
project. The aspect of the project that worried me the most was the
correctness of the programs produced. Whenever a part of the product
became suspect, I could not put my mind to rest until the product was
tested successfully with a well-chosen set of test cases and until I was able
to understand the source code in question clearly and completely. It was
not always easy to understand. That was when I started to search for
ways to facilitate program understanding.

A program can be difficult to understand for many reasons. The dif-
ficulty may stem, for example, from the reader’s unfamiliarity with the
application area, from the obscurity of the algorithm implemented, or
from the complex logic used in organizing the source code. Given the dif-
ferent reasons that difficulty may arise, a single comprehensive solution
to this problem may never be found.

Irealized, however, that the creator of a program must always decom-
pose the task to be performed by the program to the extent that it
can be prescribed in terms of the programming language used. If the

Preface

reader could see exactly how the task was decomposed, the difficulty of
understanding the code would be eased because the reader could sep-
arately process each subprogram, which would be smaller in size and
complexity than the program as a whole.

The problem is that the decomposition scheme deployed in any pro-
gram may not be immediately obvious from the program text. This is so
because programmers use code sharing to make source code compact and
avoid unnecessary repetition. Code sharing, together with certain syn-
tactic constraints imposed by programming languages, tends to obscure
the decomposition scheme embodied in any program. Some analysis is
required to recover this information.

Mathematically speaking, there are three basic ways to decompose a
function. The first way is to divide the computation to be performed into
a sequence of smaller steps. The second way is to compute a function
with many arguments in terms of functions of fewer arguments. The
third way is to partition the input domain into a number of subdomains
and prescribe the computation to be performed for each subdomain
separately. Methods already exist to recover and exploit information
relevant to the first two decomposition schemes: They are known as
the techniques of symbolic execution and program slicing, respec-
tively. This book presents an analysis method that allows us to extract,
analyze, and exploit information relevant to the third decomposition
scheme.

Do not be intimidated by the formalisms found in the text. The theo-
rems and corollaries are simply rules designed to manipulate programs.
To be precise and concise, formulas in first-order predicate calculus are
used to describe the rules. Only elementary knowledge of symbolic logic
is needed to interpret those rules.

Typically, the method described in this book is to be used as follows.
The program in question is test-executed with an input. If the program
produces an incorrect result, it is a definite indication that the program
is faulty, and appropriate action must be taken to locate and correct the
fault. On the other hand, if the program produces a correct result, one can
conclude with certainty only that the program is correct for that partic-
ular input. One can broaden the significance of the test result, however,
by finding the execution path traversed during the test-execution and
then applying the analysis method presented in this book to determine

Preface

(1) the conditions under which the same path will be traversed, and (2)
the exact nature of the computation performed during execution. This
information about execution paths in the program can then be integrated
to obtain a better understanding of the program as a whole. This method
is illustrated in Appendix A with example programs in C++.

This book contains enough information for the reader to apply the
method manually. Manual application of this method, however, is inevi-
tably tedious and error prone. To use the method in a production envi-
ronment, the method must be mechanized. Software tool designers will
find the formal basis presented in this work useful in creating a detailed
design.

Being able to understand programs written by others is of practical
importance. It is a skill that is fundamental to anyone who reuses software
or who is responsible for software quality assurance and beneficial to
anyone who designs programs, because it allows designers to learn from
others. It is a skill that is not easy to acquire. I am not aware of any aca-
demic institution that offers a course on the subject. Typically, students
learn to understand programs by studying small examples found in pro-
gramming textbooks, and they may never be challenged, while in school,
to understand a real-world program. Indeed, I have often heard it said —
and not only by students — that if a program is difficult to understand,
it must be badly written and thus should be rewritten or discarded.
Program analysis is normally covered in a course on compiler cons-
truction. The problem is that what is needed to make a compiler com-
pile is not necessarily the same as what is needed to make a programmer
understand. We need methods to facilitate program understanding. I
hope that publication of this book will motivate further study on the
subject.

I would like to take this opportunity to thank William E. Howden for
his inspiration; Raymond T. Yeh for giving me many professional oppor-
tunities that allowed this method to develop from conception, through
various stages of experimentation, and finally to the present state of
maturity; and John L. Bear and Marc Garbey for giving me the time
needed to complete the writing of this book. I would also like to thank
Heather Bergman for seeking me out and encouraging me to publish this
work and Pooja Jain for her able editorial assistance in getting the book
produced. Finally, my heartfelt thanks go to my daughter, Joyce, for her

Preface

active and affectionate interest in my writing, and for her invaluable
help in the use of the English language, and to my wife, Shihwen, for
her support, and for allowing me to neglect her while getting this work
done.

J. C. Huang
Houston

Contents

Preface

1 ¢ Introduction

2 * State constraints

3 * Subprogram simplification
4 * Program set

5 ¢ Pathwise decomposition

6 * Tautological constraints

7 ¢ Program recomposition

8 * Discussion

9 ¢ Automatic generation of symbolic traces

page ix
1

15

21

31

39

55

69

87

95

Contents

viii

Appendix A: Examples
Appendix B: Logico-mathematical background
References

Index

108

167

191

194

Introduction

Program analysis is a problem area concerned with methodical extraction
of information from programs. It has attracted a great deal of attention
from computer scientists since the inception of computer science as an
academic discipline. Earlier research efforts were mostly motivated by
problems encountered in compiler construction (Aho and Ullman, 1973).
Subsequently, the problem area was expanded to include those that arise
from development of computer-aided software engineering tools, such
as the question of how to detect certain programming errors through
static analysis (Fosdick and Osterweil, 1976).

By the mid-1980s, the scope of research in program analysis had greatly
expanded to include, among others, investigation of problems in data-
flow equations, type inference, and closure analysis. Each of these prob-
lem areas was regarded as a separate research domain with its own ter-
minology, problems, and solutions.

Gradually, efforts to extend the methods started to emerge and to pro-
duce interesting results. It is now understood that those seemingly dis-
parate problems are related, and we can gain much by studying them in
a unified conceptual framework. As the result, there has been a dramatic

Path-Oriented Program Analysis

shift in the research directions in recent years. A great deal of research
effort has been directed to investigate the possibilities of extending and
combining existent results [see, e.g., Aiken (1999); Amtoft et al. (1999);
Cousot and Cousot (1977); Flanagan and Qadeer (2003); and Jones and
Nielson (1995)].

In the prevailing terminology, we can say that there are four major
approaches to program analysis, viz., data-flow analysis, constraint-
based analysis, abstract interpretation, and type-and-effect system
(Nielson et al., 2005).

The definition of data-flow analysis appears to have been broadened
considerably. In the classical sense, data-flow analysis is a process of
collecting data-flow information about a program. Examples of data-
flow information include facts about where a variable is assigned a value,
where that value is used, and whether or not that value will be used again
downstream. Compilers use such information to perform transformations
like constant folding and dead-code elimination (Aho et al., 1986). In the
recent publications one can now find updated definitions of data-flow
analysis, such as “data-flow analysis computes its solutions over the
paths in a control-flow graph” (Ammons and Larus, 1998) and the like.

Constraint-based analysis consists of two parts: constraint generation
and constraint resolution. Constraint generation produces constraints
from the program text. The constraints give a declarative specification
of the desired information about the program. Constraint resolution then
computes this desired information (Aiken, 1999).

Abstract interpretation is a theory of sound approximation of the
semantics of computer programs. As aptly explained in the lecture note of
Patrick Cousot at MIT, the concrete mathematical semantics of a program
is an infinite mathematical object that is not computable. All nontrivial
questions on concrete program semantics are undecidable.

A type system defines how a programming language classifies values
and expressions into types, how it can manipulate those types, and how
they interact. It can be used to detect certain kinds of errors during pro-
gram development. A type-and-effect system builds on, and extends,
the notion of types by incorporating behaviors that are able to track
information flow in the presence of procedures, channels based on com-
munication, and the dynamic creation of network topologies (Amtoft
et al., 1999).

Introduction

This book presents a path-oriented method for program analysis. The
property to be determined in this case is the computation performed
by the program and prescribed in terms of assignment statements, con-
ditional statements, and loop constructs. The method is path oriented"
in that the desired information is to be extracted from the execution
paths of the program. We explicate the computation performed by the
program by representing each execution path asa subprogram, and then
using the rules developed in this work to simplify the subprogram or to
rewrite it into a different form.

Because the execution paths are to be extracted by the insertion of
constraints into the program to be analyzed, this book may appear to
be yet another piece of work in constraint-based analysis in light of the
current research directions just outlined. But that is purely coincidental.
The intent of this book is simply to present an analysis method that
the reader may find it useful in some way. No attempt has been made
to connect it to, or fit it into, the grand scheme of current theoretical
research in program analysis.

The need for a method like this may arise when a software engineer
attempts to determine if a program will do what it is intended to do.
A practical way to accomplish this is to test-execute the program for
a properly chosen set of test cases (inputs). If the test fails, i.e., if the
program produces at least one incorrect result, we know for sure that
the program is in error. On the other hand, if all test results produced
are correct, we can conclude only that the program works correctly for
the test cases used. The strength of this conclusion may prove to be
inadequate in some applications. The question then is, what can we do
to reinforce our confidence in the program? One possible answer is to
read the source code. Other than an elegant formal proof of correctness,
probably nothing else is more reassuring than the fact that the source
code is clearly understood and test-executes correctly.

It is a fact of life that most of a real-world program is not that difficult
to read. But occasionally even a competent software engineer will find

! This is not to be confused with the term “path sensitive.” In some computer

science literature (see, e.g., WIKIPEDIA in references), a program analysis
method is characterized as being path sensitive if the results produced are
valid only on feasible execution paths. In that sense, the present method is
not path sensitive, as will become obvious later.

Path-Oriented Program Analysis

a segment of code that defies his or her effort to comprehend. That is
when the present method may be called on to facilitate the process.

A piece of source code can be difficult to understand for many different
reasons, one of which is the reader’s inability to see clearly how the
function was decomposed when the code was written to implement it.
The present method is designed to help the reader to recover that piece
of information.

To understand the basic ideas involved, it is useful to think of a pro-
gram as an artifact that embodies a mathematical function. As such, it
can be decomposed in three different ways.

The first is to decompose f into subfunctions, say, f; and f;, such that
f(x) = fi(f2(x)). In a program, f, f, and f, are often implemented as
assignment statements. The computation it prescribes can be explicated
by use of the technique of symbolic execution (King, 1976; Khurshid
et al., 2003).

The second is to decompose f into subfunctions, say, f3, fs, and fs,
such that

fix. y. 2) = H(fa(x. y). £5(y, 2)).

In a real program, the code segments that implement f; and f5 can be
identified by using the technique of program slicing (Weiser, 1984).

The third way of decomposition is to decompose f into a set of n
subfunctions such that

f=1{f,f, ..., £},
f:X—>Y,

X=X UX,U...UX,,
fi:X;— Yforalll <i<n.

An execution path in the program embodies one of the subfunctions.
The present method is designed to identify, manipulate, and exploit code
segments that embody such subfunctions.

Examples are now used to show the reader some of the tasks that can
be performed with the present method.

Two comments about the examples used here and throughout this
book first.

Introduction

Programs in C++ are used as examples because C++ is currently one
of the most, if not the most, commonly used programming languages at

present.

Furthermore, some example programs have been chosen that are con-
trived and unnecessarily difficult to understand. The reason to keep
example programs small is to save space, and the reason to make them

difficult to understand is so that the advantages of using the present

method can be decisively demonstrated.
Consider the C++ program listed below.

Program 1.1

ffinclude <iostream>
ffinclude <string>
using namespace std
int atoi(string& s)
{
int i, n, sign;
i = 0;
while (isspace(s[i]))
i=1+4+1;

sign = 1;

if (s[i] == ‘4’ || s[i] == “-")
i=14+1;

n = 0;

while (isdigit(s[i])) {
n =10 *n 4 (sfi] -- “0°);
i i+ 1;

}

return sign * n;

This is a C++ version of a standard library function that accepts a

string of digits as input and returns the integer value represented by

that string.

Path-Oriented Program Analysis

Now suppose we test-execute this program with input string, say,
“7,” and the program returns 7 as the value of function atoi. This
test result is obviously correct. From this test result, however, we can
conclude only that this piece of source code works correctly for this par-
ticular input string. As mentioned before, we can bolster our confidence
in the correctness of this program by finding the execution path traversed
during the test-execution and the answers to the following questions:
(1) What is the condition under which this execution path will be
traversed? and (2) what computation is performed in the process?

The execution path can be precisely and concisely described by the
symbolic trace subsequently listed. The symbolic trace of an execution
path is defined to be the linear listing of the statements and true predi-
cates encountered on the path (Howden and Eichorst, 1977).

Trace 1.2

i = 03

/\!(isspace(s[il));

/N (s[i] == ‘-");
sign = 1;
/NV(sTi] == ‘4" || s[i] == *-");
n = 0;
/\ (isdigit(s[i]));
n =10 * n 4+ (sC[i] - “0");
i=1+4+1;
/\!(isdigit(s[il));
return sign * n;

Note that every true path-predicate in the preceding trace is prefixed
with a digraph “/\"” and terminated with a semicolon.

In comparison with the whole program (Program 1.1), the symbolic
trace is simpler in logical structure and smaller in size because all state-
ments irrelevant to this execution are excluded. This symbolic trace con-
tains answers to the two questions previously posed, but the answers
are not immediately obvious.

It turns out that we can obtain the desired answers by treating the
true predicates on the path as state constraints (see Chapter 2) and by

